Chapter 1

For fixed s, For Almost All m, f(m,s) = FC(m,s)

1.1 Introduction

Recall the Floor-Ceiling Theorem:

Theorem 1.1. Assume that $m, s \in \mathbb{N}$, s < m, and $\frac{m}{s} \notin \mathbb{N}$. Then

$$f(m,s) \le \max\left\{\frac{1}{3}, \min\left\{\frac{m}{s \left\lceil 2m/s \right\rceil}, 1 - \frac{m}{s \left\lfloor 2m/s \right\rfloor}\right\}\right\}.$$

We will show the following:

- (1) For fixed s, for large enough m, f(m, s) = FC(m, s).
- (2) For fixed s there is a nice formula for FC(m, s) that is similar to those in the book for f(m, 3), f(m, 4), and f(m, 5).

Lemma 1.2. If m > 2s then

$$\frac{1}{3} < \min\left\{\frac{m}{s\left\lceil 2m/s\right\rceil}, 1 - \frac{m}{s\left\lfloor 2m/s\right\rfloor}\right\}$$

Proof. 1) We show $\frac{1}{3} < \frac{m}{s \lceil 2m/s \rceil}$ and $\frac{1}{3} < 1 - \frac{m}{s \lfloor 2m/s \rfloor}$ 1a)

Note that:

$$\lceil 2m/s \rceil < 2m/s + 1 = \frac{2m+s}{s}$$

 $\mathbf{2}$

Book Title

$$\frac{m}{s \left\lceil 2m/s \right\rceil} > \frac{m}{2m+s}$$

Hence we need

$$\frac{m}{2m+s} > \frac{1}{3}$$
$$3m > 2m+s$$

m > s

1b) We show $\frac{1}{3} < 1 - \frac{m}{s \lfloor 2m/s \rfloor}$

$$\lfloor 2m/s \rfloor > 2m/s - 1 = ((2m - s)/s)$$

$$\frac{m}{s \lfloor 2m/s \rfloor} < \frac{m}{2m-s}$$

So need

$$\frac{m}{2m-s} < \frac{2}{3}$$
$$3m < 4m - 2s$$
$$2s < m$$

Using Lemma 1.2 and some notation that will come in handy later we restate Theorem 1.1

Notation 1.3. Let $V = \left\lceil \frac{2m}{s} \right\rceil$.

For fixed s, For Almost All m, f(m,s) = FC(m,s)

Theorem 1.4. Let m, s be relatively prime such that m > 2s. Note that $V \notin \mathbb{N}$ and hence $\lfloor \frac{2m}{s} \rfloor = V - 1$. Then

$$f(m,s) \le \min\left\{\frac{m}{sV}, 1 - \frac{m}{s(V-1)}\right\}$$

Notation 1.5. Henceforth we will assume m > 2s and hence we take:

$$FC(m,s) = \min\left\{\frac{m}{sV}, 1 - \frac{m}{s(V-1)}\right\}.$$

Note 1.6. Since our goal is to show $f(m,s) \ge FC(m,s)$, and with $m > 2s FC(m,s) > \frac{1}{3}$, our procedures will never cut a muffin into ≥ 3 pieces. We can assume every muffin will be cut into 2 pieces.

For the rest of this section:

- $s \ge 3$.
- m > 2s and m, s are relatively prime.
- $V = \left\lceil \frac{2m}{s} \right\rceil$. (Each student will get either V or V 1 pieces.)

Let $s_V(s_{V-1})$ be how many students get V(V-1) pieces. Since every muffin is cut into 2 pieces there will be 2m total pieces. Hence

$$s_V + s_{V-1} = s$$

 $Vs_V + (V-1)s_{V-1} = 2m$

Algebra shows that:

- $s_V = s + 2m Vs$
- $s_{V-1} = Vs 2m$

1.2 Case I: $s_{V-1} > s_V$

We show that if $s_{V-1} > s_V$ and m is large enough then f(m, s) = FC(m, s).

 η

Book Title

Let q, r be such that $Vs_V = qs_{V-1} + r$ with $0 \le r \le s_{V-1} - 1$. Lemma 1.7. If $m > \frac{s^2+s}{4}$ and $s_{V-1} > s_V$, then $\frac{m}{sV} \le 1 - \frac{m}{s(V-1)}$. Proof. By definition, $s_{V-1} > s_V \implies Vs - 2m > s + 2m - Vs$, which can be simplified to $\frac{2m}{s} < V - \frac{1}{2}$. Letting $\left\{\frac{2m}{s}\right\} = \frac{2m}{s} - \left\lfloor\frac{2m}{s}\right\rfloor$, $\left\{\frac{2m}{s}\right\} < \frac{1}{2}$ (this follows from the definition of V). Since $\left\{\frac{2m}{s}\right\}$ is a fraction with integer numerator and denominator s, it can be at most $\frac{s-1}{2s}$. We have

$$\begin{split} n > \frac{s^2 + s}{4} \implies \frac{2m}{s} - 1 > \frac{s - 1}{2} \\ \implies V - 1 = \left\lfloor \frac{2m}{s} \right\rfloor > \frac{s - 1}{2} \\ \implies \frac{s - 1}{2s} < \frac{V - 1}{2V - 1} \\ \implies \left\{ \frac{2m}{s} \right\} < \frac{V - 1}{2V - 1} \\ \implies \frac{m}{s} < \frac{\frac{2m}{s} - \left\{ \frac{2m}{s} \right\}}{2} + \frac{V - 1}{4V - 2} \\ \implies \frac{m}{s} < \frac{V - 1}{2} + \frac{V - 1}{4V - 2} \\ \implies \frac{m}{s} \left(\frac{1}{V} + \frac{1}{V - 1} \right) \le 1 \\ \implies \frac{m}{sV} \le 1 - \frac{m}{s(V - 1)} \end{split}$$

The third implication follows because $\frac{x}{2x+1}$ is increasing for positive x. We present a procedure that will, if m, s satisfy conditions to be named later (though they will include the premise of Lemma 1.7) yield f(m, s) = FC(m, s).

(1) Divide Vs_V muffins

$$\left\{\frac{m}{sV}, 1 - \frac{m}{sV}\right\}.$$

For fixed s, For Almost All m, f(m,s) = FC(m,s)

(Need
$$\frac{m}{sV} \le 1 - \frac{m}{s(V-1)}$$
.)

(2) Divide
$$(s_{V-1} - r)r$$
 muffins

$$\left\{\frac{1}{2} - \frac{1}{s_{V-1}}\left(\frac{1}{2} - \frac{m}{sV}\right), \frac{1}{2} + \frac{1}{s_{V-1}}\left(\frac{1}{2} - \frac{m}{sV}\right)\right\}.$$

(3) Divide

$$\frac{1}{2}(s_{V-1}(V-1-q-2r)+2r^2-r) = m - Vs_V - (s_{V-1}-r)r$$

muffins

$$\left\{\frac{1}{2},\frac{1}{2}\right\}.$$

(We will later see that this equality holds and does not need a condition on m, s.)

- (4) Give s_V students $\{V : \frac{m}{sV}\}$. (These students have $\frac{m}{s}$ muffins.)
- (5) Give $s_{V-1} r$ students

$$\left\{q: 1 - \frac{m}{sV}, r: \frac{1}{2} + \frac{1}{s_{V-1}} \left(\frac{1}{2} - \frac{m}{sV}\right), V - 1 - q - r: \frac{1}{2}\right\}.$$
(Need $V - 1 - q - r \ge 0.$)

(6) Give r students

$$\left\{q+1: 1-\frac{m}{sV}, s_{V-1}-r: \frac{1}{2}-\frac{1}{s_{V-1}}\left(\frac{1}{2}-\frac{m}{sV}\right), V-q-2-s_{V-1}+r: \frac{1}{2}\right\}.$$
(Need $V-q-2-s_{V-1}+r \ge 0.$)

Claim 1: $\frac{1}{2}(s_{V-1}(V-1-q-2r)+2r^2-r) = m-Vs_V-(s_{V-1}-r)r$.

Proof:

We give two proofs.

Proof 1: A Conceptual Approach

Consider steps 1,2,3 with step 3 dividing

$$m - Vs_V - (s_{V-1} - r)r$$

Book Title

muffins into $(\frac{1}{2}, \frac{1}{2})$. Step three creates

$$2(m - Vs_V - (s_{V-1} - r)r)$$

pieces of size $\frac{1}{2}$.

Distribute all of the pieces as in steps 4, 5, and 6, except do not distribute the $\frac{1}{2}$ pieces yet. We can compute that the students in the s_{V-1} group still need

$$s_{V-1}(V-1-q-2r)+2r^2-r$$

pieces of muffin, and nobody else needs any more pieces. After step 3, we have cut every muffin into 2 pieces. Thus, we have exactly enough pieces to give s_{V-1} students V - 1 pieces and s_V students V pieces. We have computed already that we have $2(m - Vs_V - (s_{V-1} - r)r)$ pieces left to give out, and that the students still need to receive

$$s_{V-1}(V-1-q-2r) + 2r^2 - r$$

pieces, so those values must be equal. Dividing by two yields the desired result.

Proof 2: An Algebraic Approach

It is clear by algebra that

$$(V-1)(s + (V-1)s - 2m) - 2m + (V)(2m - (V-1)s) = 0$$

By definition of s_{V-1} and s_V ,

$$\implies (V-1)s_{V-1} - 2m + Vs_V = 0$$

Since $qs_{V-1} + r = Vs_V$,

$$\implies (V-1)s_{V-1} - qs_{V-1} - r = 2m - 2Vs_V$$

$$\implies (V-1)s_{V-1} - qs_{V-1} - r - 2rs_{V-1} + 2r^2 = 2m - 2Vs_V - 2rs_{V-1} + 2r^2$$
$$\implies \frac{1}{2}(s_{V-1}(V-1 - q - 2r) + 2r^2 - r) = m - Vs_V - (s_{V-1} - r)r$$

End of Proof of Claim 1 Claim 2: Every student gets $\frac{m}{s}$.

For fixed s, For Almost All m,
$$f(m,s) = FC(m,s)$$

Proof:

Clearly the s_V students will receive $\frac{m}{s}$ muffins. Thus if we distribute the remaining muffin evenly among the s_{V-1} students, they will each receive $\frac{m}{s}$ muffin also. We may compute

$$q\left(1 - \frac{m}{sV}\right) + r\left(\frac{1}{2} + \frac{1}{s_{V-1}}\left(\frac{1}{2} - \frac{m}{sV}\right)\right) + \frac{1}{2}(V - 1 - q - r)$$
$$-\left((q+1)\left(1 - \frac{m}{sV}\right) + (s_{V-1} - r)\left(\frac{1}{2} - \frac{1}{s_{V-1}}\left(\frac{1}{2} - \frac{m}{sV}\right)\right)\right)$$
$$-\left(\frac{1}{2}(V - 2 - q - s_{V-1} + r)\right)$$
$$= \frac{m}{sV} - 1 + \left(\frac{1}{2} - \frac{m}{sV}\right) + \frac{1}{2}$$
$$= 0$$

So each student receives $\frac{m}{s}$. End of Proof of Claim 2

Lemma 1.8. If $m \ge \frac{s^3+2s^2+s}{2}$ and $s_{V-1} > s_V$, then $V-1-q-r \ge 0$ and $V-q-2-s+r \ge 0$ are satisfied.

Proof.

$$s_{V-1} - 1 \ge s_V \text{ and } V s_V = q s_{V-1} + r$$
$$\implies V(s_{V-1} - 1) \ge q s_{V-1} + r$$
$$\implies V - 1 - q \ge \frac{r + V}{s_{V-1}} - 1$$

1

```
Book Title
```

Also,

$$m \ge \frac{s^3 + 2s^2 + s}{2} \ge \frac{s^3 + s^2 + s}{2} \implies \frac{2m}{s} - 1 \ge s^2 + s$$

$$\implies V - 1 = \left\lfloor \frac{2m}{s} \right\rfloor \ge s^2 + s$$

$$\implies V - 1 \ge s_{V-1}r + s_{V-1}$$

$$\implies V - 1 \ge s_{V-1}r + s_{V-1} - r - r$$

$$\implies V - 1 \ge s_{V-1}r + s_{V-1} - r - r$$

$$\implies \frac{r + V}{s_{V-1}} - 1 \ge r$$
The two inequalities give us $\boxed{V - 1 - q - r \ge 0}$
Also,

$$m \ge \frac{s^3 + 2s^2 + s}{2} \implies \frac{2m}{s} - 1 \ge s^2 + 2s$$

$$\implies V - 1 = \left\lfloor \frac{2m}{s} \right\rfloor \ge s^2 + 2s$$

$$\implies V - 1 \ge ss_{V-1} + 2s_{V-1}$$

$$\implies V - 1 \ge ss_{V-1} - rs_{V-1} - r - 1$$

$$\implies \frac{r + V}{s_{V-1}} - 2 - s + r \ge 0$$
Thus, $\boxed{V - q - 2 - s + r \ge 0}$ so we are done.

Putting this all together we have the following theorem:

Theorem 1.9. If $s_{V-1} > s_V$ and $m \ge \frac{s^3 + 2s^2 + s}{2}$ then f(m, s) = FC(m, s).

1.3 Case II: $s_{V-1} < s_V$

We show that if $s_{V-1} < s_V$ and *m* is large enough then f(m, s) = FC(m, s).

Let q, r be such that $(V-1)s_{V-1} = qs_V + r$ with $0 \le r \le s_V - 1$.

Lemma 1.10. If $s_{V-1} < s_V$ then $\frac{m}{s_V} \ge 1 - \frac{m}{s(V-1)}$.

For fixed s, For Almost All m, f(m,s) = FC(m,s)

Proof. In fact, we will prove that $1 - \frac{m}{s(V-1)} \leq \frac{m}{sV}$ if and only if $(V-1)s_{V-1} \leq Vs_V$. Since V-1 < V, the lemma follows. Note that $((V-1)s_{V-1})\left(\frac{m}{s(V-1)}\right) + (Vs_V)\left(\frac{m}{sV}\right) = m = \frac{1}{2}((V-1)s_{V-1}) + \frac{1}{2}(Vs_V)$. Let $x = \frac{m}{s(V-1)} - \frac{1}{2}$ and let $y = \frac{1}{2} - \frac{m}{sV}$. Then we have $((V-1)s_{V-1})\left(\frac{1}{2} + x\right) + (Vs_V)\left(\frac{1}{2} - y\right) = \frac{1}{2}((V-1)s_{V-1}) + \frac{1}{2}(Vs_V)$, so $(x)((V-1)s_{V-1}) = (y)(Vs_V)$, so $\frac{x}{y} = \frac{Vs_V}{(V-1)s_{V-1}}$. The lemma follows. □

We present a procedure that will, if m, s satisfy conditions to be named later (though they will include the premise of Lemma 1.10) yield f(m, s) = FC(m, s).

- (1) Divide $s_{V-1}(V-1)$ muffins $\{\frac{m}{s(V-1)}, 1-\frac{m}{s(V-1)}\}$.
- (2) Divide $(s_V r)r$ muffins $\left\{\frac{1}{2} - \frac{1}{s_V}\left(\frac{1}{2} - \frac{m}{s(V-1)}\right), \frac{1}{2} + \frac{1}{s_V}\left(\frac{1}{2} - \frac{m}{s(V-1)}\right)\right\}.$
- (3) Divide

$$\frac{1}{2}(s_V(V-1-q-2r)+2r^2-s_V+r) = m-s_{V-1}(V-1)-(s_V-r)r$$

muffins
(1,1)

$$\left\{\frac{1}{2}, \frac{1}{2}\right\}$$

(4) Give s_{V-1} students $\{V - 1 : \frac{m}{s(V-1)}\}$. (These students have $\frac{m}{s}$ muffins.)

(5) Give
$$s_V - r$$
 students

$$\begin{cases}
q: 1 - \frac{m}{s(V-1)}, r: \frac{1}{2} + \frac{1}{s_V} \left(\frac{1}{2} - \frac{m}{s(V-1)}\right), V - q - r: \frac{1}{2} \\
(\text{Need } V - q - r \ge 0.)
\end{cases}$$

(6) Give r students

$$\left\{q+1: 1-\frac{m}{s(V-1)}, s_V-r: \frac{1}{2}-\frac{1}{s_V}\left(\frac{1}{2}-\frac{m}{s(V-1)}\right), V-1-q-s_V+r: \frac{1}{2}\right\}$$

(Need $V-1-q-s_V+r \ge 0.$)

Book Title

Claims 1 and 2 below have proofs very similar to Claims 1 and 2 in Section 1.2.

Claim 1: $\frac{1}{2}(s_V(V-1-q-2r)+2r^2-s_V+r) = m-s_{V-1}(V-1)-(s_V-r)r$ is identical. Claim 2: Every student gets $\frac{m}{s}$.

Theorem 1.11. If $m \ge \frac{s^3+s}{2}$ and $s_{V-1} < s_V$, then $V-q-r \ge 0$ and $V-1-q-s_V+r \ge 0$ are satisfied.

Proof. From Lemma 1.10, we know that $s_{V-1} < s_V$ implies Case 2. $s_{V-1} < s_V$ and $(V-1)s_{V-1} = qs_V + r$

$$\implies (V-1)(s_V-1) \ge qs_V + r$$
$$\implies V-1-q \ge \frac{V-1+r}{s_V}$$

Also,

$$m \ge \frac{s^3 + s}{2} \implies \frac{2m}{s} - 1 \ge s^2$$
$$\implies V - 1 = \left\lfloor \frac{2m}{s} \right\rfloor \ge s^2$$
$$\implies V - 1 \ge rs_V$$
$$\implies V - 1 \ge rs_V - r$$
$$\implies \frac{V - 1 \ge rs_V - r}{s_V} \ge r - 1$$

Thus, $V - q - r \ge 0$ Also,

$$m \ge \frac{s^3 + s}{2} \implies \frac{2m}{s} - 1 \ge s^2$$
$$\implies V - 1 = \left\lfloor \frac{2m}{s} \right\rfloor \ge s^2$$
$$\implies V - 1 \ge (s_V)^2$$
$$\implies V - 1 \ge (s_V)^2 - rs_V - r$$
$$\implies \frac{V - 1 + r}{s_V} \ge s_V - r$$

For fixed s, For Almost All m,
$$f(m,s) = FC(m,s)$$

The two inequalities give us $V - q - s_{V+1} + r \ge 0$ so we are done.

Theorem 1.12. If $s_{V-1} < s_V$ and $m \ge \frac{s^3+s}{2}$ then f(m,s) = FC(m,s).

1.4 $s_{V-1} = s_V$

Lemma 1.13. $s_{V-1} = s_V \implies s = 4.$

Proof. Assume $s_{V-1} = s_V$. Then s + (V-1)s - 2m = 2m - (V-1)s so:

$$s + 2(V-1)s = 4m \implies \frac{2m}{s} = V - \frac{1}{2}$$

So $\{\frac{2m}{s}\} = \frac{1}{2}$. But since 2m is even, s must be a multiple of 4. Letting s = 4k, $2m = 4k(V - \frac{1}{2}) = 2k(2V - 1)$ so m = k(2V - 1). Therefore, (m, s) is of the form (k[2V - 1], 4k), and m, s relatively prime implies that k = 1 and s = 4, which we have solved in the book.

1.5 For almost all m, f(m, s) = FC(m, s) and Has a Nice Form

Recall that we are assuming:

- $s \geq 3$.
- m > 2s and m, s are relatively prime.
- $V = \left\lceil \frac{2m}{s} \right\rceil$. (Each student will get either V or V 1 pieces.)

Combining these assumptions with Theorem's 1.9 and 1.12 we get:

Theorem 1.14. If $s \ge 3$, m, s are relatively prime, and $m \ge \frac{s^3+2s^2+s}{2}$ then f(m,s) = FC(m,s).

Book Title

For large m, FC(m, s) has a very nice form.

Theorem 1.15. Let $s \geq 3$.

(1) There exists $\{a_i\}_{i=0}^{s-1}, \{b_i\}_{i=0}^{s-1}, \{c_i\}_{i=0}^{s-1}, \{d_i\}_{i=0}^{s-1}$ such that, for all $m \ge \frac{s^2+s}{4}$ if m = ks + i with $0 \le i \le s - 1$ then

$$FC(m,s) = \frac{a_i k + b_i}{c_i k + d_i}$$

- (2) For all $m \ge \frac{s^3 + 2s^2 + s}{2}$ f(m, s) follows the formula in Part 1. (this follows from Part 1 and Theorem 1.14).
- (3) Fix s. Then f(m, s) can be computed in O(s³M(L)) time where L is the length of [m/s] and M(L) is the time to multiply two L-bit numbers. Hence f(m, s) is fixed parameter tractable. (By Part 1 f(m, s) can be computed with a mod, 2 multiplications by constants, 2 additions, 1 division, with all number of magnitude O(m/s). The Newton-Raphson division algorithm takes O(M(L)) time.

Proof. Given $m \geq \frac{s^2+s}{4}$ Lemma 1.7 and Lemma 1.10 show which of $\{\frac{m}{sV}, 1 - \frac{m}{s(V-1)}\}$ is smaller. It is easy to see whether $\{\frac{2m}{s}\} < \frac{1}{2}$, or whether equivalently $s_{V-1} > s_V$ (see proof of Lemma 1.6), for each *i*, and substituting m = ks + i gives the following result:

Case 1: $1 \le i \le \lceil \frac{s}{4} \rceil - 1$. FC $(m, s) = \frac{sk+i}{2sk+s}$. Case 2: $\lceil \frac{s}{4} \rceil \le i \le \lceil \frac{s}{2} \rceil - 1$. FC $(m, s) = \frac{sk-i}{2sk}$. Case 3: $\lceil \frac{s}{2} \rceil \le i \le \lceil \frac{3s}{4} \rceil - 1$. FC $(m, s) = \frac{sk+i}{2sk+2s}$. Case 4: $\lceil \frac{3s}{4} \rceil \le i \le s - 1$. FC $(m, s) = \frac{sk+s-i}{2sk+s}$.