
The Muffin Problem: Complexity Issues

Guangi Cui - Montgomery Blair HS
John Dickerson- University of MD

Naveen Durvasula - Montgomery Blair HS
William Gasarch - University of MD

Erik Metz - University of MD
Jacob Prinz-University of MD

Naveen Raman - Richard Montgomery HS
Daniel Smolyak- University of MD

Sung Hyun Yoo - Bergen County Academies (in NJ)

(4 HS, 3 ugrad, 2 prof, 9 total)

How it Began

A Recreational Math Conference
(Gathering for Gardner)

May 2016
I found a pamphlet:

The Julia Robinson Mathematics Festival:
A Sample of Mathematical Puzzles

Compiled by Nancy Blachman
which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that
every student gets 5

3 where nobody gets a tiny sliver?

Five Muffins, Three Students, Proc by Picture

Person Color What they Get

Alice RED 1 + 2
3 = 5

3

Bob BLUE 1 + 2
3 = 5

3

Carol GREEN 1 + 1
3 + 1

3 = 5
3

Smallest Piece: 1
3

Can We Do Better?

The smallest piece in the above solution is 1
3 .

Is there a procedure with a larger smallest piece?

YES WE CAN!

Can We Do Better?

The smallest piece in the above solution is 1
3 .

Is there a procedure with a larger smallest piece?

YES WE CAN!

Five Muffins, Three People–Proc by Picture

Person Color What they Get

Alice RED 6
12 + 7

12 + 7
12

Bob BLUE 6
12 + 7

12 + 7
12

Carol GREEN 5
12 + 5

12 + 5
12 + 5

12

Smallest Piece: 5
12

Can We Do Better?

The smallest piece in the above solution is 5
12 .

Is there a procedure with a larger smallest piece?

NO WE CAN’T!

Five Muffins, Three People–Can’t Do Better Than 5
12

There is a procedure for 5 muffins,3 students where each student
gets 5

3 muffins, smallest piece N. We want N ≤ 5
12 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both 1

2 -sized
pieces to whoever got the uncut muffin. (Note 1

2 >
5
12 .) Reduces

to other cases.
(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then N ≤ 1
3 <

5
12 .

(Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students:
Someone gets ≥ 4 pieces. He has some piece

≤ 5

3
× 1

4
=

5

12
Great to see

5

12

General Problem

How can you divide and distribute m muffins to s students so that
each students gets m

s AND the MIN piece is MAXIMIZED?

An (m, s)-procedure is a way to divide and distribute m muffins to
s students so that each student gets m

s muffins.

An (m, s)-procedure is optimal if it has the largest smallest piece
of any procedure.

f (m, s) be the smallest piece in an optimal (m, s)-procedure.

We have shown f (5, 3) = 5
12 .

Note: f (m, s) ≥ 1
s : divide each muffin into s pieces of size 1

s and
give each student m of them.

Floor-Ceiling Theorem (Generalize f (5, 3) ≤ 5
12)

f (m, s) ≤ max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1− m
sb2m/sc .

Notation: FC(m, s) is the upper bound given by this Theorem.

Duality

f (5, 3) ≥ 5
12

1. Divide 4 muffins [5
12 ,

7
12]

2. Divide 1 muffin [6
12 ,

6
12]

3. Give 2 students (6
12 ,

7
12 ,

7
12)

4. Give 1 students (5
12 ,

5
12 ,

5
12 ,

5
12)

f (3, 5) ≥ 1
4

1. Divide 2 muffin [6
20 ,

7
20 ,

7
20]

2. Divide 1 muffin [5
20 ,

5
20 ,

5
20 ,

5
20]

3. Give 4 students (5
20 ,

7
20)

4. Give 1 students (6
20 ,

6
20)

Theorem f (m, s) = m
s f (s,m). (Ind by Erich Friedman)

Duality

f (5, 3) ≥ 5
12

1. Divide 4 muffins [5
12 ,

7
12]

2. Divide 1 muffin [6
12 ,

6
12]

3. Give 2 students (6
12 ,

7
12 ,

7
12)

4. Give 1 students (5
12 ,

5
12 ,

5
12 ,

5
12)

f (3, 5) ≥ 1
4

1. Divide 2 muffin [6
20 ,

7
20 ,

7
20]

2. Divide 1 muffin [5
20 ,

5
20 ,

5
20 ,

5
20]

3. Give 4 students (5
20 ,

7
20)

4. Give 1 students (6
20 ,

6
20)

Theorem f (m, s) = m
s f (s,m). (Ind by Erich Friedman)

Duality

f (5, 3) ≥ 5
12

1. Divide 4 muffins [5
12 ,

7
12]

2. Divide 1 muffin [6
12 ,

6
12]

3. Give 2 students (6
12 ,

7
12 ,

7
12)

4. Give 1 students (5
12 ,

5
12 ,

5
12 ,

5
12)

f (3, 5) ≥ 1
4

1. Divide 2 muffin [6
20 ,

7
20 ,

7
20]

2. Divide 1 muffin [5
20 ,

5
20 ,

5
20 ,

5
20]

3. Give 4 students (5
20 ,

7
20)

4. Give 1 students (6
20 ,

6
20)

Theorem f (m, s) = m
s f (s,m). (Ind by Erich Friedman)

Conventions

We know and use the following:

1. By duality can assume m > s

2. If s divides m then f (m, s) = 1 so assume s does not divide m.

3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with 2 1
2 ’s

4. If assuming f (m, s) > α > 1
3 , assume all muffin in ≤ 2 pcs.

5. f (m, s) > α > 1
3 , so exactly 2 pcs, is common case.

We do not know this but still use: f (m, s) only depends on m
s .

All of our techniques that hold for (m, s) hold for (Am,As).
For particular numbers, we only look at m, s rel prime.

f (m, s):

Does it exist?
If so then is it Rational?

If yes and yes, is it computable?

Exists? Rational? Computable?

Exists: Does f (m, s) always exist? Plausible that

(∀ε > 0)[∃ Proc for (24,11) with all pieces ≥ 19
44 − ε]

but

(∀)Proc for (24,11) some piece ≤ 19
44

Do not worry- does not happen! Yeah!

Rational: Plausible that f (24, 11) = π
7 .

Do not worry- does not happen! Yeah!

Solvable: Plausible that f (m, s) is not computable.

Do not worry- There is a procedure to compute f (m, s)

Exists? Rational? Computable?

Exists: Does f (m, s) always exist? Plausible that

(∀ε > 0)[∃ Proc for (24,11) with all pieces ≥ 19
44 − ε]

but

(∀)Proc for (24,11) some piece ≤ 19
44

Do not worry- does not happen! Yeah!

Rational: Plausible that f (24, 11) = π
7 .

Do not worry- does not happen! Yeah!

Solvable: Plausible that f (m, s) is not computable.

Do not worry- There is a procedure to compute f (m, s)

Exists? Rational? Computable?

Exists: Does f (m, s) always exist? Plausible that

(∀ε > 0)[∃ Proc for (24,11) with all pieces ≥ 19
44 − ε]

but

(∀)Proc for (24,11) some piece ≤ 19
44

Do not worry- does not happen! Yeah!

Rational: Plausible that f (24, 11) = π
7 .

Do not worry- does not happen! Yeah!

Solvable: Plausible that f (m, s) is not computable.

Do not worry- There is a procedure to compute f (m, s)

Exists? Rational? Computable?

Exists: Does f (m, s) always exist? Plausible that

(∀ε > 0)[∃ Proc for (24,11) with all pieces ≥ 19
44 − ε]

but

(∀)Proc for (24,11) some piece ≤ 19
44

Do not worry- does not happen! Yeah!

Rational: Plausible that f (24, 11) = π
7 .

Do not worry- does not happen! Yeah!

Solvable: Plausible that f (m, s) is not computable.

Do not worry- There is a procedure to compute f (m, s)

Exists? Rational? Computable?

Exists: Does f (m, s) always exist? Plausible that

(∀ε > 0)[∃ Proc for (24,11) with all pieces ≥ 19
44 − ε]

but

(∀)Proc for (24,11) some piece ≤ 19
44

Do not worry- does not happen! Yeah!

Rational: Plausible that f (24, 11) = π
7 .

Do not worry- does not happen! Yeah!

Solvable: Plausible that f (m, s) is not computable.

Do not worry- There is a procedure to compute f (m, s)

Exists? Rational? Computable?

Exists: Does f (m, s) always exist? Plausible that

(∀ε > 0)[∃ Proc for (24,11) with all pieces ≥ 19
44 − ε]

but

(∀)Proc for (24,11) some piece ≤ 19
44

Do not worry- does not happen! Yeah!

Rational: Plausible that f (24, 11) = π
7 .

Do not worry- does not happen! Yeah!

Solvable: Plausible that f (m, s) is not computable.

Do not worry- There is a procedure to compute f (m, s)

Exists, Solvable, Rational: LP does not quite work

We try to formula f (m, s) as a Linear Program
For 1 ≤ i ≤ m, 1 ≤ j ≤ s, xij is the fraction of Mi that goes to Sj .

Constraints:
Mi is size 1: xi1 + · · ·+ xim = 1.

Sj gets m
s : x1j + · · ·+ xsj = m

s .

Sanity: 0 ≤ xij ≤ 1

New Var z is min of the xij : (∀i)(∀j)[z ≤ xij]

Objective Function: Maximize z

This does not work. Discuss

Possible that M1 gives NONE to S2. So x12 = 0. What do do?

Exists, Solvable, Rational: LP does not quite work

We try to formula f (m, s) as a Linear Program
For 1 ≤ i ≤ m, 1 ≤ j ≤ s, xij is the fraction of Mi that goes to Sj .

Constraints:
Mi is size 1: xi1 + · · ·+ xim = 1.

Sj gets m
s : x1j + · · ·+ xsj = m

s .

Sanity: 0 ≤ xij ≤ 1

New Var z is min of the xij : (∀i)(∀j)[z ≤ xij]

Objective Function: Maximize z

This does not work. Discuss
Possible that M1 gives NONE to S2. So x12 = 0. What do do?

An Example where LP Does Not Work

f (5, 3) ≥ 5
12

1. Divide M1 (6
12 ,

6
12).

2. Divide M2 (5
12 ,

7
12).

3. Divide M3 (5
12 ,

7
12).

4. Divide M4 (5
12 ,

7
12).

5. Divide M5 (5
12 ,

7
12).

6. Give S1 [6
12 ,

7
12 ,

7
12] From M1,M2,M3

7. Give S2 [6
12 ,

7
12 ,

7
12] From M1,M2,M3

8. Give S3 [5
12 ,

5
12 ,

5
12 ,

5
12] From M1,M2,M3,M4

M4 gives NO piece to from S1, so x41 = 0. But we don’t want to
count that.

Exists, Solvable, Rational: Many LP’s do work

Theorem: f (m, s) exists, is rational, and can be computed.
Proof One: Formulate as an LP.
Issue: Some xij ’s are 0. Don’t want to count them for max z .

(∀)A ⊆ {xij} set all vars in A to 0. Forms LPA. Solve to get zA.

Max of the zA is f (m, s).

1. Since 0 ≤ xij ≤ 1, for every A, zA exists.

2. Since all the coefficient in Q, for all A, zA ∈ Q.

3. Since LP is computable, for all A, zA can be computed.

4. Since every zA exists, is rational, and is computable, f (m, s)
exist, is rational, and is computable.

Note: Would NEVER use this algorithm!

Formulate as an MIP (Ind Discovery: Veit Elser)

Theorem: f (m, s) exists, is rational, and can be computed.
Proof Two: Formulate as an LP as on prior slide.
Issue: Some xij ’s are 0. Don’t want to count them for max z .
Introduce new 0-1 valued variables yij and constraints:

(1) xij + yij ≥
1

s
(2) xij + yij ≤ 1

1) By Eq (1) xij = 0 =⇒ yij = 1. Eq (2) satisfied.
2) By Eq (2) xij > 0 =⇒ xij ≥ 1

s =⇒ yij = 0. Eq (1) satisfied.

Diff Constraints on z: (∀i)(∀j)[z ≤ xij + yij].
xij = 0 =⇒ yij = 1 =⇒ Constraint is z ≤ 1 easily satisfied
xij > 0 =⇒ yij = 0 =⇒ Constraint is z ≤ xij as it should be

Objective Function: maximize z .

Upper Bound on Complexity of Muffin Problem

Can compute f (m, s) with MIP on O(ms) variables and
coefficients in {−m, . . . ,m}.
So time 2O(ms).

MIP is worse than it sounds: input is of length lgm + lg s.
We have coded it up and used an MIP package.
Empirical Observations:

1. If we provided a very good upper bound then MIP sometimes
worked well.

2. MIP had a much harder time when m is prime. Do not know
if this means anything.

Upper Bound on Complexity of Muffin Problem

Can compute f (m, s) with MIP on O(ms) variables and
coefficients in {−m, . . . ,m}.
So time 2O(ms).

MIP is worse than it sounds: input is of length lgm + lg s.

We have coded it up and used an MIP package.
Empirical Observations:

1. If we provided a very good upper bound then MIP sometimes
worked well.

2. MIP had a much harder time when m is prime. Do not know
if this means anything.

Upper Bound on Complexity of Muffin Problem

Can compute f (m, s) with MIP on O(ms) variables and
coefficients in {−m, . . . ,m}.
So time 2O(ms).

MIP is worse than it sounds: input is of length lgm + lg s.
We have coded it up and used an MIP package.
Empirical Observations:

1. If we provided a very good upper bound then MIP sometimes
worked well.

2. MIP had a much harder time when m is prime. Do not know
if this means anything.

Fast(?) Algorithm:

Input: (m, s), ab
Output:
(m, s)-proc, smallest piece a

b
OR

Gee, Could not find such a proc

MATRIX Technique: f (5, 3) ≥ 5
12

Want proc for f (5, 3) ≥ 5
12 .

1) Guess that the only piece sizes are 5
12 ,

6
12 ,

7
12

2) Muffin=pieces add to 1: { 6
12 ,

6
12}, {

5
12 ,

7
12}. Vectors

{ 6
12 ,

6
12} is (0, 2, 0), m1 muffins of this type.

{ 5
12 ,

7
12} is (1, 0, 1), m2 muffins of this type.

3) Student=pieces add to 5
3

{ 6
12 ,

7
12 ,

7
12} is (0, 1, 2), s1 students of this type.

{ 5
12 ,

5
12 ,

5
12 ,

5
12} is (4, 0, 0), s2 students of this type.

4) Set up equations:
m1(0, 2, 0) + m2(1, 0, 1) = s1(0, 1, 2) + s2(4, 0, 0)
m1 + m2 = 5
s1 + s2 = 3

Natural Number Solution: m1 = 1, m2 = 4, s1 = 2, s2 = 1

MATRIX Technique

Want proc for f (m, s) ≥ a
b .

1) Guess that the only piece sizes are a
b , . . . ,

b−a
b

2) Muffin=pieces add to 1: Vectors ~vi . x types.
mi muffins of type ~vi

3) Student=pieces add to m
s : Vectors ~uj . y types.

sj students of type ~uj

4) Set up equations:
m1~v1 + · · ·+ mx~vx = s1~u1 + · · ·+ sy ~uy
m1 + · · ·+ mx = m
s1 + · · ·+ sy = s

5) Look for Nat Numb sol. If find can translate into procedure.

MATRIX Technique: Clear Fracs version

Want proc for f (m, s) ≥ a
b . Clear Fracs version.

1) Guess that the only piece sizes are a, . . . , b − a

2) Muffin=pieces add to b × 1 = b: Vectors ~vi . x types.
mi muffins of type ~vi

3) Student=pieces add to b × m
s = bm

s : Vectors ~uj . y types.
sj students of type ~uj

4) Set up equations:
m1~v1 + · · ·+ mx~vx = s1~u1 + · · ·+ sy ~uy
m1 + · · ·+ mx = m
s1 + · · ·+ sy = s

5) Look for Nat Numb sol. If find can translate into procedure.

Analysis of MATRIX(m, s, ab)

1) By Dynamic Programming can find sums in O((b − 2a)bms).

2) Empirical: b − 2a = O(s2). So O(bms).

3) Empirical: number of sums is small.

4) Empirical: If answer is a
b then pieces all have denom b.

5) Open: Is MATRIX(m, s, ab) poly in a, b,m, s?

f (m, s):

Upper Bounds

Floor-Ceiling Bound

Recall:

FC(m, s) =

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

For all m, s, f (m, s) ≤ FC(m, s).

1. Can compute FC (m, s) in O(logm). Note: do not need to
know the answer ahead of time.

2. For all m ≥ 3, f (m, 3) = FC(m, 3).

3. For all m ≥ 4, f (m, 4) = FC(m, 4).

4. For 3 ≤ s ≤ 60, s < m ≤ 70, m, s rel prime:

4.1 There are 1360 cases total.
4.2 For 927 of the (m, s), f (m, s) = FC(m, s). ∼ 68%
4.3 The cases not covered use interesting new techniques!

Terminology: Buddy

Assume that in some protocol every muffin is cut into two pieces.

Let x be a piece from muffin M.
The other piece from muffin M is the buddy of x .

Note that the buddy of x is of size

1− x .

Example of INT Technique: f (24, 11) ≤ 19
44

Assume (24, 11)-procedure with smallest piece > 19
44 .

Can assume all muffin cut in two and all student gets ≥ 2 shares.
We show that there is a piece ≤ 19

44 .

Case 1: A student gets ≥ 6 shares. Some piece ≤ 24
11×6 <

19
44 .

Case 2: A student gets ≤ 3 shares. Some piece ≥ 24
11×3 = 8

11 .

Buddy of that piece ≤ 1− 8
11 ≤

3
11 <

19
44 .

Case 3: Every muffin is cut in 2 pieces and every student gets
either 4 or 5 shares. Total number of shares is 48.

How many students get 4? 5? Where are the Shares?

4-students: a student who gets 4 shares. s4 is the number of them.
5-students: a student who gets 5 shares. s5 is the number of them.

4-share: a share that a 4-student who gets.
5-share: a share that a 5-student who gets.

4s4 + 5s5 = 48
s4 + s5 = 11

s4 = 7. Hence there are 4s4 = 4× 7 = 28 4-shares.
s5 = 4. Hence there are 5s5 = 5× 4 = 20 5-shares.

Case 3.1 and 3.2: Too Big or Too Small

Case 3.1: There is a share ≥ 25
44 . Then its buddy is

≤ 1− 25

44
=

19

44

Case 3.2: There is a share ≤ 19
44 . Duh.

Henceforth assume that all shares are in(
19

44
,

25

44

)

Case 3.3: Some 5-shares ≥ 20
44

5-share: a share that a 5-student who gets.
Claim: If some 5-shares is ≥ 20

44 then some share ≤ 19
44 .

Proof: Assume that Alice 5 pieces A,B,C ,D,E and E ≥ 20
44 .

Since A + B + C + D + E = 24
11 and E > 20

44

A + B + C + D ≤ 24

11
− 20

44
=

76

44

Assume A is the smallest of A,B,C ,D.

A ≤ 76

44
× 1

4
=

19

44

Henceforth we assume all 5-shares are in(
19

44
,

20

44

)
.

Case 3.4: Some 4-shares ≤ 21
44

4-share: a share that a 4-student who gets.
Claim: If some 4-shares is ≤ 21

44 then some share ≤ 19
44 .

Proof: Assume that Alice 4 pieces A,B,C ,D and D ≤ 21
44 .

Since A + B + C + D = 24
11 and D ≤ 21

44

A + B + C ≥ 24

11
− 21

44
=

75

44
Assume A is the largest of A,B,C .

A ≥ 75

44
× 1

3
=

25

44
The buddy of A is of size

≤ 1− 25

44
=

19

44
Henceforth we assume all 4-shares are in(

21

44
,

25

44

)
.

Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in (2144 ,
25
44), 5-shares in (1944 ,

20
44).

(?? 5-shs)[0 shs](?? 4-shs)
19
44

20
44

21
44

25
44

Recall: there are 4s4 = 4× 7 = 28 4-shares.
Recall: there are 5s5 = 5× 4 = 20 5-shares.

(20 5-shs)[0 shs](28 4-shs)
19
44

20
44

21
44

25
44

Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in (2144 ,
25
44), 5-shares in (1944 ,

20
44).

(?? 5-shs)[0 shs](?? 4-shs)
19
44

20
44

21
44

25
44

Recall: there are 4s4 = 4× 7 = 28 4-shares.
Recall: there are 5s5 = 5× 4 = 20 5-shares.

(20 5-shs)[0 shs](28 4-shs)
19
44

20
44

21
44

25
44

Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in (2144 ,
25
44), 5-shares in (1944 ,

20
44).

(?? 5-shs)[0 shs](?? 4-shs)
19
44

20
44

21
44

25
44

Recall: there are 4s4 = 4× 7 = 28 4-shares.
Recall: there are 5s5 = 5× 4 = 20 5-shares.

(20 5-shs)[0 shs](28 4-shs)
19
44

20
44

21
44

25
44

More Refined Picture of What is Going On

(20 5-shs)[0 shs](28 4-shs)
19
44

20
44

21
44

25
44

Claim 1: There are no shares x ∈ [2344 ,
24
44].

If there was such a share then buddy is in [2044 ,
21
44].

The following picture captures what we know so far.

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

S4= Small 4-shares
L4= Large 4-shares. L4 shares, 5-share: buddies, so |L4|=20.

More Refined Picture of What is Going On

(20 5-shs)[0 shs](28 4-shs)
19
44

20
44

21
44

25
44

Claim 1: There are no shares x ∈ [2344 ,
24
44].

If there was such a share then buddy is in [2044 ,
21
44].

The following picture captures what we know so far.

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

S4= Small 4-shares
L4= Large 4-shares. L4 shares, 5-share: buddies, so |L4|=20.

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

< 2×
(

23

44

)
+ 2×

(
25

44

)
=

24

11
.

Contradiction: Each 4-student gets ≥ 3 L4 shares. There are
s4 = 7 4-students. Hence there are ≥ 21 L4-shares. But there are
only 20.

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

< 2×
(

23

44

)
+ 2×

(
25

44

)
=

24

11
.

Contradiction: Each 4-student gets ≥ 3 L4 shares. There are
s4 = 7 4-students. Hence there are ≥ 21 L4-shares. But there are
only 20.

INT Technique

INT is generalization of f (24, 11) ≤ 19
44 proof.

Definition: Let INT(m, s) be the bound obtained.

1. INT proofs can get more complicated than this one.

2. INT(m, s) can be computed in O(2m logm
s). Note: do not

need to know the answer ahead of time.

3. For 1 ≤ s ≤ 60, s < m ≤ 70, m, s rel prime:

3.1 There are 1360 cases total.
3.2 For 927 of the (m, s), f (m, s) = FC(m, s). ∼ 68%
3.3 For 268 of the (m, s), f (m, s) = INT(m, s). ∼ 20%
3.4 The cases not covered use interesting new techniques!

Example of GAPS Technique: f (31, 19) ≤ 54
133

We show f (31, 19) ≤ 54
133 .

Assume (31, 19)-procedure with smallest piece > 54
133 .

By INT-technique methods obtain:
s3 = 14, s4 = 5.

(20 4-shs)[0](S3 shs)[0](20 L3-shs)
54
133

55
133

59
133

74
133

78
133

79
133

We just look at the 3-shares:

(S3 shs)[0](20 L3-shs)
59
133

74
133

78
133

79
133

GAPS Technique: f (31, 19) ≤ 54
133

(S3 shs)[0](20 L3-shs)
59
133

74
133

78
133

79
133

1. J1 = (59
133 ,

66.5
133)

2. J2 = (66.5133 ,
74
133) (|J1| = |J2|)

3. J3 = (78
133 ,

79
133) (|J3| = 20)

Note: Split the shares of size 66.5 between J1 and J2.
Notation: An e(1, 1, 3) students is a student who has

a J1-share, a J1-share, and a J3-share.
Generalize to e(i , j , k) easily.

GAPS Technique: f (31, 19) ≤ 54
133

1. J1 = (59
133 ,

66.5
133)

2. J2 = (66.5133 ,
74
133) (|J1| = |J2|)

3. J3 = (78
133 ,

79
133) (|J3| = 20)

1) Only students allowed: e(1, 2, 3), e(1, 3, 3), e(2, 2, 2), e(2, 2, 3).
All others have either < 31

19 or > 31
19 .

2) No shares in [61
133 ,

64
133]. Look at J1-shares:

An e(1, 2, 3)-student has J1-share > 31
19 −

74
133 −

79
133 = 64

133 .
An e(1, 3, 3)-student has J1-share < 31

19 − 2× 78
133 = 61

133 .

3) No shares in [69
133 ,

72
133]: x ∈ [69

133 ,
72
133] =⇒ 1− x ∈ [61

133 ,
64
133].

GAPS Technique: f (31, 19) ≤ 54
133

1. J1 = (59
133 ,

61
133)

2. J2 = (64
133 ,

66.5
133)

3. J3 = (66.5133 ,
69
133) (|J2| = |J3|)

4. J4 = (72
133 ,

74
133) (|J1| = |J4|)

5. J5 = (78
133 ,

79
133) (|J5| = 20)

The following are the only students who are allowed.
e(1, 5, 5).
e(2, 4, 5),
e(3, 4, 5).
e(4, 4, 4).

GAPS Technique: f (31, 19) ≤ 54
133

e(1, 5, 5). Let the number of such students be x
e(2, 4, 5). Let the number of such students be y1
e(3, 4, 5). Let the number of such students be y2.
e(4, 4, 4). Let the number of such students be z .
1) |J2| = |J3|,
only students using J2 are e(2, 4, 5) – they use one share each,
only students using J3 are e(3, 4, 5) – they use one share each.
Hence y1 = y2. We call them both y .

2) Since |J1| = |J4|, x = 2y + 3z .

3) Since s3 = 14, x + 2y + z = 14.

(2y + 3z) + 2y + z = 14 =⇒ 4(y + z) = 14 =⇒ y + z = 7
2 .

Contradiction.

GAPS Method

GAPS is generalization of f (24, 11) ≤ 19
44 proof.

1. GAPS proofs can get MUCH more complicated than this one.

2. GAPS needs to know the answer ahead of time. Can prob
modify so that you do not.

3. GAPS fast in practice.

4. For 1 ≤ s ≤ 60, s < m ≤ 70, m, s rel prime:

4.1 There are 1360 cases total.
4.2 For 927 of the (m, s), f (m, s) = FC(m, s). ∼ 68%
4.3 For 268 of the (m, s), f (m, s) = INT(m, s). ∼ 20%
4.4 For 165 of the (m, s), f (m, s)“=”GAPS(m, s). ∼ 12%
4.5 FC, INT, GAPS took care of ALL cases.

f (m, s)“=”GAPS(m, s): GAPS only verifies upper bounds.
No such thing as GAPS(m, s), only GAPS(m, s, α).

Later Results by Other People

1. In Fall 2018 Scott Huddleston had code for an algorithm that,
on input m, s, found f (m, s) and the procedure REALLY
FAST.

2. Jacob and Erik Understand WHAT his algorithm does and
Jacob coded it up to make sure he understood it. Jacob’s
code is also REALLY FAST.

3. Neither Scott, Bill, Jacob, or Erik had a proof that Scott’s
algorithm was fast (poly in m, s).

4. Richard Chatwin independently came up with the same
algorithm; however, he also has a proof that it works. Its on
arixv.

5. One corollary of the work: f (m, s) only depends on m/s.

Accomplishment I Am Most Proud of

Accomplishment I Am Most Proud of:

Convinced

I 4 High School students (Guang, Naveen, Naveen, Sunny)

I 3 college student (Erik, Jacob, Daniel)

I 1 professor (John D)

that the most important field of Mathematics is Muffinry.

Accomplishment I Am Most Proud of

Accomplishment I Am Most Proud of:

Convinced

I 4 High School students (Guang, Naveen, Naveen, Sunny)

I 3 college student (Erik, Jacob, Daniel)

I 1 professor (John D)

that the most important field of Mathematics is Muffinry.

