
The Needs of the Many vs The Needs of the One

Known 3SAT is NP-complete.

So we think 3SAT /∈ P.

Def #φ is the number of satisfying assignments for φ.

Our Question Given φ where you are promised that #φ ≤ 1,
determine #φ. We call this problem VV (for Valiant-Vazirani).
Vote
1) VV ∈ P.
2) If VV ∈ P then P = NP.
3) If VV ∈ P then something else unlikely happens.
The answer is 3.

If VV ∈ P then SAT is in randomized poly time (RP).
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Randomized Algorithms

Def A Randomized Algorithm is an algorithm that will, in some
of its step, flip a coin; the next instruction is based on that coin.

Let ALG be a rand Alg and x be an input.

What We Can’t Say φ ∈ SAT → ALG(φ) accepts
What We Can’t Say φ ∈ SAT iff #SAT(ALG(φ)) = 1.

What We Can Say φ ∈ SAT → Pr(ALG(φ) = 0) ≤ 1
4 .

What We Can Say
φ ∈ SAT → Pr(#SAT(ALG(φ)) = 1 ≥ 1

n .
φ /∈ SAT → Pr(#SAT(ALG(φ)) = 1) = 0
When is a Rand Alg Useful? When it is fast and has a high
probability of being correct.
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A Useful Rand Alg: Preparation

Consider the following matrix of polynomials:

M(x) =

 x x − 1 3x + 4
17x2 + x − 1 x2 + 17 −12x2 + 4x − 3
x3 + x2 − 5 x3 + x2 + x − 77 x3 − 84x2 + 8x − 100


Imagine taking its determinant.

It would be a mess! Or not. It could be 0.

If it were 0 then the intermediary calculations would be a mess
even though the final answer is not.

If it were 0 then plugging in any number for x and doing the det
(which is easy) would yields 0.

Is the Det of the above matrix 0? I do not know but I doubt it.
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A Useful Rand Alg for DETPOLYZERO
Def Let DETPOLYZERO be the set of all square matrices M(x) of
polynomials in one variable over the integers such that the
DET(M(x)) = 0.

M1(x) =

(
x x − 1

x + 1 x2 − 1

)
is NOT in DETPOLYZERO since Det is

x(x2−1)−(x−1)(x +1) = x3−x−(x2−1) = x3−x2−x +1 6≡ 0.

M2(x) =

(
1 x − 1

x + 1 x2 − 1

)
is IN DETPOLYZERO since the determinant is

x2 − 1− (x − 1)(x + 1) = x2 − 1− (x2 − 1) = 0.
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DETPOLYZERO is in RP

Here is a rand algorithm for DETPOLYZERO.

1. Input M(x) (n × n matrix of polys of degree ≤ d).

2. Pick prime (dn)2 ≤ p ≤ 2(dn)2 and a ∈ {0, . . . , p − 1}.
3. d = DET(M(a)) (mod p). If d 6= 0 output NO!!, else YES??

If DET(M(x)) = 0 then d = 0.
If DET(M(x)) 6= 0 then likely d 6= 0. (Proof next slide.)
Note In the above algorithm, we use “mod p” so that the
intermediate values do not get so large.
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Prob of Error

If DET(M(x)) 6= 0 then DET(M(x)) is a poly of degree ≤ dn.

View DET(M(x)) as a poly in mod p. It has ≤ dn roots mod p.

a ∈ {0, . . . , p − 1} where p ∼ (dn)2 is picked at random.

Prob(DET(M(a)) ≡ 0 (mod p))=Prob(a is a root):

dn

d2n2
=

1

dn
≤ 1

n
which is small!.
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Can We Reduce the Probability of Error?

Lets say we had a Rand Alg for A with Prob of error ≤ 1
4 .

x ∈ A→ Pr(ALG(x) = 0) ≤ 1
4

x /∈ A→ Pr(ALG(x) = 0) = 1

Can we get the probability of being right higher? Discuss

ALG2: Run it twice!
If either time is says 1, then output 1. Else output 0

x ∈ A→ Pr(ALG2(x) = 0) ≤ 1
42

x /∈ A→ Pr(ALG(x) = 0) = 1

Run n times to get Prob of error ≤ 1
4n .
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Rand Poly Time (RP)

Def A set A is in Randomized Polynomial Time (RP) if there
exists a randomized algorithm ALG that runs in poly time such
that:

x ∈ A → Pr(ALG(x) = 0) ≤ 1
4

x /∈ A → Pr(ALG(x) = 0) = 1

1) Equiv to def where replace 1
4 by 1

2|x|

2) Our RP is 1-sided error. 2-sided error classes have been defined.
3) Very few problems in RP that are not known to be in P.
DETPOLYZERO is one of them.
4) RP is thought to be feasible.
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Famous and Motivating Example

PRIMES ∈ RP.

1. This was an early example of a problem in RP. (A 1967 paper
sort-of has it, but a 1977 paper has it, and the algorithm
actually used is 1980.)

2. This result may have motivated the definition of RP.

3. The PRIMES ∈ RP algorithm is very fast and actually used
for many cryptography protocols.

4. In 2002 PRIMES ∈ P was proven. The algorithm is much
slower than the randomized algorithm; however, it is
interesting that the problem is in P.

5. There are reasons to think P = RP.
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Randomized Reductions: Intuition

The following would be a good definition but it is not our
definition.

x ∈ A → Pr(ALG(x) ∈ B) ≥ 3
4

x /∈ A → Pr(ALG(x) /∈ B) = 1

We demand less! of our reductions.
Def A ≤r B if there is an alg ALG and a poly q such that

x ∈ A → Pr(ALG(x) ∈ B) ≥ 1
q(n)

x /∈ A → Pr(ALG(x) /∈ B) = 1

How Odd! We seem to be allowing a large prob of error!

Plan This small prob of success will get us all we need.
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A ≤r B and B ∈ P → A ∈ RP

A ≤r B via f and polynomial q. Here is Alg for A ∈ RP.

1. Input x . Let |x | = n.

2. Run ALG(x) 2q(n) times to get y1, . . . , y2q(n).

3. For 1 ≤ i ≤ 2q(n) ask if yi ∈ B. If any of the answers are
YES, then output YES. Otherwise output NO.

x ∈ A → Pr(yi ∈ B) ≥ 1
q(|x |) , hence

Pr((∀i)[yi /∈ B]) ≤
(

1− 1
q(n)

)2q(n)

≤ (e−1/q(n))2q(n) ≤ (e−1)2 ≤ 1
4

Hence Pr((∃i)[yi ∈ B]) ≥ 1− 1
4 = 3

4 .
So x ∈ A → Prob Alg says YES is ≥ 3

4 .

x /∈ A → (∀i)[yi /∈ B] hence Rand Alg says NO.
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Our Plan (This is what Valiant-Vazirani did)

Given φ we produce a formula ζ such that

φ ∈ SAT → #(ζ) = 1 with high probability;
φ /∈ SAT → #(ζ) = 0.

A formula is a set of satisfying assignments!
We want to map this set to a much smaller set.
How do computer scientists map large sets to small sets? Discuss
Hash Functions!
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Hash Functions: Motivation

If a set is large then a randomly chosen hash function will likely
map some element to 0k .

If a set is small then a randomly chosen hash function is unlikely
to map some element to 0k .



Hash Functions: Motivation

If a set is large then a randomly chosen hash function will likely
map some element to 0k .

If a set is small then a randomly chosen hash function is unlikely
to map some element to 0k .



Hash Functions: Motivation

If a set is large then a randomly chosen hash function will likely
map some element to 0k .

If a set is small then a randomly chosen hash function is unlikely
to map some element to 0k .



Probability Review

1. A sample space is the set of things that could happen. In
our case it will be the set of possible hash functions that could
be produced.

2. A random variable is a mapping from the sample space to
numbers. In our case it will be mapping the hash function h
to the number |{x : h(x) = 0k}|.

3. If S is a random variable then E (S) is its expected value and
Var(S) is its variance. It is known that
Var(S) = E ((S − E (S))2) = E (S2)− E (S)2.

Convention Whenever we have a 0-1 valued matrix apply to a
vector we do all of the calculations mod 2.
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Lemma

Let k, n ∈ N with 0 ≤ k ≤ n. Let X ⊆ {0, 1}n. Assume 0n /∈ X .

Consider the following random variable:

Pick a random k × n 0-1 valued matrix M.

S = |{x ∈ X : M(x) = 0k}|.

Output S .
Then

1. E (S) = 2−k |X |
2. Var(S) ≤ 2−k |X |.

Note E (S) and Var(S) do not depends on n, just on k and |X |.
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Proof of Lemma: Rx

Before looking at E (S) and Var(S) we will need to look at E of
some easier random variables:

Let x , y ∈ X . Let Rx be the random variable

Rx =

{
1 if M(x) = 0k ;

0 if M(x) 6= 0k .
(1)

Let Ry be similar.
Let Mi (x) be the ith element of the vector M(x).

E (Rx) =
k∏

i=1

Pr(Mi (x) = 0) =
1

2k

We also have

E (R2
x ) =

k∏
i=1

Pr(Mi (x) = 0) =
1

2k
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Proof of Lemma: RxRy

We now compute E (RxRy ).

E (RxRy ) = Pr(M(x) = 1 ∧M(y) = 1) =
1

2k
× 1

2k
=

1

4k
.



Proof of Lemma: RxRy

We now compute E (RxRy ).

E (RxRy ) = Pr(M(x) = 1 ∧M(y) = 1) =
1

2k
× 1

2k
=

1

4k
.



Proof of Lemma E(S),V (S)

E (S) = E (
∑
x∈X

Rx) =
∑
x∈X

E (Rx) =
1

2k
|X |.

Recall that Var(S) = E (S2)− (E (S))2.

E(S2) = E((
∑

x∈X Rx)(
∑

y∈X Ry));

=
∑

x∈X
∑

y∈X E (RxRy );

=
∑

x∈X E (R2
x ) +

∑
x 6=y E (RxRy );

=
∑

x∈X
1
2k

+
∑

x 6=y
1
4k

;

= 1
2k |X|+ 1

4k |X|(|X| − 1);

Var(S) = E(S2)− (E(S))2

= 1
2k
|X |+ 1

4k
|X |(|X | − 1)− 1

4k
|X |2

= 1
2k
|X |+ 1

4k
|X |2 − 1

4k
|X | − 1

4k
|X |2

= 1
2k
|X | − 1

4k
|X |

≤ 1
2k
|X|
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What if k = 0?

Recall we had:

Let k, n ∈ N with 0 ≤ k ≤ n.

Pick a random k × n 0-1 valued matrix M.

We allowed k = 0.

What is a 0× n matrix?

What is the sound of one hand clapping?

The matrix question is easier: By convention the 0× n matrix has
no effect. So

X = {x ∈ X : M(x) = 0k}.
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Plan

Def Let ` ∈ N. Then SAT` is

{φ : 1 ≤ #(φ) ≤ `}.

Plan
1) SAT ≤r SAT12. (Why 12? We’ll see later.)
2) SAT12 ≤r SAT1. (Not Quite- this reduction will only be correct
if the input comes from the first reduction.)
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SAT ≤r SAT12



Chebyshev’s inequality

If S is any random variable and a > 0 then

Pr(|S − E (S)| ≥ a) <
Var(S)

a2
.

Intuitively this is saying that the probability that S is far away from
E (S) is small, and how small depends on Var(S).

Chebyshev proved it so we don’t have to :-)
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Before We Prove SAT ≤r SAT12

Recall
Def Let A and B be two sets. We say that A ≤r B if there exists
fast Rand Alg ALG and poly q:

x ∈ A → Pr(ALG(x) ∈ B) ≥ 1
q(n)

x /∈ A → Pr(ALG(x) /∈ B) = 1

We will get a reduction φ to ψ where
φ ∈ SAT → Pr(1 ≤ #ψ ≤ 12) ≥ 1

2n . Key Not much to ask for!

φ /∈ SAT → #ψ = 0. Key This will be easy.
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SAT ≤r SAT12

Here is the randomized reduction.

1. Input φ(~x). Let n be the number of variables in φ.

2. Evaluate φ(~0). If T then output x ∈ SAT12.
If FALSE then goto next step. Note If X is the set of
satisfying assignments then 0n /∈ X .

3. Pick a random k ∈ {0, . . . , n − 1} (uniformly).

4. Pick a random k × n 0-1 valued matrix M.

5. Output the Boolean formula ψ(~x) = φ(x) ∧ (M(x) = 0k).

Clearly if φ /∈ SAT then ψ /∈ SAT12.
Need that if φ ∈ SAT then Pr(1 ≤ #ψ ≤ 12) ≥ 1

2n .
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What if φ ∈ SAT and #(φ) ≤ 12?

If k is assigned to 0 at random then

φ = ψ ∈ SAT12

Pr(k = 0) = 1
n ≥

1
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What if φ ∈ SAT and #(φ) ≥ 13?

m is such that 2m < #(φ) ≤ 2m+1. Note m ∈ {3, . . . , n − 1}.)

Pr(k = m − 2) =
1

n
.

We will show If k = m − 2 then

Pr(1 ≤ #ψ ≤ 12) ≥ 1

2

We will then have

Pr(1 ≤ #ψ ≤ 12) ≥ 1

n
× 1

2
=

1

2n
.

That is all we need to show!
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2m < #φ ≤ 2m+1 and k = m− 2

X is the set of sat assignments of φ. 0n /∈ X . 2m < |X | ≤ 2m+1.

Random hash function h : {0, 1}n → {0, 1}k .

#ψ = S = |{x ∈ X : h(x) = 0k}|.

We know
E (S) = 2−k |X | = 2−(m−2)|X |

Var(S) ≤ 2−(m−2)|X |.

Hence
2−(m−2)+m < E (S) ≤ 2−(m−2)+m+1,

so
4 < E (S) ≤ 8

and
Var(S) < 8.
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2m < #φ ≤ 2m+1 and k = m− 2

Recap:

4 < E (S) ≤ 8

and
Var(S) < 8.

Want Pr(|S | /∈ {1, . . . , 12}) ≤ 1
2 .

By Chebyshev’s inequality

Pr(|S − E (S)| ≥ 4) ≤ Var(S)

42
≤ 8

16
=

1

2
.

Since 4 < E (S) ≤ 8 this yields
Pr(S ∈ {1, . . . , 12}) > 1− 1

2 = 1
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SAT12 ≤r SAT1
Not Quite



What We Really Need
Recall that we have a reduction that maps φ to ψ such that

φ ∈ SAT → Pr(ψ ∈ SAT12) ≥ 1
2n

φ /∈ SAT → ψ /∈ SAT hence ψ /∈ SAT12

Let ψ be the output of this reduction. Then (with high prob)

#ψ ∈ {0, . . . , 12}.

We do not need SAT12 ≤r SAT1.

We need SAT12 ≤r SAT1 where the input ψ has

#ψ ∈ {0, . . . , 12}.

We will get (with restricted input)

ψ ∈ SAT12 → Pr(ζ ∈ SAT1) ≥ 1
12

ψ /∈ SAT → ζ /∈ SAT hence ζ /∈ SAT1

Compose the two prob reductions to get SAT ≤r SAT1.
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Notation

X1 will be a vector of n variables.

X2 will be another vector of n variables, disjoint from X1

X3 will be another vector of n variables, disjoint from X1 and X2.
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The Reduction We Need

1. Input(ψ). (Can assume #ψ ∈ {0, . . . , 12}.)
2. Pick a random m ∈ {1, . . . , 12}.
3. Output

ζ = ψ(X1) ∧ · · · ∧ ψ(Xm) ∧ (X1 < · · · < Xm).

(ζ has nm variables.)

Analysis on next slide.
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Analysis of Reduction

Case 1 #(ψ) ∈ SAT12. Let #ψ = i ∈ {1, . . . , 12}.

If m = i then ψ has m different satisfying assignments B1, . . . ,Bm.
We output

ζ = ψ(X1) ∧ · · · ∧ ψ(Xm) ∧ (X1 < · · · < Xm).

This only has one satisfying assignment:

ψ(B1) ∧ · · · ∧ ψ(Bm) ∧ (B1 < · · · < Bm) = T .

Hence #(ζ) = 1

Prob that m = i is 1
12 .

Case 2 φ /∈ SAT. Then clearly ζ /∈ SAT.
We are done!
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Recap

1) We defined A ≤r B. This definition is key since if x ∈ A only
demand that the prob y ∈ B be bounded below by 1

q(n) .

2) Using Random Hash Functions and Chebyshev’s inequality we
get SAT ≤r SAT12.

3) Using Lex ordering we get SAT12 ≤r SAT1 where the input
formula φ has #φ ≤ 12.

4) Compose the two rand reductions to get SAT ≤r SAT1.

5) By Lemma, if SAT1 ∈ P then SAT ∈ RP.

6) One can modify to get: if SAT1 ∈ RP then SAT ∈ RP.
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