24 Muffins, 25 Students By William Gasarch, Answering a Question Posed by James Propp

1 James Propp Asked The Following

Problem: A teacher has 24 muffins and 24 students. Great! She will give one to each student. But wait! She then thinks *I want some muffin!* So she will now give 24 muffins to 25 people (the 24 students and her). That sounds like a mess! Find a way to divide and distribute 25 muffins to 24 people so that its not that big a mess. More formally, try to maximize the smallest piece.

Work on it before turning the page.

2 A Procedure with Smallest Piece $\frac{8}{25}$

1. Divide 6 muffins $\{\frac{12}{25}, \frac{13}{25}\}$.

- 2. Divide 6 muffins $\{\frac{11}{25}, \frac{14}{25}\}$.
- 3. Divide 6 muffins $\{\frac{10}{25}, \frac{15}{25}\}$.
- 4. Divide 6 muffins $\{\frac{8}{25}, \frac{8}{25}, \frac{9}{25}\}$.
- 5. Give 3 students $\{\frac{12}{25}, \frac{12}{25}\}$.
- 6. Give 6 students $\{\frac{11}{25}, \frac{13}{25}\}$.
- 7. Give 6 students $\{\frac{10}{25}, \frac{14}{25}\}$.
- 8. Give 6 students $\{\frac{9}{25}, \frac{15}{25}\}$.
- 9. Give 4 students $\{\frac{8}{25}, \frac{8}{25}, \frac{8}{25}\}$.

Is there a procedure with smallest piece $> \frac{8}{25}$. Think about it before turning the page.

There is no Procedure with Smallest Piece $> \frac{8}{25}$ 3

Assume there is a procedure for 24 muffins, 25 people where everyone gets $\frac{24}{25}$.

Case 1: Some muffin is cut into ≥ 4 pieces. Then some piece is $\leq \frac{1}{4} < \frac{8}{25}$. **Case 2:** Some muffin is uncut. Whoever gets that muffin has $1 > \frac{24}{25}$ which is impossible. **Case 3:** Some student gets ≥ 3 pieces. One of the pieces must be $\leq \frac{24}{25} \times \frac{1}{3} = \frac{8}{25}$. **Case 4:** Some student gets 1 piece. That piece must be of size $\frac{24}{25}$. Look at the muffin it came from. The other pieces add up to $1 - \frac{24}{25} = \frac{1}{25} < \frac{8}{25}$. Hence some piece is $< \frac{8}{25}$. **Case 5:** All muffins are cut into either 2 or 3 pieces and all students get 2 pieces. We will call

muffins cut into 2 pieces 2-muffins and muffins cut into 3-pieces 3-muffins. We will call the pieces from a 2-muffin 2-pieces and the pieces from a 3-muffin 3-pieces.

Case 5a: Some 3-piece is $> \frac{9}{25}$. Look at the muffin this piece came from. The other 2 pieces of it add up to $< 1 - \frac{9}{25} = \frac{16}{25}$. Hence some piece is $< \frac{9}{25}$.

Case 5b: Some 2-piece is $<\frac{9}{25}$. Look at the muffin this piece came from. The other piece of it is $> 1 - \frac{9}{25} = \frac{16}{25}$. Look at who gets that piece. The rest of what he gets is of size $< \frac{24}{25} - \frac{16}{25} = \frac{8}{25}$. **Case 5c:** Some 2-piece is $> \frac{16}{25}$. Look at the person who has that piece. The other piece they have

is of size $< \frac{24}{25} - \frac{16}{25} = \frac{8}{25}$.

OKAY, we now got rid of all the easy cases. Now what?

Think about it before turning the page.

The following diagram illustrates what is going on:

$$\begin{array}{ccc} (& 3\text{-pieces} &)(& 2\text{-pieces} &) \\ \frac{8}{25} & & \frac{9}{25} & & \frac{16}{25} \end{array}$$

Let m_2 (m_3) be the number of 2-muffins (3-muffins). Since (1) every student gets 2 pieces there are 50 pieces, and (2) there are 24 muffins:

$$\begin{array}{rcl} 2m_2 + 3m_3 &= 50\\ m_2 + m_3 &= 24 \end{array}$$

Hence $m_2 = 22$ and $m_3 = 2$, so there are 44 2-pieces and 6 3-pieces

$$\begin{pmatrix} 6 & 3\text{-pieces} \end{pmatrix} \begin{pmatrix} 44 & 2\text{-pieces} \end{pmatrix} \\ \frac{8}{25} & \frac{9}{25} & \frac{16}{25} \\ \begin{pmatrix} \frac{8}{25}, \frac{9}{25} \end{pmatrix} \text{ has 6 pieces.} \end{pmatrix}$$

There are 6 muffins in $(\frac{8}{25}, \frac{9}{25})$. We have a bijection from these 6 pieces to the pieces in $(\frac{15}{25}, \frac{16}{25})$ as follows: if $x \in (\frac{8}{25}, \frac{9}{25})$ then let Alice have x. Alice has only two pieces. Map x to y, the other piece Alice has. Since $x + y = \frac{24}{25}$ and $x \in (\frac{8}{25}, \frac{9}{25})$, $y \in (\frac{15}{25}, \frac{16}{25})$. The map is invertible. Hence

$$\left(\frac{15}{25},\frac{16}{25}\right)$$
 has 6 pieces.

We have a bijection from the pieces in $(\frac{15}{25}, \frac{16}{25})$ to the pieces in $(\frac{9}{25}, \frac{10}{25})$. Let x be a piece in $(\frac{15}{25}, \frac{16}{25})$. Look at the muffin that x came from. Since x is a 2-piece there is only one other piece from that muffin. Call its size y. Then x + y = 1. Since $x \in (\frac{15}{25}, \frac{16}{25})$ and x + y = 1, $y \in \frac{9}{25}, \frac{10}{25}$). The map is invertible. Hence

$$\left(\frac{9}{25}, \frac{10}{25}\right)$$
 has 6 pieces.

By similar methods to the two above we can show that the following open intervals have 6 pieces:

$$\begin{pmatrix} \frac{14}{25}, \frac{15}{25} \end{pmatrix}, \begin{pmatrix} \frac{10}{25}, \frac{11}{25} \end{pmatrix} \begin{pmatrix} \frac{13}{25}, \frac{14}{25} \end{pmatrix} \\ \begin{pmatrix} \frac{11}{25}, \frac{12}{25} \end{pmatrix}, \begin{pmatrix} \frac{12}{25}, \frac{13}{25} \end{pmatrix}$$

There are no pieces of size the endpoint of any of these intervals. Since these 7 intervals are all distinct and have 6 pieces in them, there are 42 pieces. This contradicts that we have 50 pieces. Hence this case cannot occur.

What about s muffins, s + 1 students?

Think about this before turning the page.

4 s muffins, s + 1 students

This breaks down into three cases.

4.1 f(3k, 3k+1)

Theorem 4.1 $f(3k, 3k+1) = \frac{k}{3k+1}$

Proof:

 $f(3k, 3k+1) \ge \frac{k}{3k+1}$, with two cases. Case 1: $f(6k, 6k+1) = \frac{2k}{6k+1}$

- 1. Divide 6 muffins $\{\frac{2k}{6k+1}, \frac{2k}{6k+1}, \frac{2k+1}{6k+1}\}$.
- 2. For $2 \le i \le k$, divide 6 muffins $\{\frac{2k+i}{6k+1}, \frac{4k-i+1}{6k+1}\}$.
- 3. Give 4 students $\{\frac{2k}{6k+1}, \frac{2k}{6k+1}, \frac{2k}{6k+1}\}$.
- 4. For $1 \le i \le k 1$, give 6 students $\{\frac{2k+i}{6k+1}, \frac{4k-i}{6k+1}\}$.
- 5. Give 3 students $\{\frac{3k}{6k+1}, \frac{3k}{6k+1}\}$.

Case 2: $f(6k+3, 6k+4) = \frac{2k+1}{6k+4}$

- 1. Divide 6 muffins $\{\frac{2k+1}{6k+4}, \frac{2k+1}{6k+4}, \frac{2k+2}{6k+4}\}$.
- 2. For $3 \le i \le k+1$, divide 6 muffins $\{\frac{2k+i}{6k+4}, \frac{4k-i+4}{6k+4}\}$.
- 3. Divide 3 muffins $\{\frac{3k+2}{6k+4}, \frac{3k+2}{6k+4}\}$.
- 4. Give 4 students $\{\frac{2k+1}{6k+4}, \frac{2k+1}{6k+4}, \frac{2k+1}{6k+4}\}$.
- 5. For $2 \le i \le k+1$, give 6 students $\{\frac{2k+i}{6k+4}, \frac{4k-i+3}{6k+4}\}$.

Assume, by way of contradiction, that there is a procedure for (3k, 3k + 1) where the smallest piece is $> \frac{k}{3k+1}$.

Case 1: Alice gets 1 piece; its $\frac{3k}{3k+1}$. Its buddy is $1 - \frac{3k}{3k+1} = \frac{1}{3k+1} \le \frac{k}{3k+1}$. **Case 2:** Alice gets ≥ 3 pieces. Then she has some piece of size $\le \frac{3k}{3k+1} \times \frac{1}{3} = \frac{k}{3k+1}$.

Case 3: Some muffin is uncut. Say Alice gets that uncut muffin. Then she has $1 > \frac{6k+2}{3k+1}$ which cannot happen.

Case 4: Some muffin is cut into 4 pieces. Then some piece is $\leq \frac{1}{4} < \frac{k}{3k+1}$.

Case 5: Every muffin is cut into 2 or 3 pieces, and everyone gets 2 pieces. Hence there are 6k + 2 pieces.

A 2-muffin is a muffin that is cut into 2-pieces. Ditto for 3-muffin. A 2-piece is a piece that comes from a 2-muffin. Ditto for 3-piece. Let m_2 (m_3) be the number of 2-muffins (3-muffins). Note that

$$2m_2 + 3m_3 = 6k + 2 m_2 + m_3 = 3k$$

hence $m_2 = 3k - 2$ and $m_3 = 2$. Case 5a: There is a 3-muffin with pieces $x \le y \le z$ where $z \ge \frac{k+1}{3k+1}$.

$$x + y + z = 1$$

$$x + y = 1 - z \le 1 - \frac{k+1}{3k+1} = \frac{2k}{3k+1}$$

Hence

$$x \le \frac{2k}{3k+1} \times \frac{1}{2} = \frac{k}{3k+1}$$

Case 5b: There is a 2-muffin with pieces $x \le y$ where $x \le \frac{k+1}{3k+1}$.

$$y = 1 - x \ge 1 - \frac{k+1}{3k+1} = \frac{2k}{3k+1}$$

The student who gets y also gets a piece of size $\frac{3k}{3k+1} - y$. Note that

$$\frac{3k}{3k+1} - y \le \frac{3k}{3k+1} - \frac{2k}{3k+1} = \frac{k}{3k+1}$$

Case 5c: Let

1.
$$I_1 = \left(\frac{k}{3k+1}, \frac{k+1}{3k+1}\right)$$

2. $I_2 = \left(\frac{k+1}{3k+1}, \frac{2k}{3k+1}\right)$

All of the 3-pieces are in I_1 and all of the 2-pieces are in I_2 . Hence I_1 has $2m_2 = 6k - 4$ pieces and I_2 has $3m_3 = 6$ pieces.

We leave the rest of the proof as an exercise but with a hint: Look at $A_1 = I_1$

The match of I_1 , call it A_2 . A_2 will be within the 2-pieces. Hence you can look at its buddy. The buddy of A_2 , call it A_3 .

The set A_1, A_2, \ldots (stop when you are asked to buddy an interval that has 3-pieces in it, so you cannot) will eventually cover the entire interval with disjoint intervals. Each A_i has 6 pieces. The number of pieces will be a multiple of 6, where as the number of pieces is 6k + 2. This will be the contradiction.

4.2 $f(3k+1, 3k+2) = \frac{2k+1}{6k+4}$

Theorem 4.2 $f(3k+1, 3k+2) = \frac{2k+1}{6k+4}$

Proof: $f(3k+1, 3k+2) \ge \frac{2k+1}{6k+4}$ with two cases. **Case 1:** $f(6k+1, 6k+2) \ge \frac{4k+1}{12k+4}$.

1. Divide 2 muffins $\left\{\frac{4k+1}{12k+4}, \frac{4k+1}{12k+4}, \frac{4k+2}{12k+4}\right\}$.

- 2. For $i \equiv 1, 3 \le i \le 2k + 1$, divide 4 muffins $\{\frac{4k+i}{12k+4}, \frac{8k-i+4}{12k+4}\}$
- 3. For $i \equiv 0, 4 \le i \le 2k$, divide 2 muffins $\{\frac{4k+i}{12k+4}, \frac{8k-i+4}{12k+4}\}$.
- 4. Divide 1 muffin $\{\frac{6k+2}{12k+4}, \frac{6k+2}{12k+4}\}$.
- 5. For $i \equiv 1, 1 \le i \le 2k 1$, give 4 students $\{\frac{4k+i}{12k+4}, \frac{8k-i+2}{12k+4}\}$
- 6. For $i \equiv 0, 2 \le i \le 2k$, give 2 students $\{\frac{4k+i}{12k+4}, \frac{8k-i+2}{12k+4}\}$.
- 7. Give 2 students $\{\frac{6k+1}{12k+4}, \frac{6k+1}{12k+4}\}$

Case 2: $f(6k+4, 6k+5) \ge \frac{4k+3}{12k+10}$

- 1. Divide 2 muffins $\{\frac{4k+3}{12k+10}, \frac{4k+3}{12k+10}, \frac{4k+4}{12k+10}\}$.
- 2. For $i \equiv 1, 5 \le i \le 2k+3$, divide 4 muffins $\{\frac{4k+i}{12k+10}, \frac{8k+10-i}{12k+10}\}$.
- 3. For $i \equiv 0, 6 \le i \le 2k + 4$, divide 2 muffins $\{\frac{4k+i}{12k+10}, \frac{8k+10-i}{12k+10}\}$
- 4. Divide 2 muffins $\{\frac{6k+5}{12k+10}, \frac{6k+5}{12k+10}\}$.
- 5. For $i \equiv 1, 3 \le i \le 2k+3$, give 4 students $\{\frac{4k+i}{12k+10}, \frac{8k+8-i}{12k+10}\}$.
- 6. For $i \equiv 0, 4 \le i \le 2k+2$, give 2 students $\{\frac{4k+i}{12k+10}, \frac{8k+8-i}{12k+10}\}$.
- 7. Give 1 student $\{\frac{6k+4}{12k+10}, \frac{6k+4}{12k+10}\}$.

Assume, by way of contradiction, that there is a procedure for (3k+1, 3k+2) where the smallest

piece is $> \frac{2k+1}{6k+4}$. Everyone gets a $\frac{6k+2}{6k+4}$. **Case 1:** Alice gets 1 piece; its $\frac{6k+2}{6k+4}$. Its buddy is $1 - \frac{6k+2}{6k+4} = \frac{2}{6k+4} \le \frac{2k+1}{6k+4}$. **Case 2:** Alice gets ≥ 3 pieces. One of her pieces is $\le \frac{6k+2}{6k+4} \times \frac{1}{3} < \frac{2k+1}{6k+4}$.

Case 3: Some muffin is uncut. Say Alice gets that uncut muffin. Then she has $1 > \frac{6k+2}{6k+4}$ which cannot happen.

Case 4: Some muffin is cut into 4 pieces. Then some piece is $\leq \frac{1}{4} < \frac{2k+1}{6k+4}$.

Case 5: Every muffin is cut into 2 or 3 pieces and everyone gets 2 pieces. Hence there are 6k + 4pieces.

We leave the rest to the reader; however, it is similar to the proof of the upper bound in Theorem 4.1.

4.3 $f(3k+2, 3k+3) = \frac{k+1}{3k+3}$

Theorem 4.3 $f(3k+2, 3k+3) = \frac{k+1}{3k+3}$.

Proof: $f(3k+2, 3k+3) \ge \frac{k+1}{3k+3}$ with 2 cases. **Case 1:** $f(6k+2, 6k+3) \ge \frac{2k+1}{6k+3}$.

- 1. Divide 2 muffins $\{\frac{2k+1}{6k+3}, \frac{2k+1}{6k+3}, \frac{2k+1}{6k+3}\}$.
- 2. For $2 \le i \le k+1$, divide 6 muffins $\{\frac{2k+i}{6k+3}, \frac{4k-i+3}{6k+3}\}$.
- 3. For $1 \le i \le k$, give 6 students $\{\frac{2k+i}{6k+3}, \frac{4k-i+2}{6k+3}\}$.
- 4. Give 3 students $\{\frac{3k+1}{6k+3}, \frac{3k+1}{6k+3}\}$.

Case 2: $f(6k+5, 6k+6) \ge \frac{2k+2}{6k+6}$.

We leave this to the reader. It is similar in spirit to all of the prior cases.

Assume, by way of contradiction, that there is a procedure for (3k+2, 3k+3) where the smallest piece is $> \frac{k+1}{3k+3}$.

Case 1: Alice gets 1 piece; its $\frac{3k+2}{3k+3}$. It's buddy is $1 - \frac{3k+2}{3k+3} = \frac{1}{3k+3} \le \frac{k+1}{3k+3}$. **Case 2:** Alice gets ≥ 3 pieces. One of those pieces is of size $\frac{3k+2}{3k+3} \times \frac{1}{3} \le \frac{k+1}{3k+3}$.

Case 3: Some muffin is uncut. Say Alice gets that uncut muffin. Then she has $1 > \frac{6k+2}{3k+3}$ which cannot happen.

Case 4: Some muffin is cut into 4 pieces. Then some piece is $\leq \frac{1}{4} < \frac{k+1}{3k+3}$.

Case 5: Every muffin is cut into 2 or 3 pieces, and everyone gets 2 pieces. Hence there are 6k + 6pieces.

We leave the rest to the reader; however, it is similar to the proof of the upper bound in Theorem 4.1.

###