24 Muffins, 25 Students
By William Gasarch, Answering a Question Posed by James Propp

1 James Propp Asked The Following

Problem: A teacher has 24 muffins and 24 students. Great! She will give one to each student. But wait! She then thinks I want some muffin! So she will now give 24 muffins to 25 people (the 24 students and her). That sounds like a mess! Find a way to divide and distribute 25 muffins to 24 people so that its not that big a mess. More formally, try to maximize the smallest piece. Work on it before turning the page.

2 A Procedure with Smallest Piece $\frac{8}{25}$

1. Divide 6 muffins $\left\{\frac{12}{25}, \frac{13}{25}\right\}$.
2. Divide 6 muffins $\left\{\frac{11}{25}, \frac{14}{25}\right\}$.
3. Divide 6 muffins $\left\{\frac{10}{25}, \frac{15}{25}\right\}$.
4. Divide 6 muffins $\left\{\frac{8}{25}, \frac{8}{25}, \frac{9}{25}\right\}$.
5. Give 3 students $\left\{\frac{12}{25}, \frac{12}{25}\right\}$.
6. Give 6 students $\left\{\frac{11}{25}, \frac{13}{25}\right\}$.
7. Give 6 students $\left\{\frac{10}{25}, \frac{14}{25}\right\}$.
8. Give 6 students $\left\{\frac{9}{25}, \frac{15}{25}\right\}$.
9. Give 4 students $\left\{\frac{8}{25}, \frac{8}{25}, \frac{8}{25}\right\}$.

Is there a procedure with smallest piece $>\frac{8}{25}$.
Think about it before turning the page.

3 There is no Procedure with Smallest Piece $>\frac{8}{25}$

Assume there is a procedure for 24 muffins, 25 people where everyone gets $\frac{24}{25}$.
Case 1: Some muffin is cut into ≥ 4 pieces. Then some piece is $\leq \frac{1}{4}<\frac{8}{25}$.
Case 2: Some muffin is uncut. Whoever gets that muffin has $1>\frac{24}{25}$ which is impossible.
Case 3: Some student gets ≥ 3 pieces. One of the pieces must be $\leq \frac{24}{25} \times \frac{1}{3}=\frac{8}{25}$.
Case 4: Some student gets 1 piece. That piece must be of size $\frac{24}{25}$. Look at the muffin it came from. The other pieces add up to $1-\frac{24}{25}=\frac{1}{25}<\frac{8}{25}$. Hence some piece is $<\frac{8}{25}$.
Case 5: All muffins are cut into either 2 or 3 pieces and all students get 2 pieces. We will call muffins cut into 2 pieces 2 -muffins and muffins cut into 3 -pieces 3 -muffins. We will call the pieces from a 2 -muffin 2-pieces and the pieces from a 3 -muffin 3-pieces.
Case 5a: Some 3-piece is $>\frac{9}{25}$. Look at the muffin this piece came from. The other 2 pieces of it add up to $<1-\frac{9}{25}=\frac{16}{25}$. Hence some piece is $<\frac{9}{25}$.
Case 5b: Some 2 -piece is $<\frac{9}{25}$. Look at the muffin this piece came from. The other piece of it is $>1-\frac{9}{25}=\frac{16}{25}$. Look at who gets that piece. The rest of what he gets is of size $<\frac{24}{25}-\frac{16}{25}=\frac{8}{25}$.
Case 5c: Some 2-piece is $>\frac{16}{25}$. Look at the person who has that piece. The other piece they have is of size $<\frac{24}{25}-\frac{16}{25}=\frac{8}{25}$.

OKAY, we now got rid of all the easy cases. Now what?
Think about it before turning the page.

The following diagram illustrates what is going on:

$$
\begin{array}{cccc}
(& 3 \text {-pieces } &)\left(\begin{array}{ll}
\text { (}
\end{array}\right. & 2 \text {-pieces } \\
\frac{9}{25} & & \frac{9}{25} & \\
\frac{16}{25}
\end{array}
$$

Let $m_{2}\left(m_{3}\right)$ be the number of 2-muffins (3-muffins). Since (1) every student gets 2 pieces there are 50 pieces, and (2) there are 24 muffins:

$$
\begin{array}{r}
2 m_{2}+3 m_{3}=50 \\
m_{2}+m_{3}=24
\end{array}
$$

Hence $m_{2}=22$ and $m_{3}=2$, so there are 442 -pieces and 63 -pieces

$$
\begin{array}{ccc}
(63 \text {-pieces } &)(44 \text { 2-pieces } & \frac{16}{25} \\
\frac{8}{25} & & \frac{16}{25} \\
& \left(\frac{8}{25}, \frac{9}{25}\right) & \text { has } 6 \text { pieces. }
\end{array}
$$

There are 6 muffins in $\left(\frac{8}{25}, \frac{9}{25}\right)$. We have a bijection from these 6 pieces to the pieces in $\left(\frac{15}{25}, \frac{16}{25}\right)$ as follows: if $x \in\left(\frac{8}{25}, \frac{9}{25}\right)$ then let Alice have x. Alice has only two pieces. Map x to y, the other piece Alice has. Since $x+y=\frac{24}{25}$ and $x \in\left(\frac{8}{25}, \frac{9}{25}\right), y \in\left(\frac{15}{25}, \frac{16}{25}\right)$. The map is invertible. Hence

$$
\left(\frac{15}{25}, \frac{16}{25}\right) \text { has } 6 \text { pieces. }
$$

We have a bijection from the pieces in $\left(\frac{15}{25}, \frac{16}{25}\right)$ to the pieces in $\left(\frac{9}{25}, \frac{10}{25}\right)$. Let x be a piece in $\left(\frac{15}{25}, \frac{16}{25}\right)$. Look at the muffin that x came from. Since x is a 2 -piece there is only one other piece from that muffin. Call its size y. Then $x+y=1$. Since $x \in\left(\frac{15}{25}, \frac{16}{25}\right)$ and $\left.x+y=1, y \in \frac{9}{25}, \frac{10}{25}\right)$. The map is invertible. Hence

$$
\left(\frac{9}{25}, \frac{10}{25}\right) \text { has } 6 \text { pieces. }
$$

By similar methods to the two above we can show that the following open intervals have 6 pieces:

$$
\begin{gathered}
\left(\frac{14}{25}, \frac{15}{25}\right),\left(\frac{10}{25}, \frac{11}{25}\right)\left(\frac{13}{25}, \frac{14}{25}\right) \\
\left(\frac{11}{25}, \frac{12}{25}\right),\left(\frac{12}{25}, \frac{13}{25}\right)
\end{gathered}
$$

There are no pieces of size the endpoint of any of these intervals. Since these 7 intervals are all distinct and have 6 pieces in them, there are 42 pieces. This contradicts that we have 50 pieces. Hence this case cannot occur.

What about s muffins, $s+1$ students?
Think about this before turning the page.

This breaks down into three cases.

$4.1 \quad f(3 k, 3 k+1)$

Theorem $4.1 f(3 k, 3 k+1)=\frac{k}{3 k+1}$
Proof:
$f(3 k, 3 k+1) \geq \frac{k}{3 k+1}$, with two cases.
Case 1: $f(6 k, 6 k+1)=\frac{2 k}{6 k+1}$

1. Divide 6 muffins $\left\{\frac{2 k}{6 k+1}, \frac{2 k}{6 k+1}, \frac{2 k+1}{6 k+1}\right\}$.
2. For $2 \leq i \leq k$, divide 6 muffins $\left\{\frac{2 k+i}{6 k+1}, \frac{4 k-i+1}{6 k+1}\right\}$.
3. Give 4 students $\left\{\frac{2 k}{6 k+1}, \frac{2 k}{6 k+1}, \frac{2 k}{6 k+1}\right\}$.
4. For $1 \leq i \leq k-1$, give 6 students $\left\{\frac{2 k+i}{6 k+1}, \frac{4 k-i}{6 k+1}\right\}$.
5. Give 3 students $\left\{\frac{3 k}{6 k+1}, \frac{3 k}{6 k+1}\right\}$.

Case 2: $f(6 k+3,6 k+4)=\frac{2 k+1}{6 k+4}$

1. Divide 6 muffins $\left\{\frac{2 k+1}{6 k+4}, \frac{2 k+1}{6 k+4}, \frac{2 k+2}{6 k+4}\right\}$.
2. For $3 \leq i \leq k+1$, divide 6 muffins $\left\{\frac{2 k+i}{6 k+4}, \frac{4 k-i+4}{6 k+4}\right\}$.
3. Divide 3 muffins $\left\{\frac{3 k+2}{6 k+4}, \frac{3 k+2}{6 k+4}\right\}$.
4. Give 4 students $\left\{\frac{2 k+1}{6 k+4}, \frac{2 k+1}{6 k+4}, \frac{2 k+1}{6 k+4}\right\}$.
5. For $2 \leq i \leq k+1$, give 6 students $\left\{\frac{2 k+i}{6 k+4}, \frac{4 k-i+3}{6 k+4}\right\}$.

Assume, by way of contradiction, that there is a procedure for $(3 k, 3 k+1)$ where the smallest piece is $>\frac{k}{3 k+1}$.
Case 1: Alice gets 1 piece; its $\frac{3 k}{3 k+1}$. Its buddy is $1-\frac{3 k}{3 k+1}=\frac{1}{3 k+1} \leq \frac{k}{3 k+1}$.
Case 2: Alice gets ≥ 3 pieces. Then she has some piece of size $\leq \frac{3 k}{3 k+1} \times \frac{1}{3}=\frac{k}{3 k+1}$.
Case 3: Some muffin is uncut. Say Alice gets that uncut muffin. Then she has $1>\frac{6 k+2}{3 k+1}$ which cannot happen.
Case 4: Some muffin is cut into 4 pieces. Then some piece is $\leq \frac{1}{4}<\frac{k}{3 k+1}$.
Case 5: Every muffin is cut into 2 or 3 pieces, and everyone gets 2 pieces. Hence there are $6 k+2$ pieces.

A 2-muffin is a muffin that is cut into 2-pieces. Ditto for 3 -muffin. A 2-piece is a piece that comes from a 2 -muffin. Ditto for 3 -piece. Let $m_{2}\left(m_{3}\right)$ be the number of 2 -muffins (3-muffins). Note that

$$
\begin{aligned}
2 m_{2}+3 m_{3} & =6 k+2 \\
m_{2}+m_{3} & =3 k
\end{aligned}
$$

hence $m_{2}=3 k-2$ and $m_{3}=2$.
Case 5a: There is a 3 -muffin with pieces $x \leq y \leq z$ where $z \geq \frac{k+1}{3 k+1}$.

$$
\begin{gathered}
x+y+z=1 \\
x+y=1-z \leq 1-\frac{k+1}{3 k+1}=\frac{2 k}{3 k+1}
\end{gathered}
$$

Hence

$$
x \leq \frac{2 k}{3 k+1} \times \frac{1}{2}=\frac{k}{3 k+1} .
$$

Case 5b: There is a 2 -muffin with pieces $x \leq y$ where $x \leq \frac{k+1}{3 k+1}$.

$$
y=1-x \geq 1-\frac{k+1}{3 k+1}=\frac{2 k}{3 k+1}
$$

The student who gets y also gets a piece of size $\frac{3 k}{3 k+1}-y$. Note that

$$
\frac{3 k}{3 k+1}-y \leq \frac{3 k}{3 k+1}-\frac{2 k}{3 k+1}=\frac{k}{3 k+1}
$$

Case 5c: Let

1. $I_{1}=\left(\frac{k}{3 k+1}, \frac{k+1}{3 k+1}\right)$
2. $I_{2}=\left(\frac{k+1}{3 k+1}, \frac{2 k}{3 k+1}\right)$

All of the 3 -pieces are in I_{1} and all of the 2-pieces are in I_{2}. Hence I_{1} has $2 m_{2}=6 k-4$ pieces and I_{2} has $3 m_{3}=6$ pieces.

We leave the rest of the proof as an exercise but with a hint: Look at
$A_{1}=I_{1}$
The match of I_{1}, call it A_{2}. A_{2} will be within the 2 -pieces. Hence you can look at its buddy. The buddy of A_{2}, call it A_{3}.
The set A_{1}, A_{2}, \ldots (stop when you are asked to buddy an interval that has 3 -pieces in it, so you cannot) will eventually cover the entire interval with disjoint intervals. Each A_{i} has 6 pieces. The number of pieces will be a multiple of 6 , where as the number of pieces is $6 k+2$. This will be the contradiction.
$4.2 f(3 k+1,3 k+2)=\frac{2 k+1}{6 k+4}$
Theorem $4.2 f(3 k+1,3 k+2)=\frac{2 k+1}{6 k+4}$
Proof: $\quad f(3 k+1,3 k+2) \geq \frac{2 k+1}{6 k+4}$ with two cases.
Case 1: $f(6 k+1,6 k+2) \geq \frac{4 k+1}{12 k+4}$.

1. Divide 2 muffins $\left\{\frac{4 k+1}{12 k+4}, \frac{4 k+1}{12 k+4}, \frac{4 k+2}{12 k+4}\right\}$.
2. For $i \equiv 1,3 \leq i \leq 2 k+1$, divide 4 muffins $\left\{\frac{4 k+i}{12 k+4}, \frac{8 k-i+4}{12 k+4}\right\}$.
3. For $i \equiv 0,4 \leq i \leq 2 k$, divide 2 muffins $\left\{\frac{4 k+i}{12 k+4}, \frac{8 k-i+4}{12 k+4}\right\}$.
4. Divide 1 muffin $\left\{\frac{6 k+2}{12 k+4}, \frac{6 k+2}{12 k+4}\right\}$.
5. For $i \equiv 1,1 \leq i \leq 2 k-1$, give 4 students $\left\{\frac{4 k+i}{12 k+4}, \frac{8 k-i+2}{12 k+4}\right\}$.
6. For $i \equiv 0,2 \leq i \leq 2 k$, give 2 students $\left\{\frac{4 k+i}{12 k+4}, \frac{8 k-i+2}{12 k+4}\right\}$.
7. Give 2 students $\left\{\frac{6 k+1}{12 k+4}, \frac{6 k+1}{12 k+4}\right\}$.

Case 2: $f(6 k+4,6 k+5) \geq \frac{4 k+3}{12 k+10}$

1. Divide 2 muffins $\left\{\frac{4 k+3}{12 k+10}, \frac{4 k+3}{12 k+10}, \frac{4 k+4}{12 k+10}\right\}$.
2. For $i \equiv 1,5 \leq i \leq 2 k+3$, divide 4 muffins $\left\{\frac{4 k+i}{12 k+10}, \frac{8 k+10-i}{12 k+10}\right\}$.
3. For $i \equiv 0,6 \leq i \leq 2 k+4$, divide 2 muffins $\left\{\frac{4 k+i}{12 k+10}, \frac{8 k+10-i}{12 k+10}\right\}$.
4. Divide 2 muffins $\left\{\frac{6 k+5}{12 k+10}, \frac{6 k+5}{12 k+10}\right\}$.
5. For $i \equiv 1,3 \leq i \leq 2 k+3$, give 4 students $\left\{\frac{4 k+i}{12 k+10}, \frac{8 k+8-i}{12 k+10}\right\}$.
6. For $i \equiv 0,4 \leq i \leq 2 k+2$, give 2 students $\left\{\frac{4 k+i}{12 k+10}, \frac{8 k+8-i}{12 k+10}\right\}$.
7. Give 1 student $\left\{\frac{6 k+4}{12 k+10}, \frac{6 k+4}{12 k+10}\right\}$.

Assume, by way of contradiction, that there is a procedure for $(3 k+1,3 k+2)$ where the smallest piece is $>\frac{2 k+1}{6 k+4}$. Everyone gets a $\frac{6 k+2}{6 k+4}$.
Case 1: Alice gets 1 piece; its $\frac{6 k+2}{6 k+4}$. Its buddy is $1-\frac{6 k+2}{6 k+4}=\frac{2}{6 k+4} \leq \frac{2 k+1}{6 k+4}$.
Case 2: Alice gets ≥ 3 pieces. One of her pieces is $\leq \frac{6 k+2}{6 k+4} \times \frac{1}{3}<\frac{2 k+1}{6 k+4}$.
Case 3: Some muffin is uncut. Say Alice gets that uncut muffin. Then she has $1>\frac{6 k+2}{6 k+4}$ which cannot happen.
Case 4: Some muffin is cut into 4 pieces. Then some piece is $\leq \frac{1}{4}<\frac{2 k+1}{6 k+4}$.
Case 5: Every muffin is cut into 2 or 3 pieces and everyone gets 2 pieces. Hence there are $6 k+4$ pieces.

We leave the rest to the reader; however, it is similar to the proof of the upper bound in Theorem 4.1.
$4.3 \quad f(3 k+2,3 k+3)=\frac{k+1}{3 k+3}$
Theorem $4.3 f(3 k+2,3 k+3)=\frac{k+1}{3 k+3}$.
Proof: $\quad f(3 k+2,3 k+3) \geq \frac{k+1}{3 k+3}$ with 2 cases.
Case 1: $f(6 k+2,6 k+3) \geq \frac{2 k+1}{6 k+3}$.

1. Divide 2 muffins $\left\{\frac{2 k+1}{6 k+3}, \frac{2 k+1}{6 k+3}, \frac{2 k+1}{6 k+3}\right\}$.
2. For $2 \leq i \leq k+1$, divide 6 muffins $\left\{\frac{2 k+i}{6 k+3}, \frac{4 k-i+3}{6 k+3}\right\}$.
3. For $1 \leq i \leq k$, give 6 students $\left\{\frac{2 k+i}{6 k+3}, \frac{4 k-i+2}{6 k+3}\right\}$.
4. Give 3 students $\left\{\frac{3 k+1}{6 k+3}, \frac{3 k+1}{6 k+3}\right\}$.

Case 2: $f(6 k+5,6 k+6) \geq \frac{2 k+2}{6 k+6}$.
We leave this to the reader. It is similar in spirit to all of the prior cases.
Assume, by way of contradiction, that there is a procedure for $(3 k+2,3 k+3)$ where the smallest piece is $>\frac{k+1}{3 k+3}$.
Case 1: Alice gets 1 piece; its $\frac{3 k+2}{3 k+3}$. It's buddy is $1-\frac{3 k+2}{3 k+3}=\frac{1}{3 k+3} \leq \frac{k+1}{3 k+3}$.
Case 2: Alice gets ≥ 3 pieces. One of those pieces is of size $\frac{3 k+2}{3 k+3} \times \frac{1}{3} \leq \frac{k+1}{3 k+3}$.
Case 3: Some muffin is uncut. Say Alice gets that uncut muffin. Then she has $1>\frac{6 k+2}{3 k+3}$ which cannot happen.
Case 4: Some muffin is cut into 4 pieces. Then some piece is $\leq \frac{1}{4}<\frac{k+1}{3 k+3}$.
Case 5: Every muffin is cut into 2 or 3 pieces, and everyone gets 2 pieces. Hence there are $6 k+6$ pieces.

We leave the rest to the reader; however, it is similar to the proof of the upper bound in Theorem 4.1.

