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Chapter 1

m ≥ s then f(m, s) ≥ 1/3

In this chapter we show that if m ≥ s, then f(m, s) ≥ 1
3
.

1.1 Example: f(19, 17) ≥ 1
3

.
We express 19

17
as 57

51
since other fractions will have a denom-

inator of 51.
We initially divide all 19 muffins (1

3
, 1
3
, 1
3
). There are now 57

pieces 1
3
-pieces. Since

1

3
× 3 <

19

17
<

1

3
× 4

• The max number of pieces someone can get and have
< 19

17
is 3.

• The min number of pieces someone can get and have > 19
17

is 4.

Hence we will give everyone either 3 or 4 1
3
-pieces (which we will

denote by W = 3 in the general technique). The only way to
distribute 57 pieces so that everyone gets 3 or 4 pieces is to give
11 students 3 pieces and 6 students 4 pieces (sW = s3 = 11 and
sW+1 = s4 = 6 in the general technique). As usual a student
who gets 3 (4) shares is called a 3-student (4-student).

We describe a process whereby students give pieces of muffins,
called gifts, to other students so that, in the end, all students
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have 57
51

. Each gift leads to a change in how the muffins are cut
in the first place; however, there will never be a muffin of size
< 1

3
.

Each 4-student has 4
3

= 68
51

and hence has to give (perhaps
in several increments) 68

51
− 57

51
= 11

51
to get down to 57

51
. Realize

that if a 4-student gives 11
51

to a 3-student, then the 3-student
now has 51

51
+ 11

51
= 62

51
> 57

51
.

Each 3-student has 51
51

and hence has to receive 57
51
− 51

51
= 6

51

to get up to 57
51

.
Call the 11 3-students g1, . . . , g11.
Call the 6 4-students f1, . . . , f6.

Notation 1.1. x(f1 → g1) means the following: f1 gives x to
g1 by taking two 1

3
-pieces, combining them, cutting off a piece

of size x, giving it to g1 while keeping the rest. g1 takes the
piece given to him and combines it with a 1

3
piece. Notice that

in terms of pieces we are taking three pieces of size 1
3

(2 from f1
and 1 from g1) and turning them into 1 piece of size 2

3
− x and

one of size 1
3

+x. Hence we can easily rearrange how the muffins
are cut.

We need to make sure this procedure never results in a piece
that is < 1

3
. In the above example (1) f1 now has a piece of size

2
3
−x, hence we need x ≤ 1

3
, (2) g1 now has a piece of size 1

3
+x,

which is clearly ≥ 1
3
. Hence the only restriction is x ≤ 1

3
.

(1) 11
51

(f1 → g1). Now f1 has 57
51

. YEAH. However, g1 has 62
51

.

(2) 5
51

(g1 → g2). Now g1 has 62
51
− 5

51
= 57

51
. YEAH. However, g2

has 51
51

+ 5
51

= 56
51

.

(3) 1
51

(f2 → g2). Now g2 has 57
51

. YEAH. However, f2 has 67
51

.

(4) 10
51

(f2 → g3). Now f2 has 57
51

. YEAH. However, g3 has 61
51

.

(5) 4
51

(g3 → g4). Now g3 has 57
51

. YEAH. However, g4 has 55
51

.

(6) 2
51

(f3 → g4). Now g4 has 57
51

. YEAH. However, f3 has 66
51

.
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(7) 9
51

(f3 → g5). Now f3 has 57
51

. YEAH. However, g5 has 60
51

.

(8) 3
51

(g5 → g6). Now g5 has 57
51

. YEAH. However, g6 has 54
51

.

(9) 3
51

(f4 → g6). Now g6 has 57
51

. YEAH. However, f4 has 65
51

.

(10) 8
51

(f4 → g7). Now f4 has 57
51

. YEAH. However, g7 has 59
51

.

(11) 2
51

(g7 → g8). Now g7 has 57
51

. YEAH. However, g8 has 53
51

.

(12) 4
51

(f5 → g8). Now g8 has 57
51

. YEAH. However, f5 has 64
51

.

(13) 7
51

(f5 → g9). Now f5 has 57
51

. YEAH. However, g9 has 58
51

.

(14) 1
51

(g9 → g10). Now g9 has 58
51

. YEAH. However, g10 has 52
51

.

(15) 5
51

(f6 → g10). Now g10 has 57
51

. YEAH. However, f6 has 63
51

.

(16) 6
51

(f6 → g11). Now f6 has 57
51

. YEAH. However, g11 has 57
51

.
OH. thats a good thing!

YEAH- we are done.
Note that the first x was 11

51
≤ 1

3
and the remaining x were

all ≤ 11
51
≤ 1

3
. Hence all pieces in the final procedure are ≥ 1

3
.

End of Example

Theorem 1.2. For all m ≥ s, f(m, s) ≥ 1
3
.

Proof. Divide all the muffins into (1
3
, 1
3
, 1
3
). Let W be such that

1

3
×W ≤ m

s
≤ 1

3
(W + 1).

Give some students W 1
3
-pieces and some (W + 1) 1

3
-pieces.

How many students? Let sW (sW+1) be the number of students
who get W (W + 1) 1

3
-pieces. Then:

WsW + (W + 1)sW+1 = 3m
sW + sW+1 = s

These equations have a unique solution and unique value of
W if s does not divide 3m. If s does divide 3m there will be
more than one possible value of W ; however, we can pick one ar-
bitrarily. So we give sW students W 1

3
-pieces and sW+1 students

W + 1 1
3
-pieces.
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By the definition of W :

0 ≤ m

s
− W

3
≤ 1

3
(1.1)

0 ≤ W + 1

3
− m

s
≤ 1

3
(1.2)

Now we will need to smooth out the distribution so that
everyone receives m

s
. We will do this by a sequence of moves of

the form x(fi → gj) or x(gi → gj), as defined in the example.
We will assume sW+1 and sW are relatively prime (this only

comes up in Claim 3 below). This is fine because if they have
a common factor d, we can just use the procedure for the sW+1

d
,

sW
d

case repeated d times.
Call the sW W -students g1, . . . , gsW .
Call the sW+1 (W + 1)-students f1, . . . , fsW+1

.
Claim 1:

(1) If sW+1 < sW then W+1
3
− m

s
> m

s
− W

3
.

(2) If sW < sW+1 then W+1
3
− m

s
> m

s
− W

3
.

Proof of Claim 1:

sW+1 ×
W + 1

3
+ sW ×

W

3
= m

sW+1 ×
(
m

s
+

W + 1

3
− m

s

)
+ sW

(
m

s
+

W

3
− m

s

)
= m

(
sW+1 + sW

)
m

s
+ sW+1

(
W + 1

3
− m

s

)
+ sW

(
W

3
− m

s

)
= m

s× m

s
+ sW+1

(
W + 1

3
− m

s

)
+ sW

(
W

3
− m

s

)
= m

W + 1

3
− m

s
=

sW
sW+1

(
m

s
− W

3

)
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Both parts follow.
End of Proof of Claim 1

We give the procedure to obtain f(m, s) ≤ 1
3
. There are two

cases.
Case 1: sW+1 < sW . Hence by Claim 1 W+1

3
− m

s
> m

s
− W

3
.

(1) Let x = W+1
3
− m

s
. Note that x ≤ 1

3
. Do x(f1 → g1). Now

f1 has m
s

. YEAH. However, g1 has W
3

+ W+1
3
− m

s
> m

s
.

(This is where we use sW+1 < sW , or more accurately the
consequence of that from Claim 1.)

(2) Let x = 2W+1
3
− 2 × m

s
. Do x(g1 → g2). Now g1 has m

s
.

YEAH.
(3) If g2 has > m

s
then g2 gives enough to g3 so that g2 has m

s
.

Keep up this chain of g1, g2, g3, . . . until there is a gi such
that gi end up with < m

s
(though more than the W

3
that gi

had originally). This happens because gi−1 gives gi what it
can, so gi−1 ends with exactly m

s
, but its just not enough for

gi to have m
s

as well :-(.
(4) Do x(f2 → gi) where x is such that gi will now have m

s
.

(5) Do x(f2 → gi+1) where x is such that f2 will now have m
s

.
Repeat the same chain of gi’s as in step 3.

(6) Repeat the above steps until you are done.

We need to show that (1) there is never a piece of size < 1
3
,

and (2) the process ends with every student getting m
s

.
Claim 2: The first gift is ≤ 1

3
and no gift is larger.

Proof of Claim 2: Let C = W+1
3
− m

s
which is the size of the

first gift. By equation (2) C ≤ 1
3
.

Assume that all gifts so far have been ≤ C. We analyze the
three kinds of gifts and show that in all cases the gift is ≤ C.

• x(fi → gj) where (1) initially fi has > m
s

, gj has < m
s

, and
(2) after the gift fi has m

s
. When this occurs it is fi’s first

or second gift giving. (This happens in steps 1 and 5 above,
and later as well.) Before the gift fi has at least m

s
but at
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most W+1
3

, so this gift has size at most W+1
3
− m

s
= C.

• x(gi → gi+1) where (1) initially gi has > m
s

, gj has < m
s

, and
(2) after the gift gi has m

s
. When this occurs, gi has received

a gift once and this is gi’s first time giving. (This happens
in steps 2 and in the chain referred to in step 5.) Since gi
just received a gift of size ≤ C she has ≤ W

3
+C. Hence the

gift is ≤ W
3
− m

s
+ C ≤ C.

• x(fi → gj) where (1) initially fi has > m
s

, gj has < m
s

,
and (2) after the gift gj has m

s
. This will be fi’s first time

giving. (This happens in step 4 above.) Before the gift fi
has at least W

3
but at most m

s
, so this gift has size at most

m
s
− W

3
≤ C (by Claim 1).

Claim 3: If sW and sW+1 are relatively prime then the pro-
cess terminates with all students having m

s
.

Proof of Claim 3:
In each step all of the fi have at least m

s
. In each step the

number of students who have the correct amount of muffin goes
up. One may be worried that at some point we will try to do
step 4 (for example) of the procedure and there will be no gi left
who need more muffin. But this is not possible because until the
process terminates the f ’s always have more muffins than they
need, so there is always a g with less muffins than they need.

One may also be worried that eventually we will get all of
the f ’s to have m

s
, but the g’s will not all have m

s
. This is not

possible either, because whenever we only make gifts from f to
g, there is no g with more than m

s
.

Finally, if sW and sW+1 are not relatively prime, it is possible
that the procedure will terminate early because in step 5 the size
of the donation x is 0. If this occurred it would mean that there
is some subset of F f ’s and G g’s each of which has exactly
m
s

, and only made donations amongst themselves. But then
F
G

= sW+1

sW
, a contradiction.

End of Proof of Claim 3
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Case 2: sW < sW+1. This is similar to Case 1 except that
instead of f1 giving g1 so that f1 has m

s
, f1 gives to g1 so that

g1 has m
s

. Hence we have a chain of fi’s instead of a chain of
gi’s.

1.2 Conjectures About Extensions

We first restate the main theorem:

Theorem 1.3. For all m ≥ s, if V ≥ 3 then f(m, s) ≥ 1
3
.

What if V = 4? V = 5?

Conjecture 1.4. There exists a function a(V ) such that the
following is true: For all m ≥ s, if V ≥ V then f(m, s) ≥ a(V ).

What might a(V ) look like? We know that a(3) = 1
3

and
empirically it seems that limV→∞ a(V ) = 1

2
. One candidate is

a(V ) =
V + 1

2V + 6


	 ms then f(m,s) 1/3 

