Known 3SAT is NP-complete.

Known 3SAT is NP-complete. So we think $3SAT \notin P$.

Known 3SAT is NP-complete. So we think $3SAT \notin P$.

Def $\#\phi$ is the **number of satisfying assignments** for ϕ .

```
Known 3SAT is NP-complete. So we think 3SAT \notin P.
```

Def $\#\phi$ is the **number of satisfying assignments** for ϕ . **Our Question** Given ϕ where you are **promised** that $\#\phi \le 1$, determine $\#\phi$. We call this problem VV (for Valiant-Vazirani).

```
Known 3SAT is NP-complete. So we think 3SAT \notin P.
```

Def $\#\phi$ is the **number of satisfying assignments** for ϕ . **Our Question** Given ϕ where you are **promised** that $\#\phi \le 1$, determine $\#\phi$. We call this problem **VV** (for Valiant-Vazirani). **Vote**

```
Known 3SAT is NP-complete.
So we think 3SAT \notin P.
```

Def $\#\phi$ is the **number of satisfying assignments** for ϕ . **Our Question** Given ϕ where you are **promised** that $\#\phi \le 1$, determine $\#\phi$. We call this problem VV (for Valiant-Vazirani). **Vote**

1) **VV** ∈ P.

```
Known 3SAT is NP-complete.
So we think 3SAT \notin P.
```

Def $\#\phi$ is the **number of satisfying assignments** for ϕ .

Our Question Given ϕ where you are **promised** that $\#\phi \leq 1$, determine $\#\phi$. We call this problem **VV** (for Valiant-Vazirani). **Vote**

- 1) **VV** ∈ P.
- 2) If $VV \in P$ then P = NP.

```
Known 3SAT is NP-complete. So we think 3SAT \notin P.
```

Def $\#\phi$ is the **number of satisfying assignments** for ϕ .

Our Question Given ϕ where you are **promised** that $\#\phi \leq 1$, determine $\#\phi$. We call this problem **VV** (for Valiant-Vazirani). **Vote**

- 1) **VV** ∈ P.
- 2) If $\mathbf{VV} \in \mathbf{P}$ then $\mathbf{P} = \mathbf{NP}$.
- 3) If $VV \in P$ then something else unlikely happens.

```
Known 3SAT is NP-complete.
So we think 3SAT \notin P.
```

Def $\#\phi$ is the **number of satisfying assignments** for ϕ .

Our Question Given ϕ where you are **promised** that $\#\phi \leq 1$, determine $\#\phi$. We call this problem **VV** (for Valiant-Vazirani). **Vote**

```
    VV ∈ P.
    If VV ∈ P then P = NP.
    If VV ∈ P then something else unlikely happens.
The answer is 3.
```

```
Known 3SAT is NP-complete. So we think 3SAT \notin P.
```

Def $\#\phi$ is the **number of satisfying assignments** for ϕ .

Our Question Given ϕ where you are **promised** that $\#\phi \leq 1$, determine $\#\phi$. We call this problem **VV** (for Valiant-Vazirani). **Vote**

1) **VV** ∈ P.

2) If $\mathbf{VV} \in \mathbf{P}$ then $\mathbf{P} = \mathbf{NP}$.

3) If $VV \in P$ then something else unlikely happens.

The answer is 3.

```
If VV \in P then SAT is in randomized poly time (RP).
```

シック 一郎 (中国)・(田)・(日)

Def A **Randomized Algorithm** is an algorithm that will, in some of its step, flip a coin; the next instruction is based on that coin.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Def A **Randomized Algorithm** is an algorithm that will, in some of its step, flip a coin; the next instruction is based on that coin.

Let ALG be a rand Alg and x be an input.

Def A **Randomized Algorithm** is an algorithm that will, in some of its step, flip a coin; the next instruction is based on that coin.

Let ALG be a rand Alg and x be an input.

What We Can't Say

Def A **Randomized Algorithm** is an algorithm that will, in some of its step, flip a coin; the next instruction is based on that coin.

Let ALG be a rand Alg and x be an input.

What We Can't Say $\phi \in SAT \rightarrow ALG(\phi)$ accepts

Def A **Randomized Algorithm** is an algorithm that will, in some of its step, flip a coin; the next instruction is based on that coin.

Let ALG be a rand Alg and x be an input.

What We Can't Say $\phi \in SAT \rightarrow ALG(\phi)$ accepts What We Can't Say

Def A **Randomized Algorithm** is an algorithm that will, in some of its step, flip a coin; the next instruction is based on that coin.

ション ふゆ アメビア メロア しょうくしゃ

Let ALG be a rand Alg and x be an input.

What We Can't Say $\phi \in SAT \rightarrow ALG(\phi)$ accepts What We Can't Say $\phi \in SAT$ iff $\#SAT(ALG(\phi)) = 1$.

Def A **Randomized Algorithm** is an algorithm that will, in some of its step, flip a coin; the next instruction is based on that coin.

Let ALG be a rand Alg and x be an input.

What We Can't Say $\phi \in SAT \rightarrow ALG(\phi)$ accepts What We Can't Say $\phi \in SAT$ iff $\#SAT(ALG(\phi)) = 1$.

What We Can Say

Def A **Randomized Algorithm** is an algorithm that will, in some of its step, flip a coin; the next instruction is based on that coin.

Let ALG be a rand Alg and x be an input.

What We Can't Say $\phi \in SAT \rightarrow ALG(\phi)$ accepts What We Can't Say $\phi \in SAT$ iff $\#SAT(ALG(\phi)) = 1$.

What We Can Say $\phi \in SAT \rightarrow Pr(ALG(\phi) = 0) \leq \frac{1}{4}$.

Def A **Randomized Algorithm** is an algorithm that will, in some of its step, flip a coin; the next instruction is based on that coin.

Let ALG be a rand Alg and x be an input.

What We Can't Say $\phi \in SAT \rightarrow ALG(\phi)$ accepts What We Can't Say $\phi \in SAT$ iff $\#SAT(ALG(\phi)) = 1$.

What We Can Say $\phi \in SAT \rightarrow Pr(ALG(\phi) = 0) \leq \frac{1}{4}$. What We Can Say

Def A **Randomized Algorithm** is an algorithm that will, in some of its step, flip a coin; the next instruction is based on that coin.

Let ALG be a rand Alg and x be an input.

What We Can't Say $\phi \in SAT \rightarrow ALG(\phi)$ accepts What We Can't Say $\phi \in SAT$ iff $\#SAT(ALG(\phi)) = 1$.

What We Can Say $\phi \in \text{SAT} \to \Pr(\text{ALG}(\phi) = 0) \leq \frac{1}{4}$. What We Can Say $\phi \in \text{SAT} \to \Pr(\#\text{SAT}(\text{ALG}(\phi)) = 1 \geq \frac{1}{n}$. $\phi \notin \text{SAT} \to \Pr(\#\text{SAT}(\text{ALG}(\phi)) = 1) = 0$

Def A **Randomized Algorithm** is an algorithm that will, in some of its step, flip a coin; the next instruction is based on that coin.

Let ALG be a rand Alg and x be an input.

What We Can't Say $\phi \in SAT \rightarrow ALG(\phi)$ accepts What We Can't Say $\phi \in SAT$ iff $\#SAT(ALG(\phi)) = 1$.

What We Can Say $\phi \in SAT \rightarrow Pr(ALG(\phi) = 0) \leq \frac{1}{4}$. What We Can Say $\phi \in SAT \rightarrow Pr(\#SAT(ALG(\phi)) = 1 \geq \frac{1}{n}$. $\phi \notin SAT \rightarrow Pr(\#SAT(ALG(\phi)) = 1) = 0$ When is a Rand Alg Useful? When it is fast and has a high probability of being correct.

・ロト・西ト・モート ヨー シタク

Consider the following matrix of polynomials:

・ロト・日本・ヨト・ヨト・日・ つへぐ

Consider the following matrix of polynomials:

$$M(x) = \begin{pmatrix} x & x-1 & 3x+4\\ 17x^2 + x - 1 & x^2 + 17 & -12x^2 + 4x - 3\\ x^3 + x^2 - 5 & x^3 + x^2 + x - 77 & x^3 - 84x^2 + 8x - 100 \end{pmatrix}$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

Consider the following matrix of polynomials:

$$M(x) = \begin{pmatrix} x & x-1 & 3x+4\\ 17x^2 + x - 1 & x^2 + 17 & -12x^2 + 4x - 3\\ x^3 + x^2 - 5 & x^3 + x^2 + x - 77 & x^3 - 84x^2 + 8x - 100 \end{pmatrix}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Imagine taking its determinant.

Consider the following matrix of polynomials:

$$M(x) = \begin{pmatrix} x & x-1 & 3x+4\\ 17x^2 + x - 1 & x^2 + 17 & -12x^2 + 4x - 3\\ x^3 + x^2 - 5 & x^3 + x^2 + x - 77 & x^3 - 84x^2 + 8x - 100 \end{pmatrix}$$

Imagine taking its determinant. It would be a mess!

Consider the following matrix of polynomials:

$$M(x) = \begin{pmatrix} x & x-1 & 3x+4\\ 17x^2 + x - 1 & x^2 + 17 & -12x^2 + 4x - 3\\ x^3 + x^2 - 5 & x^3 + x^2 + x - 77 & x^3 - 84x^2 + 8x - 100 \end{pmatrix}$$

Imagine taking its determinant. It would be a mess! Or not.

Consider the following matrix of polynomials:

$$M(x) = \begin{pmatrix} x & x-1 & 3x+4\\ 17x^2 + x - 1 & x^2 + 17 & -12x^2 + 4x - 3\\ x^3 + x^2 - 5 & x^3 + x^2 + x - 77 & x^3 - 84x^2 + 8x - 100 \end{pmatrix}$$

Imagine taking its determinant.

It would be a mess! Or not. It could be 0.

Consider the following matrix of polynomials:

$$M(x) = \begin{pmatrix} x & x-1 & 3x+4\\ 17x^2 + x - 1 & x^2 + 17 & -12x^2 + 4x - 3\\ x^3 + x^2 - 5 & x^3 + x^2 + x - 77 & x^3 - 84x^2 + 8x - 100 \end{pmatrix}$$

Imagine taking its determinant.

It would be a mess! Or not. It could be 0.

If it were 0 then the **intermediary calculations** would be a mess even though the final answer is not.

ション ふゆ アメビア メロア しょうくしゃ

Consider the following matrix of polynomials:

$$M(x) = \begin{pmatrix} x & x-1 & 3x+4\\ 17x^2 + x - 1 & x^2 + 17 & -12x^2 + 4x - 3\\ x^3 + x^2 - 5 & x^3 + x^2 + x - 77 & x^3 - 84x^2 + 8x - 100 \end{pmatrix}$$

Imagine taking its determinant.

It would be a mess! Or not. It could be 0.

If it were 0 then the **intermediary calculations** would be a mess even though the final answer is not.

If it were 0 then plugging in any number for x and doing the det (which is easy) would yields 0.

ション ふゆ アメビア メロア しょうくしゃ

Consider the following matrix of polynomials:

$$M(x) = \begin{pmatrix} x & x-1 & 3x+4\\ 17x^2 + x - 1 & x^2 + 17 & -12x^2 + 4x - 3\\ x^3 + x^2 - 5 & x^3 + x^2 + x - 77 & x^3 - 84x^2 + 8x - 100 \end{pmatrix}$$

Imagine taking its determinant.

It would be a mess! Or not. It could be 0.

If it were 0 then the **intermediary calculations** would be a mess even though the final answer is not.

If it were 0 then plugging in any number for x and doing the det (which is easy) would yields 0.

Is the Det of the above matrix 0? I do not know but I doubt it.

A Useful Rand Alg for DETPOLYZERO

Def Let DETPOLYZERO be the set of all square matrices M(x) of polynomials in one variable over the integers such that the DET(M(x)) = 0.

A Useful Rand Alg for DETPOLYZERO

Def Let DETPOLYZERO be the set of all square matrices M(x) of polynomials in one variable over the integers such that the DET(M(x)) = 0.

$$M_1(x) = \begin{pmatrix} x & x-1 \\ x+1 & x^2-1 \end{pmatrix}$$

is NOT in DETPOLYZERO since Det is

$$x(x^{2}-1)-(x-1)(x+1) = x^{3}-x-(x^{2}-1) = x^{3}-x^{2}-x+1 \neq 0.$$

ション ふゆ アメビア メロア しょうくしゃ

A Useful Rand Alg for DETPOLYZERO

Def Let DETPOLYZERO be the set of all square matrices M(x) of polynomials in one variable over the integers such that the DET(M(x)) = 0.

$$M_1(x) = \begin{pmatrix} x & x-1 \\ x+1 & x^2-1 \end{pmatrix}$$

is NOT in DETPOLYZERO since Det is

$$x(x^{2}-1)-(x-1)(x+1) = x^{3}-x-(x^{2}-1) = x^{3}-x^{2}-x+1 \neq 0.$$

$$M_2(x) = \begin{pmatrix} 1 & x-1 \\ x+1 & x^2-1 \end{pmatrix}$$

is IN DETPOLYZERO since the determinant is

$$x^{2} - 1 - (x - 1)(x + 1) = x^{2} - 1 - (x^{2} - 1) = 0.$$

DETPOLYZERO is in RP

Here is a rand algorithm for DETPOLYZERO.

DETPOLYZERO is in RP

Here is a rand algorithm for DETPOLYZERO.

1. Input M(x) ($n \times n$ matrix of polys of degree $\leq d$).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

DETPOLYZERO is in RP

Here is a rand algorithm for DETPOLYZERO.

- 1. Input M(x) ($n \times n$ matrix of polys of degree $\leq d$).
- 2. Pick prime $(dn)^2 \le p \le 2(dn)^2$ and $a \in \{0, ..., p-1\}$.
Here is a rand algorithm for DETPOLYZERO.

- 1. Input M(x) ($n \times n$ matrix of polys of degree $\leq d$).
- 2. Pick prime $(dn)^2 \le p \le 2(dn)^2$ and $a \in \{0, ..., p-1\}$.
- 3. $d = DET(M(a)) \pmod{p}$. If $d \neq 0$ output NO!!, else YES??

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Here is a rand algorithm for DETPOLYZERO.

- 1. Input M(x) ($n \times n$ matrix of polys of degree $\leq d$).
- 2. Pick prime $(dn)^2 \le p \le 2(dn)^2$ and $a \in \{0, ..., p-1\}$.

3. $d = DET(M(a)) \pmod{p}$. If $d \neq 0$ output NO!!, else YES?? If DET(M(x)) = 0 then d = 0.

Here is a rand algorithm for DETPOLYZERO.

- 1. Input M(x) ($n \times n$ matrix of polys of degree $\leq d$).
- 2. Pick prime $(dn)^2 \le p \le 2(dn)^2$ and $a \in \{0, ..., p-1\}$.
- 3. $d = DET(M(a)) \pmod{p}$. If $d \neq 0$ output NO!!, else YES??

- If DET(M(x)) = 0 then d = 0.
- If $DET(M(x)) \neq 0$ then likely $d \neq 0$. (Proof next slide.)

Here is a rand algorithm for DETPOLYZERO.

- 1. Input M(x) ($n \times n$ matrix of polys of degree $\leq d$).
- 2. Pick prime $(dn)^2 \le p \le 2(dn)^2$ and $a \in \{0, ..., p-1\}$.
- 3. $d = DET(M(a)) \pmod{p}$. If $d \neq 0$ output NO!!, else YES??

If DET(M(x)) = 0 then d = 0.

If $DET(M(x)) \neq 0$ then likely $d \neq 0$. (Proof next slide.)

Note In the above algorithm, we use "mod p" so that the intermediate values do not get so large.

If $DET(M(x)) \neq 0$ then DET(M(x)) is a poly of degree $\leq dn$.

・ロト・日本・ヨト・ヨト・日・ つへぐ

If $DET(M(x)) \neq 0$ then DET(M(x)) is a poly of degree $\leq dn$. View DET(M(x)) as a poly in mod p. It has $\leq dn$ roots mod p.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

If $DET(M(x)) \neq 0$ then DET(M(x)) is a poly of degree $\leq dn$. View DET(M(x)) as a poly in mod p. It has $\leq dn$ roots mod p. $a \in \{0, \ldots, p-1\}$ where $p \sim (dn)^2$ is picked at random.

If $DET(M(x)) \neq 0$ then DET(M(x)) is a poly of degree $\leq dn$. View DET(M(x)) as a poly in mod p. It has $\leq dn$ roots mod p. $a \in \{0, \dots, p-1\}$ where $p \sim (dn)^2$ is picked at random. $Prob(DET(M(a)) \equiv 0 \pmod{p}) = Prob(a \text{ is a root})$:

$$rac{dn}{d^2n^2} = rac{1}{dn} \leq rac{1}{n}$$
 which is small!.

Lets say we had a Rand Alg for A with Prob of error $\leq \frac{1}{4}$.

Lets say we had a Rand Alg for A with Prob of error $\leq \frac{1}{4}$.

$$\begin{array}{ll} x \in A \to \Pr(\mathrm{ALG}(x) = 0) &\leq \frac{1}{4} \\ x \notin A \to \Pr(\mathrm{ALG}(x) = 0) &= 1 \end{array}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Lets say we had a Rand Alg for A with Prob of error $\leq \frac{1}{4}$.

$$\begin{array}{ll} x \in A \to \Pr(\mathrm{ALG}(x) = 0) &\leq \frac{1}{4} \\ x \notin A \to \Pr(\mathrm{ALG}(x) = 0) &= 1 \end{array}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Can we get the probability of being right higher? Discuss

Lets say we had a Rand Alg for A with Prob of error $\leq \frac{1}{4}$.

$$\begin{array}{ll} x \in A \to \Pr(\mathrm{ALG}(x) = 0) &\leq \frac{1}{4} \\ x \notin A \to \Pr(\mathrm{ALG}(x) = 0) &= 1 \end{array}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Can we get the probability of being right higher? Discuss ALG2: Run it twice!

Lets say we had a Rand Alg for A with Prob of error $\leq \frac{1}{4}$.

$$\begin{array}{ll} x \in A \to \Pr(\mathrm{ALG}(x) = 0) &\leq \frac{1}{4} \\ x \notin A \to \Pr(\mathrm{ALG}(x) = 0) &= 1 \end{array}$$

Can we get the probability of being right higher? Discuss ALG2: Run it twice! If either time is says 1, then output 1. Else output 0

Lets say we had a Rand Alg for A with Prob of error $\leq \frac{1}{4}$.

$$\begin{array}{ll} x \in A \to \Pr(\mathrm{ALG}(x) = 0) &\leq \frac{1}{4} \\ x \notin A \to \Pr(\mathrm{ALG}(x) = 0) &= 1 \end{array}$$

Can we get the probability of being right higher? Discuss ALG2: Run it twice!

If either time is says 1, then output 1. Else output 0

$$egin{aligned} & x \in A o \Pr(\operatorname{ALG2}(x) = 0) & \leq rac{1}{4^2} \ & x \notin A o \Pr(\operatorname{ALG}(x) = 0) & = 1 \end{aligned}$$

Lets say we had a Rand Alg for A with Prob of error $\leq \frac{1}{4}$.

$$x \in A \rightarrow \Pr(ALG(x) = 0) \le \frac{1}{4}$$

 $x \notin A \rightarrow \Pr(ALG(x) = 0) = 1$

Can we get the probability of being right higher? Discuss ALG2: Run it twice!

If either time is says 1, then output 1. Else output 0

$$\begin{array}{ll} x \in A \to \Pr(\mathrm{ALG2}(x) = 0) &\leq \frac{1}{4^2} \\ x \notin A \to \Pr(\mathrm{ALG}(x) = 0) &= 1 \end{array}$$

ション ふゆ アメリア メリア しょうくしゃ

Run *n* times to get Prob of error $\leq \frac{1}{4^n}$.

Lets say we had a Rand Alg for A with Prob of error $\leq \frac{1}{4}$.

$$\begin{array}{ll} x \in A \to \Pr(\mathrm{ALG}(x) = 0) &\leq \frac{1}{4} \\ x \notin A \to \Pr(\mathrm{ALG}(x) = 0) &= 1 \end{array}$$

Can we get the probability of being right higher? Discuss ALG2: Run it twice!

If either time is says 1, then output 1. Else output 0

$$egin{aligned} & x \in A o \Pr(\mathrm{ALG2}(x) = 0) & \leq rac{1}{4^2} \ & x \notin A o \Pr(\mathrm{ALG}(x) = 0) & = 1 \end{aligned}$$

Run *n* times to get Prob of error $\leq \frac{1}{4^n}$.

Moral If have 1-sided error and Prob of error < 1 then can iterate to get error very small.

Def A set A is in **Randomized Polynomial Time (RP)** if there exists a randomized algorithm ALG that runs in poly time such that:

$$\begin{array}{ll} x \in A & \rightarrow \Pr(\mathrm{ALG}(x) = 0) \leq \frac{1}{4} \\ x \notin A & \rightarrow \Pr(\mathrm{ALG}(x) = 0) = 1 \end{array}$$

1) Equiv to def where replace $\frac{1}{4}$ by $\frac{1}{2^{|x|}}$

Def A set A is in **Randomized Polynomial Time (RP)** if there exists a randomized algorithm ALG that runs in poly time such that:

$$\begin{array}{ll} x \in A & \to \Pr(\mathrm{ALG}(x) = 0) \leq \frac{1}{4} \\ x \notin A & \to \Pr(\mathrm{ALG}(x) = 0) = 1 \end{array}$$

ション ふゆ アメリア メリア しょうくしゃ

Equiv to def where replace ¹/₄ by ¹/<sub>2<sup>|×|</sub>
 Our RP is 1-sided error. 2-sided error classes have been defined.
</sub></sup>

Def A set A is in **Randomized Polynomial Time (RP)** if there exists a randomized algorithm ALG that runs in poly time such that:

$$\begin{array}{ll} x \in A & \rightarrow \Pr(\mathrm{ALG}(x) = 0) \leq \frac{1}{4} \\ x \notin A & \rightarrow \Pr(\mathrm{ALG}(x) = 0) = 1 \end{array}$$

ション ふゆ アメリア メリア しょうくしゃ

Equiv to def where replace ¹/₄ by ¹/_{2|×|}
 Our RP is 1-sided error. 2-sided error classes have been defined.
 Very few problems in RP that are not known to be in P.
 DETPOLYZERO is one of them.

Def A set A is in **Randomized Polynomial Time (RP)** if there exists a randomized algorithm ALG that runs in poly time such that:

$$\begin{array}{ll} x \in A & \rightarrow \Pr(\mathrm{ALG}(x) = 0) \leq \frac{1}{4} \\ x \notin A & \rightarrow \Pr(\mathrm{ALG}(x) = 0) = 1 \end{array}$$

1) Equiv to def where replace $\frac{1}{4}$ by $\frac{1}{2^{|x|}}$

2) Our RP is 1-sided error. 2-sided error classes have been defined.

ション ふぼう メリン メリン しょうくしゃ

3) Very few problems in RP that are not known to be in $\operatorname{P}.$

DETPOLYZERO is one of them.

4) RP is thought to be feasible.

 $\text{PRIMES} \in \text{RP}.$

$\mathbf{PRIMES} \in \mathbf{RP}.$

1. This was an early example of a problem in RP. (A 1967 paper sort-of has it, but a 1977 paper has it, and the algorithm actually used is 1980.)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

$PRIMES \in RP.$

1. This was an early example of a problem in RP. (A 1967 paper sort-of has it, but a 1977 paper has it, and the algorithm actually used is 1980.)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

2. This result may have motivated the definition of RP .

 $PRIMES \in RP.$

- 1. This was an early example of a problem in RP. (A 1967 paper sort-of has it, but a 1977 paper has it, and the algorithm actually used is 1980.)
- 2. This result may have motivated the definition of RP.
- 3. The $PRIMES \in RP$ algorithm is very fast and actually used for many cryptography protocols.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $PRIMES \in RP.$

- 1. This was an early example of a problem in RP. (A 1967 paper sort-of has it, but a 1977 paper has it, and the algorithm actually used is 1980.)
- 2. This result may have motivated the definition of RP.
- 3. The $PRIMES \in RP$ algorithm is very fast and actually used for many cryptography protocols.
- 4. In 2002 $PRIMES \in P$ was proven. The algorithm is much slower than the randomized algorithm; however, it is interesting that the problem is in P.

ション ふゆ アメリア メリア しょうくしゃ

 $\mathbf{PRIMES} \in \mathbf{RP}.$

- 1. This was an early example of a problem in RP. (A 1967 paper sort-of has it, but a 1977 paper has it, and the algorithm actually used is 1980.)
- 2. This result may have motivated the definition of RP.
- 3. The $PRIMES \in RP$ algorithm is very fast and actually used for many cryptography protocols.
- 4. In 2002 $PRIMES \in P$ was proven. The algorithm is much slower than the randomized algorithm; however, it is interesting that the problem is in P.

ション ふぼう メリン メリン しょうくしゃ

5. There are reasons to think P = RP.

The following would be a good definition but it is **not** our definition.

(ロト (個) (E) (E) (E) (E) のへの

The following would be a good definition but it is **not** our definition.

$$\begin{array}{ll} x \in A & \rightarrow \Pr(\mathrm{ALG}(x) \in B) \geq \frac{3}{4} \\ x \notin A & \rightarrow \Pr(\mathrm{ALG}(x) \notin B) = 1 \end{array}$$

(ロト (個) (E) (E) (E) (E) のへの

The following would be a good definition but it is **not** our definition.

$$\begin{array}{ll} x \in A & \to \Pr(\mathrm{ALG}(x) \in B) \geq \frac{3}{4} \\ x \notin A & \to \Pr(\mathrm{ALG}(x) \notin B) = 1 \end{array}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

We **demand less!** of our reductions. **Def** $A \leq_r B$ if there is an alg ALG and a poly q such that

The following would be a good definition but it is **not** our definition.

$$\begin{array}{ll} x \in A & \rightarrow \Pr(\mathrm{ALG}(x) \in B) \geq \frac{3}{4} \\ x \notin A & \rightarrow \Pr(\mathrm{ALG}(x) \notin B) = 1 \end{array}$$

We **demand less!** of our reductions. **Def** $A \leq_r B$ if there is an alg ALG and a poly q such that

$$egin{aligned} & x \in A & o \Pr(\operatorname{ALG}(x) \in B) \geq rac{1}{q(n)} \ & x \notin A & o \Pr(\operatorname{ALG}(x) \notin B) = 1 \end{aligned}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

The following would be a good definition but it is **not** our definition.

$$\begin{array}{ll} x \in A & \rightarrow \Pr(\mathrm{ALG}(x) \in B) \geq \frac{3}{4} \\ x \notin A & \rightarrow \Pr(\mathrm{ALG}(x) \notin B) = 1 \end{array}$$

We **demand less!** of our reductions. **Def** $A \leq_r B$ if there is an alg ALG and a poly q such that

$$egin{aligned} & x \in A & o \Pr(\operatorname{ALG}(x) \in B) \geq rac{1}{q(n)} \ & x \notin A & o \Pr(\operatorname{ALG}(x) \notin B) = 1 \end{aligned}$$

How Odd! We seem to be allowing a large prob of error!

The following would be a good definition but it is **not** our definition.

$$\begin{array}{ll} x \in A & \rightarrow \Pr(\mathrm{ALG}(x) \in B) \geq \frac{3}{4} \\ x \notin A & \rightarrow \Pr(\mathrm{ALG}(x) \notin B) = 1 \end{array}$$

We **demand less!** of our reductions. **Def** $A \leq_r B$ if there is an alg ALG and a poly q such that

$$egin{aligned} & x \in A & o \Pr(\operatorname{ALG}(x) \in B) \geq rac{1}{q(n)} \ & x \notin A & o \Pr(\operatorname{ALG}(x) \notin B) = 1 \end{aligned}$$

How Odd! We seem to be allowing a large prob of error! Plan This small prob of success will get us all we need.

 $A \leq_r B$ via f and polynomial q. Here is Alg for $A \in \operatorname{RP}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $A \leq_r B$ via f and polynomial q. Here is Alg for $A \in \operatorname{RP}$. 1. Input x. Let |x| = n.

 $A \leq_r B$ via f and polynomial q. Here is Alg for $A \in \operatorname{RP}$.

- 1. Input x. Let |x| = n.
- 2. Run ALG(x) 2q(n) times to get $y_1, \ldots, y_{2q(n)}$.

 $A \leq_r B$ via f and polynomial q. Here is Alg for $A \in \operatorname{RP}$.

- 1. Input x. Let |x| = n.
- 2. Run ALG(x) 2q(n) times to get $y_1, \ldots, y_{2q(n)}$.
- 3. For $1 \le i \le 2q(n)$ ask if $y_i \in B$. If any of the answers are YES, then output YES. Otherwise output NO.
$A \leq_r B$ via f and polynomial q. Here is Alg for $A \in \operatorname{RP}$.

- 1. Input x. Let |x| = n.
- 2. Run ALG(x) 2q(n) times to get $y_1, \ldots, y_{2q(n)}$.
- 3. For $1 \le i \le 2q(n)$ ask if $y_i \in B$. If any of the answers are YES, then output YES. Otherwise output NO.

$$x \in A
ightarrow \Pr(y_i \in B) \geq rac{1}{q(|x|)}$$
, hence

 $A \leq_r B$ via f and polynomial q. Here is Alg for $A \in \mathbb{RP}$.

- 1. Input x. Let |x| = n.
- 2. Run ALG(x) 2q(n) times to get $y_1, \ldots, y_{2q(n)}$.
- 3. For $1 \le i \le 2q(n)$ ask if $y_i \in B$. If any of the answers are YES, then output YES. Otherwise output NO.

$$x \in A o \Pr(y_i \in B) \ge rac{1}{q(|x|)}$$
, hence

$$\Pr((\forall i)[y_i \notin B]) \leq \left(1 - \frac{1}{q(n)}\right)^{2q(n)}$$

 $A \leq_r B$ via f and polynomial q. Here is Alg for $A \in \mathbb{RP}$.

- 1. Input x. Let |x| = n.
- 2. Run ALG(x) 2q(n) times to get $y_1, \ldots, y_{2q(n)}$.
- 3. For $1 \le i \le 2q(n)$ ask if $y_i \in B$. If any of the answers are YES, then output YES. Otherwise output NO.

$$x \in A
ightarrow \Pr(y_i \in B) \geq rac{1}{q(|x|)}$$
, hence

$$\begin{aligned} \Pr((\forall i)[y_i \notin B]) &\leq \left(1 - \frac{1}{q(n)}\right)^{2q(n)} \\ &\leq (e^{-1/q(n)})^{2q(n)} \leq (e^{-1})^2 \leq \frac{1}{4} \end{aligned}$$

 $A \leq_r B$ via f and polynomial q. Here is Alg for $A \in \operatorname{RP}$.

1. Input *x*. Let
$$|x| = n$$
.

- 2. Run ALG(x) 2q(n) times to get $y_1, \ldots, y_{2q(n)}$.
- For 1 ≤ i ≤ 2q(n) ask if y_i ∈ B. If any of the answers are YES, then output YES. Otherwise output NO.

$$x \in A
ightarrow \Pr(y_i \in B) \geq rac{1}{q(|x|)}$$
, hence

$$\Pr((\forall i)[y_i \notin B]) \leq \left(1 - \frac{1}{q(n)}\right)^{2q(n)} \leq (e^{-1/q(n)})^{2q(n)} \leq (e^{-1})^2 \leq \frac{1}{4}$$

ション ふぼう メリン メリン しょうくしゃ

Hence $\Pr((\exists i)[y_i \in B]) \ge 1 - \frac{1}{4} = \frac{3}{4}$.

 $A \leq_r B$ via f and polynomial q. Here is Alg for $A \in \mathbb{RP}$.

1. Input *x*. Let
$$|x| = n$$
.

- 2. Run ALG(x) 2q(n) times to get $y_1, \ldots, y_{2q(n)}$.
- For 1 ≤ i ≤ 2q(n) ask if y_i ∈ B. If any of the answers are YES, then output YES. Otherwise output NO.

$$x \in A
ightarrow \Pr(y_i \in B) \geq rac{1}{q(|x|)}$$
, hence

$$\Pr((\forall i)[y_i \notin B]) \leq \left(1 - \frac{1}{q(n)}\right)^{2q(n)} \leq (e^{-1/q(n)})^{2q(n)} \leq (e^{-1})^2 \leq \frac{1}{4}$$

ション ふぼう メリン メリン しょうくしゃ

Hence $Pr((\exists i)[y_i \in B]) \ge 1 - \frac{1}{4} = \frac{3}{4}$. So $x \in A \rightarrow$ Prob Alg says YES is $\ge \frac{3}{4}$.

 $A \leq_r B$ via f and polynomial q. Here is Alg for $A \in \mathbb{RP}$.

1. Input *x*. Let
$$|x| = n$$
.

- 2. Run ALG(x) 2q(n) times to get $y_1, \ldots, y_{2q(n)}$.
- For 1 ≤ i ≤ 2q(n) ask if y_i ∈ B. If any of the answers are YES, then output YES. Otherwise output NO.

$$x \in A
ightarrow \Pr(y_i \in B) \geq rac{1}{q(|x|)}$$
, hence

$$\begin{aligned} \Pr((\forall i)[y_i \notin B]) &\leq \left(1 - \frac{1}{q(n)}\right)^{2q(n)} \\ &\leq (e^{-1/q(n)})^{2q(n)} \leq (e^{-1})^2 \leq \frac{1}{4} \end{aligned}$$

Hence $Pr((\exists i)[y_i \in B]) \ge 1 - \frac{1}{4} = \frac{3}{4}$. So $x \in A \rightarrow$ Prob Alg says YES is $\ge \frac{3}{4}$.

 $x \notin A \rightarrow (\forall i)[y_i \notin B]$ hence Rand Alg says NO.

Given ϕ we produce a formula ζ such that

$$\phi \in SAT \rightarrow \#(\zeta) = 1$$
 with high probability;
 $\phi \notin SAT \rightarrow \#(\zeta) = 0.$

(ロト (個) (E) (E) (E) (E) のへの

Given ϕ we produce a formula ζ such that

$$\phi \in SAT \rightarrow \#(\zeta) = 1$$
 with high probability;
 $\phi \notin SAT \rightarrow \#(\zeta) = 0.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A formula is a set of satisfying assignments!

Given ϕ we produce a formula ζ such that

$$\phi \in SAT \rightarrow \#(\zeta) = 1$$
 with high probability;
 $\phi \notin SAT \rightarrow \#(\zeta) = 0.$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

A formula is a set of satisfying assignments! We want to map this set to a much smaller set.

Given ϕ we produce a formula ζ such that

$$\phi \in SAT \rightarrow \#(\zeta) = 1$$
 with high probability;
 $\phi \notin SAT \rightarrow \#(\zeta) = 0.$

A formula is a set of satisfying assignments! We want to map this set to a much smaller set.

How do computer scientists map large sets to small sets? Discuss

ション ふゆ アメリア メリア しょうくしゃ

Given ϕ we produce a formula ζ such that

$$\phi \in SAT \rightarrow \#(\zeta) = 1$$
 with high probability;
 $\phi \notin SAT \rightarrow \#(\zeta) = 0.$

A formula is a set of satisfying assignments!

We want to **map** this set to a much **smaller set**. How do computer scientists map large sets to small sets? Discuss Hash Functions!

ション ふゆ アメビア メロア しょうくしゃ

Hash Functions

・ロト・西ト・ヨト・ヨー うへぐ

Hash Functions: Motivation

▲□▶▲圖▶▲≧▶▲≣▶ ≣ のへで

Hash Functions: Motivation

If a set is **large** then a randomly chosen hash function will likely map some element to 0^k .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Hash Functions: Motivation

If a set is **large** then a randomly chosen hash function will likely map some element to 0^k .

If a set is **small** then a randomly chosen hash function is unlikely to map some element to 0^k .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

- - - - ▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

1. A **sample space** is the set of things that could happen. In our case it will be the set of possible hash functions that could be produced.

- 1. A **sample space** is the set of things that could happen. In our case it will be the set of possible hash functions that could be produced.
- 2. A random variable is a mapping from the sample space to numbers. In our case it will be mapping the hash function h to the number $|\{x : h(x) = 0^k\}|$.

ション ふゆ アメビア メロア しょうくしゃ

- 1. A **sample space** is the set of things that could happen. In our case it will be the set of possible hash functions that could be produced.
- 2. A random variable is a mapping from the sample space to numbers. In our case it will be mapping the hash function h to the number $|\{x : h(x) = 0^k\}|$.
- If S is a random variable then E(S) is its expected value and Var(S) is its variance. It is known that Var(S) = E((S E(S))²) = E(S²) E(S)².

- 1. A **sample space** is the set of things that could happen. In our case it will be the set of possible hash functions that could be produced.
- 2. A random variable is a mapping from the sample space to numbers. In our case it will be mapping the hash function h to the number $|\{x : h(x) = 0^k\}|$.
- 3. If S is a random variable then E(S) is its expected value and Var(S) is its variance. It is known that $Var(S) = E((S E(S))^2) = E(S^2) E(S)^2$.

Convention Whenever we have a 0-1 valued matrix apply to a vector we do all of the calculations mod 2.

Let $k, n \in \mathbb{N}$ with $0 \le k \le n$. Let $X \subseteq \{0, 1\}^n$. Assume $0^n \notin X$.

Let $k, n \in \mathbb{N}$ with $0 \le k \le n$. Let $X \subseteq \{0, 1\}^n$. Assume $0^n \notin X$. Consider the following random variable:

・ロト・日本・モト・モト・モー うへぐ

Let $k, n \in \mathbb{N}$ with $0 \le k \le n$. Let $X \subseteq \{0, 1\}^n$. Assume $0^n \notin X$. Consider the following random variable: Pick a random $k \times n$ 0-1 valued matrix M.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $k, n \in \mathbb{N}$ with $0 \le k \le n$. Let $X \subseteq \{0, 1\}^n$. Assume $0^n \notin X$. Consider the following random variable: Pick a random $k \times n$ 0-1 valued matrix M.

$$S = |\{x \in X : M(x) = 0^k\}|.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $k, n \in \mathbb{N}$ with $0 \le k \le n$. Let $X \subseteq \{0, 1\}^n$. Assume $0^n \notin X$. Consider the following random variable: Pick a random $k \times n$ 0-1 valued matrix M.

$$S = |\{x \in X : M(x) = 0^k\}|.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Output S.

Let $k, n \in \mathbb{N}$ with $0 \le k \le n$. Let $X \subseteq \{0, 1\}^n$. Assume $0^n \notin X$. Consider the following random variable: Pick a random $k \times n$ 0-1 valued matrix M.

$$S = |\{x \in X : M(x) = 0^k\}|.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Output *S*. Then

Let $k, n \in \mathbb{N}$ with $0 \le k \le n$. Let $X \subseteq \{0, 1\}^n$. Assume $0^n \notin X$. Consider the following random variable: Pick a random $k \times n$ 0-1 valued matrix M.

$$S = |\{x \in X : M(x) = 0^k\}|.$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Output S. Then

1. $E(S) = 2^{-k}|X|$

Let $k, n \in \mathbb{N}$ with $0 \le k \le n$. Let $X \subseteq \{0, 1\}^n$. Assume $0^n \notin X$. Consider the following random variable: Pick a random $k \times n$ 0-1 valued matrix M.

$$S = |\{x \in X : M(x) = 0^k\}|.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Output S. Then

> 1. $E(S) = 2^{-k}|X|$ 2. $Var(S) \le 2^{-k}|X|$.

Let $k, n \in \mathbb{N}$ with $0 \le k \le n$. Let $X \subseteq \{0, 1\}^n$. Assume $0^n \notin X$. Consider the following random variable: Pick a random $k \times n$ 0-1 valued matrix M.

$$S = |\{x \in X : M(x) = 0^k\}|.$$

Output S.

Then

- 1. $E(S) = 2^{-k}|X|$
- 2. $Var(S) \leq 2^{-k}|X|$.

Note E(S) and Var(S) do not depends on *n*, just on *k* and |X|.

Before looking at E(S) and Var(S) we will need to look at E of some easier random variables:

Before looking at E(S) and Var(S) we will need to look at E of some easier random variables:

Let $x, y \in X$. Let R_x be the random variable

Before looking at E(S) and Var(S) we will need to look at E of some easier random variables:

Let $x, y \in X$. Let R_x be the random variable

$$R_{x} = \begin{cases} 1 & \text{if } M(x) = 0^{k}; \\ 0 & \text{if } M(x) \neq 0^{k}. \end{cases}$$
(1)

Before looking at E(S) and Var(S) we will need to look at E of some easier random variables:

Let $x, y \in X$. Let R_x be the random variable

$$R_{x} = \begin{cases} 1 & \text{if } M(x) = 0^{k}; \\ 0 & \text{if } M(x) \neq 0^{k}. \end{cases}$$
(1)

Let R_y be similar.

Before looking at E(S) and Var(S) we will need to look at E of some easier random variables:

Let $x, y \in X$. Let R_x be the random variable

$$R_{x} = \begin{cases} 1 & \text{if } M(x) = 0^{k}; \\ 0 & \text{if } M(x) \neq 0^{k}. \end{cases}$$
(1)

Let R_{γ} be similar.

Let $M_i(x)$ be the *i*th element of the vector M(x).

Before looking at E(S) and Var(S) we will need to look at E of some easier random variables:

Let $x, y \in X$. Let R_x be the random variable

$$R_{x} = \begin{cases} 1 & \text{if } M(x) = 0^{k}; \\ 0 & \text{if } M(x) \neq 0^{k}. \end{cases}$$
(1)

Let R_{y} be similar.

Let $M_i(x)$ be the *i*th element of the vector M(x).

$$E(R_x) = \prod_{i=1}^k \Pr(M_i(x) = 0) = \frac{1}{2^k}$$

Before looking at E(S) and Var(S) we will need to look at E of some easier random variables:

Let $x, y \in X$. Let R_x be the random variable

$$R_{x} = \begin{cases} 1 & \text{if } M(x) = 0^{k}; \\ 0 & \text{if } M(x) \neq 0^{k}. \end{cases}$$
(1)

ション ふゆ アメビア メロア しょうくしゃ

Let R_{y} be similar.

Let $M_i(x)$ be the *i*th element of the vector M(x).

$$E(R_x) = \prod_{i=1}^k \Pr(M_i(x) = 0) = \frac{1}{2^k}$$

We also have
Proof of Lemma: R_x

Before looking at E(S) and Var(S) we will need to look at E of some easier random variables:

Let $x, y \in X$. Let R_x be the random variable

$$R_{x} = \begin{cases} 1 & \text{if } M(x) = 0^{k}; \\ 0 & \text{if } M(x) \neq 0^{k}. \end{cases}$$
(1)

ション ふゆ アメビア メロア しょうくしゃ

Let R_{y} be similar.

Let $M_i(x)$ be the *i*th element of the vector M(x).

$$E(R_x) = \prod_{i=1}^k \Pr(M_i(x) = 0) = \frac{1}{2^k}$$

We also have

$$E(R_x^2) = \prod_{i=1}^k \Pr(M_i(x) = 0) = \frac{1}{2^k}$$

Proof of Lemma: $R_x R_y$

We now compute $E(R_x R_y)$.

Proof of Lemma: $R_x R_y$

We now compute $E(R_x R_y)$.

$$E(R_x R_y) = \Pr(M(x) = 1 \land M(y) = 1) = \frac{1}{2^k} \times \frac{1}{2^k} = \frac{1}{4^k}.$$

(ロト (個) (E) (E) (E) (E) のへの

$$E(S) = E(\sum_{x \in X} R_x) = \sum_{x \in X} E(R_x) = \frac{1}{2^k} |X|.$$

▲□▶▲□▶▲□▶▲□▶ ■ りへぐ

$$E(S) = E(\sum_{x \in X} R_x) = \sum_{x \in X} E(R_x) = \frac{1}{2^k} |X|.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recall that $Var(S) = E(S^2) - (E(S))^2$.

$$E(S) = E(\sum_{x \in X} R_x) = \sum_{x \in X} E(R_x) = \frac{1}{2^k} |X|.$$

Recall that $Var(S) = E(S^2) - (E(S))^2.$

$$\begin{split} \mathbf{E}(\mathbf{S}^2) &= \mathbf{E}((\sum_{\mathbf{x}\in\mathbf{X}}\mathbf{R}_{\mathbf{x}})(\sum_{\mathbf{y}\in\mathbf{X}}\mathbf{R}_{\mathbf{y}})); \\ &= \sum_{x\in X}\sum_{y\in X}E(R_xR_y); \\ &= \sum_{x\in X}E(R_x^2) + \sum_{x\neq y}E(R_xR_y); \\ &= \sum_{x\in X}\frac{1}{2^k} + \sum_{x\neq y}\frac{1}{4^k}; \\ &= \frac{1}{2^k}|\mathbf{X}| + \frac{1}{4^k}|\mathbf{X}|(|\mathbf{X}| - \mathbf{1}); \end{split}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Reca

$$E(S) = E(\sum_{x \in X} R_x) = \sum_{x \in X} E(R_x) = \frac{1}{2^k} |X|.$$

If that $Var(S) = E(S^2) - (E(S))^2.$

$$\begin{split} \mathbf{E}(\mathbf{S}^2) &= \mathbf{E}((\sum_{\mathbf{x}\in\mathbf{X}}\mathbf{R}_{\mathbf{x}})(\sum_{\mathbf{y}\in\mathbf{X}}\mathbf{R}_{\mathbf{y}})); \\ &= \sum_{x\in X}\sum_{y\in X}E(R_xR_y); \\ &= \sum_{x\in X}E(R_x^2) + \sum_{x\neq y}E(R_xR_y); \\ &= \sum_{x\in X}\frac{1}{2^k} + \sum_{x\neq y}\frac{1}{4^k}; \\ &= \frac{1}{2^k}|\mathbf{X}| + \frac{1}{4^k}|\mathbf{X}|(|\mathbf{X}|-1); \end{split}$$

$$\begin{aligned} \mathsf{Var}(\mathsf{S}) &= \ \mathsf{E}(\mathsf{S}^2) - (\mathsf{E}(\mathsf{S}))^2 \\ &= \ \frac{1}{2^k} |X| + \frac{1}{4^k} |X| (|X| - 1) - \frac{1}{4^k} |X|^2 \\ &= \ \frac{1}{2^k} |X| + \frac{1}{4^k} |X|^2 - \frac{1}{4^k} |X| - \frac{1}{4^k} |X|^2 \\ &= \ \frac{1}{2^k} |X| - \frac{1}{4^k} |X| \\ &\leq \ \frac{1}{2^k} |\mathsf{X}| \end{aligned}$$

Recall we had:

Recall we had: Let $k, n \in \mathbb{N}$ with $0 \le k \le n$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recall we had: Let $k, n \in \mathbb{N}$ with $0 \le k \le n$. Pick a random $k \times n$ 0-1 valued matrix M.

Recall we had: Let $k, n \in \mathbb{N}$ with $0 \le k \le n$. Pick a random $k \times n$ 0-1 valued matrix M. We allowed k = 0.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Recall we had: Let $k, n \in \mathbb{N}$ with $0 \le k \le n$. Pick a random $k \times n$ 0-1 valued matrix M. We allowed k = 0. What is a $0 \times n$ matrix?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Recall we had: Let $k, n \in \mathbb{N}$ with $0 \le k \le n$. Pick a random $k \times n$ 0-1 valued matrix M. We allowed k = 0. What is a $0 \times n$ matrix? What is the sound of one hand clapping?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Recall we had: Let $k, n \in \mathbb{N}$ with $0 \le k \le n$. Pick a random $k \times n$ 0-1 valued matrix M. We allowed k = 0. What is a $0 \times n$ matrix? What is the sound of one hand clapping? The matrix question is easier: By convention the $0 \times n$ matrix has no effect. So

$$X = \{x \in X : M(x) = 0^k\}.$$

ション ふゆ アメビア メロア しょうくしゃ

Def Let $\ell \in \mathbb{N}$. Then SAT_{ℓ} is

 $\{\phi: 1 \le \#(\phi) \le \ell\}.$

Plan

Def Let $\ell \in \mathbb{N}$. Then SAT_{ℓ} is

$$\{\phi: 1 \le \#(\phi) \le \ell\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Plan

1) SAT \leq_r SAT₁₂. (Why 12? We'll see later.)

Def Let $\ell \in \mathbb{N}$. Then SAT_{ℓ} is

$$\{\phi: 1 \le \#(\phi) \le \ell\}.$$

Plan

1) SAT \leq_r SAT₁₂. (Why 12? We'll see later.) 2) SAT₁₂ \leq_r SAT₁. (Not Quite- this reduction will only be correct if the input comes from the first reduction.)

Chebyshev's inequality

If S is any random variable and a > 0 then

$$\Pr(|S - E(S)| \ge a) < \frac{Var(S)}{a^2}.$$

(ロト (個) (E) (E) (E) (E) のへの

Chebyshev's inequality

If S is any random variable and a > 0 then

$$\Pr(|S - E(S)| \ge a) < \frac{Var(S)}{a^2}.$$

Intuitively this is saying that the probability that S is far away from E(S) is small, and how small depends on Var(S).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Chebyshev's inequality

If S is any random variable and a > 0 then

$$\Pr(|S - E(S)| \ge a) < \frac{Var(S)}{a^2}.$$

Intuitively this is saying that the probability that S is far away from E(S) is small, and how small depends on Var(S).

ション ふゆ アメビア メロア しょうくしゃ

Chebyshev proved it so we don't have to :-)

Recall

Def Let A and B be two sets. We say that $A \leq_r B$ if there exists fast Rand Alg ALG and poly q:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Recall

Def Let A and B be two sets. We say that $A \leq_r B$ if there exists fast Rand Alg ALG and poly q:

$$egin{aligned} & x \in A & o \Pr(\operatorname{ALG}(x) \in B) \geq rac{1}{q(n)} \ & x \notin A & o \Pr(\operatorname{ALG}(x) \notin B) = 1 \end{aligned}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Recall

Def Let *A* and *B* be two sets. We say that $A \leq_r B$ if there exists fast Rand Alg ALG and poly *q*:

$$egin{aligned} & x \in A & o \Pr(\operatorname{ALG}(x) \in B) \geq rac{1}{q(n)} \ & x \notin A & o \Pr(\operatorname{ALG}(x) \notin B) = 1 \end{aligned}$$

*ロト *目 * * * * * * * * * * * * * * *

We will get a reduction ϕ to ψ where

Recall

Def Let *A* and *B* be two sets. We say that $A \leq_r B$ if there exists fast Rand Alg ALG and poly *q*:

$$egin{aligned} & x \in A & o \Pr(\operatorname{ALG}(x) \in B) \geq rac{1}{q(n)} \ & x \notin A & o \Pr(\operatorname{ALG}(x) \notin B) = 1 \end{aligned}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

We will get a reduction ϕ to ψ where $\phi \in \text{SAT} \rightarrow \Pr(1 \le \#\psi \le 12) \ge \frac{1}{2n}$.

Recall

Def Let *A* and *B* be two sets. We say that $A \leq_r B$ if there exists fast Rand Alg ALG and poly *q*:

$$egin{aligned} & x \in A & o \Pr(\operatorname{ALG}(x) \in B) \geq rac{1}{q(n)} \ & x \notin A & o \Pr(\operatorname{ALG}(x) \notin B) = 1 \end{aligned}$$

We will get a reduction ϕ to ψ where $\phi \in SAT \rightarrow Pr(1 \le \#\psi \le 12) \ge \frac{1}{2n}$. Key Not much to ask for!

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Recall

Def Let *A* and *B* be two sets. We say that $A \leq_r B$ if there exists fast Rand Alg ALG and poly *q*:

$$egin{aligned} & x \in A & o \Pr(\operatorname{ALG}(x) \in B) \geq rac{1}{q(n)} \ & x \notin A & o \Pr(\operatorname{ALG}(x) \notin B) = 1 \end{aligned}$$

We will get a reduction ϕ to ψ where $\phi \in \text{SAT} \rightarrow \Pr(1 \le \#\psi \le 12) \ge \frac{1}{2n}$. Key Not much to ask for! $\phi \notin \text{SAT} \rightarrow \#\psi = 0$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Recall

Def Let *A* and *B* be two sets. We say that $A \leq_r B$ if there exists fast Rand Alg ALG and poly *q*:

$$egin{aligned} & x \in A & o \Pr(\operatorname{ALG}(x) \in B) \geq rac{1}{q(n)} \ & x \notin A & o \Pr(\operatorname{ALG}(x) \notin B) = 1 \end{aligned}$$

We will get a reduction ϕ to ψ where $\phi \in \text{SAT} \rightarrow \Pr(1 \le \#\psi \le 12) \ge \frac{1}{2n}$. Key Not much to ask for! $\phi \notin \text{SAT} \rightarrow \#\psi = 0$. Key This will be easy.

ション ふぼう メリン メリン しょうくしゃ

$\mathrm{SAT} \leq_r \mathrm{SAT}_{12}$

Here is the randomized reduction.

$\mathrm{SAT} \leq_r \mathrm{SAT}_{12}$

Here is the randomized reduction.

1. Input $\phi(\vec{x})$. Let *n* be the number of variables in ϕ .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$\mathrm{SAT} \leq_r \mathrm{SAT}_{12}$

Here is the randomized reduction.

1. Input $\phi(\vec{x})$. Let *n* be the number of variables in ϕ .

2. Evaluate $\phi(\vec{0})$. If T then output $x \in SAT_{12}$.

Here is the randomized reduction.

- 1. Input $\phi(\vec{x})$. Let *n* be the number of variables in ϕ .
- Evaluate φ(0). If T then output x ∈ SAT₁₂.
 If FALSE then goto next step. Note If X is the set of satisfying assignments then 0ⁿ ∉ X.

ション ふぼう メリン メリン しょうくしゃ

Here is the randomized reduction.

- 1. Input $\phi(\vec{x})$. Let *n* be the number of variables in ϕ .
- Evaluate φ(0). If T then output x ∈ SAT₁₂.
 If FALSE then goto next step. Note If X is the set of satisfying assignments then 0ⁿ ∉ X.

ション ふぼう メリン メリン しょうくしゃ

3. Pick a random $k \in \{0, \ldots, n-1\}$ (uniformly).

Here is the randomized reduction.

- 1. Input $\phi(\vec{x})$. Let *n* be the number of variables in ϕ .
- Evaluate φ(0). If T then output x ∈ SAT₁₂.
 If FALSE then goto next step. Note If X is the set of satisfying assignments then 0ⁿ ∉ X.

ション ふぼう メリン メリン しょうくしゃ

- 3. Pick a random $k \in \{0, \ldots, n-1\}$ (uniformly).
- 4. Pick a random $k \times n$ 0-1 valued matrix M.

Here is the randomized reduction.

- 1. Input $\phi(\vec{x})$. Let *n* be the number of variables in ϕ .
- Evaluate φ(0). If T then output x ∈ SAT₁₂.
 If FALSE then goto next step. Note If X is the set of satisfying assignments then 0ⁿ ∉ X.
- 3. Pick a random $k \in \{0, \ldots, n-1\}$ (uniformly).
- 4. Pick a random $k \times n$ 0-1 valued matrix M.
- 5. Output the Boolean formula $\psi(\vec{x}) = \phi(x) \wedge (M(x) = 0^k)$.

Here is the randomized reduction.

- 1. Input $\phi(\vec{x})$. Let *n* be the number of variables in ϕ .
- Evaluate φ(0). If T then output x ∈ SAT₁₂.
 If FALSE then goto next step. Note If X is the set of satisfying assignments then 0ⁿ ∉ X.
- 3. Pick a random $k \in \{0, \ldots, n-1\}$ (uniformly).
- 4. Pick a random $k \times n$ 0-1 valued matrix M.

5. Output the Boolean formula $\psi(\vec{x}) = \phi(x) \wedge (M(x) = 0^k)$. Clearly if $\phi \notin SAT$ then $\psi \notin SAT_{12}$.
$SAT \leq_r SAT_{12}$

Here is the randomized reduction.

- 1. Input $\phi(\vec{x})$. Let *n* be the number of variables in ϕ .
- Evaluate φ(0). If T then output x ∈ SAT₁₂.
 If FALSE then goto next step. Note If X is the set of satisfying assignments then 0ⁿ ∉ X.
- 3. Pick a random $k \in \{0, \ldots, n-1\}$ (uniformly).
- 4. Pick a random $k \times n$ 0-1 valued matrix M.

5. Output the Boolean formula $\psi(\vec{x}) = \phi(x) \wedge (M(x) = 0^k)$. Clearly if $\phi \notin \text{SAT}$ then $\psi \notin \text{SAT}_{12}$. Need that if $\phi \in \text{SAT}$ then $\Pr(1 \le \#\psi \le 12) \ge \frac{1}{2n}$.

If k is assigned to 0 at random then

If k is assigned to 0 at random then

 $\phi = \psi \in SAT_{12}$

If k is assigned to 0 at random then

$$\phi = \psi \in \text{SAT}_{12}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\Pr(k=0)=\frac{1}{n}\geq \frac{1}{2n}.$$

m is such that $2^m < \#(\phi) \le 2^{m+1}$. Note $m \in \{3, \ldots, n-1\}$.)

m is such that $2^m < \#(\phi) \le 2^{m+1}$. Note $m \in \{3, \ldots, n-1\}$.)

$$\Pr(k=m-2)=\frac{1}{n}.$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

m is such that $2^m < \#(\phi) \le 2^{m+1}$. Note $m \in \{3, ..., n-1\}$.)

$$\Pr(k=m-2)=\frac{1}{n}.$$

We will show If k = m - 2 then

m is such that $2^m < \#(\phi) \le 2^{m+1}$. Note $m \in \{3, \ldots, n-1\}$.)

$$\Pr(k=m-2)=\frac{1}{n}.$$

We will show If k = m - 2 then

$$\Pr(1 \le \#\psi \le 12) \ge \frac{1}{2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

m is such that $2^m < \#(\phi) \le 2^{m+1}$. Note $m \in \{3, \ldots, n-1\}$.)

$$\Pr(k=m-2)=\frac{1}{n}.$$

We will show If k = m - 2 then

$$\Pr(1 \le \#\psi \le 12) \ge \frac{1}{2}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We will then have

m is such that $2^m < \#(\phi) \le 2^{m+1}$. Note $m \in \{3, \ldots, n-1\}$.)

$$\Pr(k=m-2)=\frac{1}{n}.$$

We will show If k = m - 2 then

$$\Pr(1 \le \#\psi \le 12) \ge \frac{1}{2}$$

We will then have

$$\Pr(1 \le \#\psi \le 12) \ge \frac{1}{n} \times \frac{1}{2} = \frac{1}{2n}.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

m is such that $2^m < \#(\phi) \le 2^{m+1}$. Note $m \in \{3, \ldots, n-1\}$.)

$$\Pr(k=m-2)=\frac{1}{n}$$

We will show If k = m - 2 then

$$\Pr(1 \le \#\psi \le 12) \ge \frac{1}{2}$$

We will then have

$$\Pr(1 \le \#\psi \le 12) \ge \frac{1}{n} \times \frac{1}{2} = \frac{1}{2n}.$$

That is all we need to show!

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

X is the set of sat assignments of ϕ . $0^n \notin X$. $2^m < |X| \le 2^{m+1}$.

X is the set of sat assignments of ϕ . $0^n \notin X$. $2^m < |X| \le 2^{m+1}$. Random hash function $h : \{0,1\}^n \to \{0,1\}^k$.

X is the set of sat assignments of ϕ . $0^n \notin X$. $2^m < |X| \le 2^{m+1}$. Random hash function $h : \{0,1\}^n \to \{0,1\}^k$.

$$\#\psi = S = |\{x \in X : h(x) = 0^k\}|.$$

ション ふゆ アメリア メリア しょうくしゃ

X is the set of sat assignments of ϕ . $0^n \notin X$. $2^m < |X| \le 2^{m+1}$. Random hash function $h : \{0,1\}^n \to \{0,1\}^k$.

$$\#\psi = S = |\{x \in X : h(x) = 0^k\}|.$$

We know

$$E(S) = 2^{-k}|X| = 2^{-(m-2)}|X|$$

X is the set of sat assignments of ϕ . $0^n \notin X$. $2^m < |X| \le 2^{m+1}$. Random hash function $h : \{0,1\}^n \to \{0,1\}^k$.

$$\#\psi = S = |\{x \in X : h(x) = 0^k\}|.$$

We know

$$E(S) = 2^{-k}|X| = 2^{-(m-2)}|X|$$

$$Var(S) \leq 2^{-(m-2)}|X|.$$

ション ふゆ アメリア メリア しょうくしゃ

X is the set of sat assignments of ϕ . $0^n \notin X$. $2^m < |X| \le 2^{m+1}$. Random hash function $h : \{0,1\}^n \to \{0,1\}^k$.

$$\#\psi = S = |\{x \in X : h(x) = 0^k\}|.$$

We know

$$E(S) = 2^{-k}|X| = 2^{-(m-2)}|X|$$

$$Var(S) \le 2^{-(m-2)}|X|.$$

Hence

$$2^{-(m-2)+m} < E(S) \le 2^{-(m-2)+m+1},$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

X is the set of sat assignments of ϕ . $0^n \notin X$. $2^m < |X| \le 2^{m+1}$. Random hash function $h : \{0,1\}^n \to \{0,1\}^k$.

$$\#\psi = S = |\{x \in X : h(x) = 0^k\}|.$$

We know

$$E(S) = 2^{-k}|X| = 2^{-(m-2)}|X|$$

$$Var(S) \le 2^{-(m-2)}|X|.$$

Hence

$$2^{-(m-2)+m} < E(S) \le 2^{-(m-2)+m+1},$$

so

$$4 < E(S) \leq 8$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

X is the set of sat assignments of ϕ . $0^n \notin X$. $2^m < |X| \le 2^{m+1}$. Random hash function $h : \{0,1\}^n \to \{0,1\}^k$.

$$\#\psi = S = |\{x \in X : h(x) = 0^k\}|.$$

We know

$$E(S) = 2^{-k}|X| = 2^{-(m-2)}|X|$$

$$Var(S) \le 2^{-(m-2)}|X|.$$

Hence

$$2^{-(m-2)+m} < E(S) \le 2^{-(m-2)+m+1},$$

SO

 $4 < E(S) \leq 8$

and

Var(S) < 8.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Recap:

 $4 < E(S) \le 8$ Var(S) < 8.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

and

$$2^m < \# \phi \leq 2^{m+1}$$
 and $k = m-2$

Recap:

$$4 < E(S) \leq 8$$
 and $Var(S) < 8.$ Want $\Pr(|S| \notin \{1, \dots, 12\}) \leq rac{1}{2}.$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Recap:

$$4 < E(S) \leq 8$$

and

Want $\Pr(|S| \notin \{1, \dots, 12\}) \leq \frac{1}{2}$. By Chebyshev's inequality

$$\Pr(|S - E(S)| \ge 4) \le \frac{Var(S)}{4^2} \le \frac{8}{16} = \frac{1}{2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

$$2^m < \# \phi \leq 2^{m+1}$$
 and $k = m-2$

Recap:

$$4 < E(S) \leq 8$$

and

Want $\Pr(|S| \notin \{1, \ldots, 12\}) \leq \frac{1}{2}$.

By Chebyshev's inequality

$$\Pr(|S - E(S)| \ge 4) \le \frac{Var(S)}{4^2} \le \frac{8}{16} = \frac{1}{2}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Since $4 < E(S) \le 8$ this yields

$$2^m < \# \phi \leq 2^{m+1}$$
 and $k=m-2$

Recap:

$$4 < E(S) \leq 8$$

and

Want $\Pr(|S| \notin \{1, \ldots, 12\}) \leq \frac{1}{2}$.

By Chebyshev's inequality

$$\Pr(|S - E(S)| \ge 4) \le \frac{Var(S)}{4^2} \le \frac{8}{16} = \frac{1}{2}.$$

ション ふゆ アメリア メリア しょうくしゃ

Since $4 < E(S) \le 8$ this yields $\Pr(S \in \{1, ..., 12\}) > 1 - \frac{1}{2} = \frac{1}{2}$. $\begin{array}{l} \operatorname{SAT}_{12} \leq_r \operatorname{SAT}_1 \\ \text{Not Quite} \end{array}$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Recall that we have a reduction that maps ϕ to ψ such that

$$\phi \in \text{SAT} \quad \to \Pr(\psi \in \text{SAT}_{12}) \ge \frac{1}{2n} \\ \phi \notin \text{SAT} \quad \to \psi \notin \text{SAT} \text{ hence } \psi \notin \text{SAT}_{12}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recall that we have a reduction that maps ϕ to ψ such that

$$\phi \in \text{SAT} \quad \to \Pr(\psi \in \text{SAT}_{12}) \ge \frac{1}{2n} \\ \phi \notin \text{SAT} \quad \to \psi \notin \text{SAT} \text{ hence } \psi \notin \text{SAT}_{12}$$

Let ψ be the output of this reduction. Then (with high prob)

 $\#\psi\in\{0,\ldots,12\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall that we have a reduction that maps ϕ to ψ such that

$$\phi \in \text{SAT} \quad \to \Pr(\psi \in \text{SAT}_{12}) \ge \frac{1}{2n} \\ \phi \notin \text{SAT} \quad \to \psi \notin \text{SAT} \text{ hence } \psi \notin \text{SAT}_{12}$$

Let ψ be the output of this reduction. Then (with high prob)

$$\#\psi\in\{0,\ldots,12\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

We do not need $SAT_{12} \leq_r SAT_1$.

Recall that we have a reduction that maps ϕ to ψ such that

$$\phi \in \text{SAT} \quad \to \Pr(\psi \in \text{SAT}_{12}) \ge \frac{1}{2n} \\ \phi \notin \text{SAT} \quad \to \psi \notin \text{SAT} \text{ hence } \psi \notin \text{SAT}_{12}$$

Let ψ be the output of this reduction. Then (with high prob)

$$\#\psi\in\{\mathsf{0},\ldots,\mathsf{12}\}.$$

We do not need $SAT_{12} \leq_r SAT_1$. We need $SAT_{12} \leq_r SAT_1$ where the input ψ has

 $\#\psi\in\{\mathsf{0},\ldots,\mathsf{12}\}.$

Recall that we have a reduction that maps ϕ to ψ such that

$$\phi \in \text{SAT} \quad \to \Pr(\psi \in \text{SAT}_{12}) \ge \frac{1}{2n} \\ \phi \notin \text{SAT} \quad \to \psi \notin \text{SAT} \text{ hence } \psi \notin \text{SAT}_{12}$$

Let ψ be the output of this reduction. Then (with high prob)

 $\#\psi\in\{0,\ldots,12\}.$

We do not need $SAT_{12} \leq_r SAT_1$. We need $SAT_{12} \leq_r SAT_1$ where the input ψ has

 $\#\psi\in\{\mathsf{0},\ldots,\mathsf{12}\}.$

We will get (with restricted input)

$$\psi \in \text{SAT}_{12} \quad \rightarrow \Pr(\zeta \in \text{SAT}_1) \ge \frac{1}{12}$$

$$\psi \notin \text{SAT} \quad \rightarrow \zeta \notin \text{SAT} \text{ hence } \zeta \notin \text{SAT}_1$$

ション ふぼう メリン メリン しょうくしゃ

Recall that we have a reduction that maps ϕ to ψ such that

$$\phi \in \text{SAT} \quad \to \Pr(\psi \in \text{SAT}_{12}) \ge \frac{1}{2n} \\ \phi \notin \text{SAT} \quad \to \psi \notin \text{SAT} \text{ hence } \psi \notin \text{SAT}_{12}$$

Let ψ be the output of this reduction. Then (with high prob)

$$\#\psi\in\{0,\ldots,12\}.$$

We do not need $SAT_{12} \leq_r SAT_1$. We need $SAT_{12} \leq_r SAT_1$ where the input ψ has

$$\#\psi\in\{0,\ldots,12\}.$$

We will get (with restricted input)

$$\begin{array}{ll} \psi \in \mathrm{SAT}_{12} & \to \mathrm{Pr}(\zeta \in \mathrm{SAT}_1) \geq \frac{1}{12} \\ \psi \notin \mathrm{SAT} & \to \zeta \notin \mathrm{SAT} \text{ hence } \zeta \notin \mathrm{SAT}_1 \end{array}$$

Compose the two prob reductions to get $SAT \leq_r SAT_{1} \leq_r \ldots \leq_r SAT_{1} \leq_r SAT_{1} \leq_r \ldots \leq_r SAT_{$

 X_1 will be a vector of *n* variables.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

 X_1 will be a vector of *n* variables.

 X_2 will be another vector of *n* variables, disjoint from X_1

 X_1 will be a vector of *n* variables.

 X_2 will be another vector of *n* variables, disjoint from X_1

 X_3 will be another vector of *n* variables, disjoint from X_1 and X_2 .

 X_1 will be a vector of *n* variables.

 X_2 will be another vector of *n* variables, disjoint from X_1

 X_3 will be another vector of *n* variables, disjoint from X_1 and X_2 .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Reduction We Need
1. Input(ψ). (Can assume $\#\psi \in \{0, \dots, 12\}$.)

1. Input(ψ). (Can assume $\#\psi \in \{0, \ldots, 12\}$.)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2. Pick a random $m \in \{1, ..., 12\}$.

- 1. Input(ψ). (Can assume $\#\psi \in \{0, \dots, 12\}$.)
- 2. Pick a random $m \in \{1, ..., 12\}$.
- 3. Output

$$\zeta = \psi(X_1) \wedge \cdots \wedge \psi(X_m) \wedge (X_1 < \cdots < X_m).$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 1. Input(ψ). (Can assume $\#\psi \in \{0, \dots, 12\}$.)
- 2. Pick a random $m \in \{1, ..., 12\}$.
- 3. Output

$$\zeta = \psi(X_1) \wedge \cdots \wedge \psi(X_m) \wedge (X_1 < \cdots < X_m).$$

(ζ has *nm* variables.)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

- 1. Input(ψ). (Can assume $\#\psi \in \{0, \ldots, 12\}$.)
- 2. Pick a random $m \in \{1, \ldots, 12\}$.
- 3. Output

$$\zeta = \psi(X_1) \wedge \cdots \wedge \psi(X_m) \wedge (X_1 < \cdots < X_m).$$
(ζ has *nm* variables.)
Analysis on next slide.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Case 1 $\#(\psi) \in SAT_{12}$. Let $\#\psi = i \in \{1, ..., 12\}$.

Case 1 $\#(\psi) \in \text{SAT}_{12}$. Let $\#\psi = i \in \{1, \dots, 12\}$. If m = i then ψ has m different satisfying assignments B_1, \dots, B_m .

Case 1 $\#(\psi) \in SAT_{12}$. Let $\#\psi = i \in \{1, ..., 12\}$. If m = i then ψ has m different satisfying assignments $B_1, ..., B_m$. We output

$$\zeta = \psi(X_1) \wedge \cdots \wedge \psi(X_m) \wedge (X_1 < \cdots < X_m).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Case 1 $\#(\psi) \in SAT_{12}$. Let $\#\psi = i \in \{1, ..., 12\}$. If m = i then ψ has m different satisfying assignments $B_1, ..., B_m$. We output

$$\zeta = \psi(X_1) \wedge \cdots \wedge \psi(X_m) \wedge (X_1 < \cdots < X_m).$$

This only has one satisfying assignment:

Case 1 $\#(\psi) \in SAT_{12}$. Let $\#\psi = i \in \{1, ..., 12\}$. If m = i then ψ has m different satisfying assignments $B_1, ..., B_m$. We output

$$\zeta = \psi(X_1) \wedge \cdots \wedge \psi(X_m) \wedge (X_1 < \cdots < X_m).$$

This only has one satisfying assignment:

$$\psi(B_1) \wedge \cdots \wedge \psi(B_m) \wedge (B_1 < \cdots < B_m) = T.$$

Case 1 $\#(\psi) \in SAT_{12}$. Let $\#\psi = i \in \{1, ..., 12\}$. If m = i then ψ has m different satisfying assignments $B_1, ..., B_m$. We output

$$\zeta = \psi(X_1) \wedge \cdots \wedge \psi(X_m) \wedge (X_1 < \cdots < X_m).$$

This only has one satisfying assignment:

$$\psi(B_1) \wedge \cdots \wedge \psi(B_m) \wedge (B_1 < \cdots < B_m) = T.$$

ション ふゆ アメリア メリア しょうくしゃ

Hence $\#(\zeta) = 1$

Case 1 $\#(\psi) \in SAT_{12}$. Let $\#\psi = i \in \{1, ..., 12\}$. If m = i then ψ has m different satisfying assignments $B_1, ..., B_m$. We output

$$\zeta = \psi(X_1) \wedge \cdots \wedge \psi(X_m) \wedge (X_1 < \cdots < X_m).$$

This only has one satisfying assignment:

$$\psi(B_1) \wedge \cdots \wedge \psi(B_m) \wedge (B_1 < \cdots < B_m) = T.$$

ション ふゆ アメリア メリア しょうくしゃ

Hence $\#(\zeta) = 1$ Prob that m = i is $\frac{1}{12}$.

Case 1 $\#(\psi) \in SAT_{12}$. Let $\#\psi = i \in \{1, ..., 12\}$. If m = i then ψ has m different satisfying assignments $B_1, ..., B_m$. We output

$$\zeta = \psi(X_1) \wedge \cdots \wedge \psi(X_m) \wedge (X_1 < \cdots < X_m).$$

This only has one satisfying assignment:

$$\psi(B_1) \wedge \cdots \wedge \psi(B_m) \wedge (B_1 < \cdots < B_m) = T.$$

Hence $\#(\zeta) = 1$ Prob that m = i is $\frac{1}{12}$. Case 2 $\phi \notin$ SAT. Then clearly $\zeta \notin$ SAT.

Case 1 $\#(\psi) \in SAT_{12}$. Let $\#\psi = i \in \{1, ..., 12\}$. If m = i then ψ has m different satisfying assignments $B_1, ..., B_m$. We output

$$\zeta = \psi(X_1) \wedge \cdots \wedge \psi(X_m) \wedge (X_1 < \cdots < X_m).$$

This only has one satisfying assignment:

$$\psi(B_1) \wedge \cdots \wedge \psi(B_m) \wedge (B_1 < \cdots < B_m) = T.$$

Hence $\#(\zeta) = 1$ Prob that m = i is $\frac{1}{12}$. **Case 2** $\phi \notin SAT$. Then clearly $\zeta \notin SAT$. We are done!

1) We defined $A \leq_r B$. This definition is key since if $x \in A$ only demand that the prob $y \in B$ be bounded below by $\frac{1}{q(n)}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1) We defined $A \leq_r B$. This definition is key since if $x \in A$ only demand that the prob $y \in B$ be bounded below by $\frac{1}{q(n)}$.

2) Using Random Hash Functions and Chebyshev's inequality we get $SAT \leq_r SAT_{12}$.

1) We defined $A \leq_r B$. This definition is key since if $x \in A$ only demand that the prob $y \in B$ be bounded below by $\frac{1}{q(n)}$.

2) Using Random Hash Functions and Chebyshev's inequality we get $SAT \leq_r SAT_{12}$.

3) Using Lex ordering we get $SAT_{12} \leq_r SAT_1$ where the input formula ϕ has $\#\phi \leq 12$.

1) We defined $A \leq_r B$. This definition is key since if $x \in A$ only demand that the prob $y \in B$ be bounded below by $\frac{1}{q(n)}$.

2) Using Random Hash Functions and Chebyshev's inequality we get $SAT \leq_r SAT_{12}$.

3) Using Lex ordering we get $SAT_{12} \leq_r SAT_1$ where the input formula ϕ has $\#\phi \leq 12$.

4) Compose the two rand reductions to get $SAT \leq_r SAT_1$.

1) We defined $A \leq_r B$. This definition is key since if $x \in A$ only demand that the prob $y \in B$ be bounded below by $\frac{1}{q(n)}$.

2) Using Random Hash Functions and Chebyshev's inequality we get $SAT \leq_r SAT_{12}$.

3) Using Lex ordering we get $SAT_{12} \leq_r SAT_1$ where the input formula ϕ has $\#\phi \leq 12$.

- 4) Compose the two rand reductions to get $SAT \leq_r SAT_1$.
- 5) By Lemma, if $SAT_1 \in P$ then $SAT \in RP$.

1) We defined $A \leq_r B$. This definition is key since if $x \in A$ only demand that the prob $y \in B$ be bounded below by $\frac{1}{q(n)}$.

2) Using Random Hash Functions and Chebyshev's inequality we get $SAT \leq_r SAT_{12}$.

3) Using Lex ordering we get $SAT_{12} \leq_r SAT_1$ where the input formula ϕ has $\#\phi \leq 12$.

- 4) Compose the two rand reductions to get $SAT \leq_r SAT_1$.
- 5) By Lemma, if $SAT_1 \in P$ then $SAT \in RP$.
- 6) One can modify to get: if $SAT_1 \in RP$ then $SAT \in RP$.

1) If $SAT_1 \in P$ then $SAT \in RP$.

1) If $SAT_1 \in P$ then $SAT \in RP$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

2) We think SAT \notin RP.

1) If $SAT_1 \in P$ then $SAT \in RP$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

- 2) We think SAT $\notin RP$.
- 3) Hence we think $SAT_1 \notin P$.

- 1) If $SAT_1 \in P$ then $SAT \in RP$.
- 2) We think SAT $\notin RP$.
- 3) Hence we think $SAT_1 \notin P$.
- 4) If $SAT_1 \in RP$ then $SAT \in RP$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

- 1) If $SAT_1 \in P$ then $SAT \in RP$.
- 2) We think SAT $\notin RP$.
- 3) Hence we think $SAT_1 \notin P$.
- 4) If $SAT_1 \in RP$ then $SAT \in RP$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

2) We think SAT $\notin RP$.

- 1) If $SAT_1 \in P$ then $SAT \in RP$.
- 2) We think SAT $\notin RP$.
- 3) Hence we think $SAT_1 \notin P$.
- 4) If $\operatorname{SAT}_1 \in \operatorname{RP}$ then $\operatorname{SAT} \in \operatorname{RP}$.

ション ふゆ アメリア メリア しょうくしゃ

- 2) We think SAT \notin RP.
- 3) Hence we think $SAT_1 \notin RP$.