Chapter 1

$m \geq s$ then $f(m, s) \geq 1 / 3$

In this chapter we show that if $m \geq s$, then $f(m, s) \geq \frac{1}{3}$.

1.1 Example: $f(19,17) \geq \frac{1}{3}$

We express $\frac{19}{17}$ as $\frac{57}{51}$ since other fractions will have a denominator of 51 .

We initially divide all 19 muffins $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. There are now 57 pieces $\frac{1}{3}$-pieces. Since

$$
\frac{1}{3} \times 3<\frac{19}{17}<\frac{1}{3} \times 4
$$

- The max number of pieces someone can get and have $<\frac{19}{17}$ is 3 .
- The min number of pieces someone can get and have $>\frac{19}{17}$ is 4 .

Hence we will give everyone either 3 or $4 \frac{1}{3}$-pieces (which we will denote by $W=3$ in the general technique). The only way to distribute 57 pieces so that everyone gets 3 or 4 pieces is to give 11 students 3 pieces and 6 students 4 pieces ($s_{W}=s_{3}=11$ and $s_{W+1}=s_{4}=6$ in the general technique). As usual a student who gets 3 (4) shares is called a 3 -student (4-student).

We describe a process whereby students give pieces of muffins, called gifts, to other students so that, in the end, all students
have $\frac{57}{51}$. Each gift leads to a change in how the muffins are cut in the first place; however, there will never be a muffin of size $<\frac{1}{3}$.

Each 4-student has $\frac{4}{3}=\frac{68}{51}$ and hence has to give (perhaps in several increments) $\frac{68}{51}-\frac{57}{51}=\frac{11}{51}$ to get down to $\frac{57}{51}$. Realize that if a 4 -student gives $\frac{11}{51}$ to a 3 -student, then the 3 -student now has $\frac{51}{51}+\frac{11}{51}=\frac{62}{51}>\frac{57}{51}$.

Each 3-student has $\frac{51}{51}$ and hence has to receive $\frac{57}{51}-\frac{51}{51}=\frac{6}{51}$ to get up to $\frac{57}{51}$.

Call the 113 -students g_{1}, \ldots, g_{11}.
Call the 64 -students f_{1}, \ldots, f_{6}.
Notation 1.1. $x\left(f_{1} \rightarrow g_{1}\right)$ means the following: f_{1} gives x to g_{1} by taking two $\frac{1}{3}$-pieces, combining them, cutting off a piece of size x, giving it to g_{1} while keeping the rest. g_{1} takes the piece given to him and combines it with a $\frac{1}{3}$ piece. Notice that in terms of pieces we are taking three pieces of size $\frac{1}{3}\left(2\right.$ from f_{1} and 1 from g_{1}) and turning them into 1 piece of size $\frac{2}{3}-x$ and one of size $\frac{1}{3}+x$. Hence we can easily rearrange how the muffins are cut.

We need to make sure this procedure never results in a piece that is $<\frac{1}{3}$. In the above example (1) f_{1} now has a piece of size $\frac{2}{3}-x$, hence we need $x \leq \frac{1}{3}$, (2) g_{1} now has a piece of size $\frac{1}{3}+x$, which is clearly $\geq \frac{1}{3}$. Hence the only restriction is $x \leq \frac{1}{3}$.
(1) $\frac{11}{51}\left(f_{1} \rightarrow g_{1}\right)$. Now f_{1} has $\frac{57}{51}$. YEAH. However, g_{1} has $\frac{62}{51}$.
(2) $\frac{5}{51}\left(g_{1} \rightarrow g_{2}\right)$. Now g_{1} has $\frac{62}{51}-\frac{5}{51}=\frac{57}{51}$. YEAH. However, g_{2} has $\frac{51}{51}+\frac{5}{51}=\frac{56}{51}$.
(3) $\frac{1}{51}\left(f_{2} \rightarrow g_{2}\right)$. Now g_{2} has $\frac{57}{51}$. YEAH. However, f_{2} has $\frac{67}{51}$.
(4) $\frac{10}{51}\left(f_{2} \rightarrow g_{3}\right)$. Now f_{2} has $\frac{57}{51}$. YEAH. However, g_{3} has $\frac{61}{51}$.
(5) $\frac{4}{51}\left(g_{3} \rightarrow g_{4}\right)$. Now g_{3} has $\frac{57}{51}$. YEAH. However, g_{4} has $\frac{55}{51}$.
(6) $\frac{2}{51}\left(f_{3} \rightarrow g_{4}\right)$. Now g_{4} has $\frac{57}{51}$. YEAH. However, f_{3} has $\frac{66}{51}$.
(7) $\frac{9}{51}\left(f_{3} \rightarrow g_{5}\right)$. Now f_{3} has $\frac{57}{51}$. YEAH. However, g_{5} has $\frac{60}{51}$.
(8) $\frac{3}{51}\left(g_{5} \rightarrow g_{6}\right)$. Now g_{5} has $\frac{57}{51}$. YEAH. However, g_{6} has $\frac{54}{51}$.
(9) $\frac{3}{51}\left(f_{4} \rightarrow g_{6}\right)$. Now g_{6} has $\frac{57}{51}$. YEAH. However, f_{4} has $\frac{65}{51}$.
(10) $\frac{8}{51}\left(f_{4} \rightarrow g_{7}\right)$. Now f_{4} has $\frac{57}{51}$. YEAH. However, g_{7} has $\frac{59}{51}$.
(11) $\frac{2}{51}\left(g_{7} \rightarrow g_{8}\right)$. Now g_{7} has $\frac{57}{51}$. YEAH. However, g_{8} has $\frac{53}{51}$.
(12) $\frac{4}{51}\left(f_{5} \rightarrow g_{8}\right)$. Now g_{8} has $\frac{57}{51}$. YEAH. However, f_{5} has $\frac{64}{51}$.
(13) $\frac{7}{51}\left(f_{5} \rightarrow g_{9}\right)$. Now f_{5} has $\frac{57}{51}$. YEAH. However, g_{9} has $\frac{58}{51}$.
(14) $\frac{1}{51}\left(g_{9} \rightarrow g_{10}\right)$. Now g_{9} has $\frac{58}{51}$. YEAH. However, g_{10} has $\frac{52}{51}$.
(15) $\frac{5}{51}\left(f_{6} \rightarrow g_{10}\right)$. Now g_{10} has $\frac{57}{51}$. YEAH. However, f_{6} has $\frac{63}{51}$.
(16) $\frac{6}{51}\left(f_{6} \rightarrow g_{11}\right)$. Now f_{6} has $\frac{57}{51}$. YEAH. However, g_{11} has $\frac{57}{51}$. OH . thats a good thing!

YEAH- we are done.
Note that the first x was $\frac{11}{51} \leq \frac{1}{3}$ and the remaining x were all $\leq \frac{11}{51} \leq \frac{1}{3}$. Hence all pieces in the final procedure are $\geq \frac{1}{3}$.

End of Example

Theorem 1.2. For all $m \geq s, f(m, s) \geq \frac{1}{3}$.
Proof. Divide all the muffins into $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. Let W be such that

$$
\frac{1}{3} \times W \leq \frac{m}{s} \leq \frac{1}{3}(W+1)
$$

Give some students $W \frac{1}{3}$-pieces and some $(W+1) \frac{1}{3}$-pieces. How many students? Let $s_{W}\left(s_{W+1}\right)$ be the number of students who get $W(W+1) \frac{1}{3}$-pieces. Then:

$$
\begin{aligned}
W s_{W}+(W+1) s_{W+1} & =3 m \\
s_{W}+s_{W+1} & =s
\end{aligned}
$$

These equations have a unique solution and unique value of W if s does not divide $3 m$. If s does divide $3 m$ there will be more than one possible value of W; however, we can pick one arbitrarily. So we give s_{W} students $W \frac{1}{3}$-pieces and s_{W+1} students $W+1 \frac{1}{3}$-pieces.

By the definition of W :

$$
\begin{align*}
0 \leq \frac{m}{s}-\frac{W}{3} & \leq \frac{1}{3} \tag{1.1}\\
0 \leq \frac{W+1}{3}-\frac{m}{s} & \leq \frac{1}{3} \tag{1.2}
\end{align*}
$$

Now we will need to smooth out the distribution so that everyone receives $\frac{m}{s}$. We will do this by a sequence of moves of the form $x\left(f_{i} \rightarrow g_{j}\right)$ or $x\left(g_{i} \rightarrow g_{j}\right)$, as defined in the example.

We will assume s_{W+1} and s_{W} are relatively prime (this only comes up in Claim 3 below). This is fine because if they have a common factor d, we can just use the procedure for the $\frac{s_{W+1}}{d}$, $\frac{s_{W}}{d}$ case repeated d times.

Call the $s_{W} W$-students $g_{1}, \ldots, g_{s_{W}}$.
Call the $s_{W+1}(W+1)$-students $f_{1}, \ldots, f_{s_{W+1}}$.

Claim 1:

(1) If $s_{W+1}<s_{W}$ then $\frac{W+1}{3}-\frac{m}{s}>\frac{m}{s}-\frac{W}{3}$.
(2) If $s_{W}<s_{W+1}$ then $\frac{W^{3}+1}{3}-\frac{\stackrel{m}{s}}{s}>\frac{\stackrel{s}{s}}{s}-\frac{W_{W}^{W}}{3}$.

Proof of Claim 1:

$$
\begin{gathered}
s_{W+1} \times \frac{W+1}{3}+s_{W} \times \frac{W}{3}=m \\
s_{W+1} \times\left(\frac{m}{s}+\frac{W+1}{3}-\frac{m}{s}\right)+s_{W}\left(\frac{m}{s}+\frac{W}{3}-\frac{m}{s}\right)=m \\
\left(s_{W+1}+s_{W}\right) \frac{m}{s}+s_{W+1}\left(\frac{W+1}{3}-\frac{m}{s}\right)+s_{W}\left(\frac{W}{3}-\frac{m}{s}\right)=m \\
s \times \frac{m}{s}+s_{W+1}\left(\frac{W+1}{3}-\frac{m}{s}\right)+s_{W}\left(\frac{W}{3}-\frac{m}{s}\right)=m \\
\frac{W+1}{3}-\frac{m}{s}=\frac{s_{W}}{s_{W+1}}\left(\frac{m}{s}-\frac{W}{3}\right)
\end{gathered}
$$

Both parts follow.

End of Proof of Claim 1

We give the procedure to obtain $f(m, s) \leq \frac{1}{3}$. There are two cases.
Case 1: $s_{W+1}<s_{W}$. Hence by Claim $1 \frac{W+1}{3}-\frac{m}{s}>\frac{m}{s}-\frac{W}{3}$.
(1) Let $x=\frac{W+1}{3}-\frac{m}{s}$. Note that $x \leq \frac{1}{3}$. Do $x\left(f_{1} \rightarrow g_{1}\right)$. Now f_{1} has $\frac{m}{s}$. YEAH. However, g_{1} has $\frac{W}{3}+\frac{W+1}{3}-\frac{m}{s}>\frac{m}{s}$. (This is where we use $s_{W+1}<s_{W}$, or more accurately the consequence of that from Claim 1.)
(2) Let $x=\frac{2 W+1}{3}-2 \times \frac{m}{s}$. Do $x\left(g_{1} \rightarrow g_{2}\right)$. Now g_{1} has $\frac{m}{s}$. YEAH.
(3) If g_{2} has $>\frac{m}{s}$ then g_{2} gives enough to g_{3} so that g_{2} has $\frac{m}{s}$. Keep up this chain of $g_{1}, g_{2}, g_{3}, \ldots$ until there is a g_{i} such that g_{i} end up with $<\frac{m}{s}$ (though more than the $\frac{W}{3}$ that g_{i} had originally). This happens because g_{i-1} gives g_{i} what it can, so g_{i-1} ends with exactly $\frac{m}{s}$, but its just not enough for g_{i} to have $\frac{m}{s}$ as well :-(.
(4) Do $x\left(f_{2} \rightarrow g_{i}\right)$ where x is such that g_{i} will now have $\frac{m}{s}$.
(5) Do $x\left(f_{2} \rightarrow g_{i+1}\right)$ where x is such that f_{2} will now have $\frac{m}{s}$. Repeat the same chain of g_{i} 's as in step 3.
(6) Repeat the above steps until you are done.

We need to show that (1) there is never a piece of size $<\frac{1}{3}$, and (2) the process ends with every student getting $\frac{m}{s}$.
Claim 2: The first gift is $\leq \frac{1}{3}$ and no gift is larger.
Proof of Claim 2: Let $C=\frac{W+1}{3}-\frac{m}{s}$ which is the size of the first gift. By equation (2) $C \leq \frac{1}{3}$.

Assume that all gifts so far have been $\leq C$. We analyze the three kinds of gifts and show that in all cases the gift is $\leq C$.

- $x\left(f_{i} \rightarrow g_{j}\right)$ where (1) initially f_{i} has $>\frac{m}{s}, g_{j}$ has $<\frac{m}{s}$, and (2) after the gift f_{i} has $\frac{m}{s}$. When this occurs it is f_{i} 's first or second gift giving. (This happens in steps 1 and 5 above, and later as well.) Before the gift f_{i} has at least $\frac{m}{s}$ but at
most $\frac{W+1}{3}$, so this gift has size at most $\frac{W+1}{3}-\frac{m}{s}=C$.
- $x\left(g_{i} \rightarrow g_{i+1}\right)$ where (1) initially g_{i} has $>\frac{m}{s}, g_{j}$ has $<\frac{m}{s}$, and (2) after the gift g_{i} has $\frac{m}{s}$. When this occurs, g_{i} has received a gift once and this is g_{i} 's first time giving. (This happens in steps 2 and in the chain referred to in step 5.) Since g_{i} just received a gift of size $\leq C$ she has $\leq \frac{W}{3}+C$. Hence the gift is $\leq \frac{W}{3}-\frac{m}{s}+C \leq C$.
- $x\left(f_{i} \rightarrow g_{j}\right)$ where (1) initially f_{i} has $>\frac{m}{s}, g_{j}$ has $<\frac{m}{s}$, and (2) after the gift g_{j} has $\frac{m}{s}$. This will be f_{i} 's first time giving. (This happens in step 4 above.) Before the gift f_{i} has at least $\frac{W}{3}$ but at most $\frac{m}{s}$, so this gift has size at most $\frac{m}{s}-\frac{W}{3} \leq C$ (by Claim 1).

Claim 3: If s_{W} and s_{W+1} are relatively prime then the process terminates with all students having $\frac{m}{s}$.

Proof of Claim 3:

In each step all of the f_{i} have at least $\frac{m}{s}$. In each step the number of students who have the correct amount of muffin goes up. One may be worried that at some point we will try to do step 4 (for example) of the procedure and there will be no g_{i} left who need more muffin. But this is not possible because until the process terminates the f 's always have more muffins than they need, so there is always a g with less muffins than they need.

One may also be worried that eventually we will get all of the f 's to have $\frac{m}{s}$, but the g 's will not all have $\frac{m}{s}$. This is not possible either, because whenever we only make gifts from f to g, there is no g with more than $\frac{m}{s}$.

Finally, if s_{W} and s_{W+1} are not relatively prime, it is possible that the procedure will terminate early because in step 5 the size of the donation x is 0 . If this occurred it would mean that there is some subset of $F f^{\prime}$'s and $G g$'s each of which has exactly $\frac{m}{s}$, and only made donations amongst themselves. But then $\frac{s}{G}=\frac{s_{W+1}}{s_{W}}$, a contradiction.
End of Proof of Claim 3

$$
m \geq s \text { then } f(m, s) \geq 1 / 3
$$

Case 2: $s_{W}<s_{W+1}$. This is similar to Case 1 except that instead of f_{1} giving g_{1} so that f_{1} has $\frac{m}{s}, f_{1}$ gives to g_{1} so that g_{1} has $\frac{m}{s}$. Hence we have a chain of f_{i} 's instead of a chain of g_{i} 's.

1.2 Conjectures About Extensions

We first restate the main theorem:
Theorem 1.3. For all $m \geq s$, if $V \geq 3$ then $f(m, s) \geq \frac{1}{3}$.
What if $V=4 ? V=5 ?$
Conjecture 1.4. There exists a function $a(V)$ such that the following is true: For all $m \geq s$, if $V \geq V$ then $f(m, s) \geq a(V)$.

What might $a(V)$ look like? We know that $a(3)=\frac{1}{3}$ and empirically it seems that $\lim _{V \rightarrow \infty} a(V)=\frac{1}{2}$. One candidate is

$$
a(V)=\frac{V+1}{2 V+6}
$$

