Chapter 1

For fixed s, For Almost All m, $f(m, s)=\mathrm{FC}(m, s)$

1.1 Introduction

Recall the Floor-Ceiling Theorem:
Theorem 1.1. Assume that $m, s \in \mathbb{N}, s<m$, and $\frac{m}{s} \notin \mathbb{N}$. Then

$$
f(m, s) \leq \max \left\{\frac{1}{3}, \min \left\{\frac{m}{s\lceil 2 m / s\rceil}, 1-\frac{m}{s\lfloor 2 m / s\rfloor}\right\}\right\} .
$$

We will show the following:
(1) For fixed s, for large enough $m, f(m, s)=\mathrm{FC}(m, s)$.
(2) For fixed s there is a nice formula for $\mathrm{FC}(m, s)$ that is similar to those in the book for $f(m, 3), f(m, 4)$, and $f(m, 5)$.

Lemma 1.2. If $m>2 s$ then

$$
\frac{1}{3}<\min \left\{\frac{m}{s\lceil 2 m / s\rceil}, 1-\frac{m}{s\lfloor 2 m / s\rfloor}\right\}
$$

Proof. 1) We show $\frac{1}{3}<\frac{m}{s\lceil 2 m / s\rceil}$ and $\frac{1}{3}<1-\frac{m}{s\lfloor 2 m / s\rfloor}$ 1a)

Note that:

$$
\lceil 2 m / s\rceil<2 m / s+1=\frac{2 m+s}{s}
$$

$$
\frac{m}{s\lceil 2 m / s\rceil}>\frac{m}{2 m+s}
$$

Hence we need

$$
\begin{gathered}
\frac{m}{2 m+s}>\frac{1}{3} \\
3 m>2 m+s \\
m>s
\end{gathered}
$$

1b) We show $\frac{1}{3}<1-\frac{m}{s[2 m / s\rfloor}$

$$
\begin{gathered}
\lfloor 2 m / s\rfloor>2 m / s-1=((2 m-s) / s) \\
\frac{m}{s\lfloor 2 m / s\rfloor}<\frac{m}{2 m-s}
\end{gathered}
$$

So need

$$
\begin{gathered}
\frac{m}{2 m-s}<\frac{2}{3} \\
3 m<4 m-2 s \\
2 s<m
\end{gathered}
$$

Using Lemma 1.2 and some notation that will come in handy later we restate Theorem 1.1

Notation 1.3. Let $V=\left\lceil\frac{2 m}{s}\right\rceil$.

Theorem 1.4. Let m, s be relatively prime such that $m>2 s$. Note that $V \notin \mathbb{N}$ and hence $\left\lfloor\frac{2 m}{s}\right\rfloor=V-1$. Then

$$
f(m, s) \leq \min \left\{\frac{m}{s V}, 1-\frac{m}{s(V-1)}\right\}
$$

Notation 1.5. Henceforth we will assume $m>2 s$ and hence we take:

$$
\mathrm{FC}(m, s)=\min \left\{\frac{m}{s V}, 1-\frac{m}{s(V-1)}\right\} .
$$

Note 1.6. Since our goal is to show $f(m, s) \geq \mathrm{FC}(m, s)$, and with $m>2 s \mathrm{FC}(m, s)>\frac{1}{3}$, our procedures will never cut a muffin into ≥ 3 pieces. We can assume every muffin will be cut into 2 pieces.

For the rest of this section:

- $s \geq 3$.
- $m>2 s$ and m, s are relatively prime.
- $V=\left\lceil\frac{2 m}{s}\right\rceil$. (Each student will get either V or $V-1$ pieces.)

Let $s_{V}\left(s_{V-1}\right)$ be how many students get $V(V-1)$ pieces. Since every muffin is cut into 2 pieces there will be $2 m$ total pieces. Hence

$$
\begin{aligned}
s_{V}+s_{V-1} & =s \\
V s_{V}+(V-1) s_{V-1} & =2 m
\end{aligned}
$$

Algebra shows that:

- $s_{V}=s+2 m-V s$
- $s_{V-1}=V s-2 m$

1.2 Case I: $s_{V-1}>s_{V}$

We show that if $s_{V-1}>s_{V}$ and m is large enough then $f(m, s)=$ $\mathrm{FC}(m, s)$.

Let q, r be such that $V s_{V}=q s_{V-1}+r$ with $0 \leq r \leq s_{V-1}-1$.
Lemma 1.7. If $m>\frac{s^{2}+s}{4}$ and $s_{V-1}>s_{V}$, then $\frac{m}{s V} \leq 1-\frac{m}{s(V-1)}$.
Proof. By definition, $s_{V-1}>s_{V} \Longrightarrow V s-2 m>s+2 m-V s$, which can be simplified to $\frac{2 m}{s}<V-\frac{1}{2}$. Letting $\left\{\frac{2 m}{s}\right\}=\frac{2 m}{s}-$ $\left\lfloor\frac{2 m}{s}\right\rfloor,\left\{\frac{2 m}{s}\right\}<\frac{1}{2}$ (this follows from the definition of V). Since $\left\{\frac{2 m}{s}\right\}$ is a fraction with integer numerator and denominator s, it can be at most $\frac{s-1}{2 s}$. We have

$$
\begin{aligned}
m>\frac{s^{2}+s}{4} & \Longrightarrow \frac{2 m}{s}-1>\frac{s-1}{2} \\
& \Longrightarrow V-1=\left|\frac{2 m}{s}\right|>\frac{s-1}{2} \\
& \Longrightarrow \frac{s-1}{2 s}<\frac{V-1}{2 V-1} \\
& \Longrightarrow\left\{\frac{2 m}{s}\right\}<\frac{V-1}{2 V-1} \\
& \Longrightarrow \frac{m}{s}<\frac{\frac{2 m}{s}-\left\{\frac{2 m}{s}\right\}}{2}+\frac{V-1}{4 V-2} \\
& \Longrightarrow \frac{m}{s}<\frac{V-1}{2}+\frac{V-1}{4 V-2} \\
& \Longrightarrow \frac{m}{s}\left(\frac{1}{V}+\frac{1}{V-1}\right) \leq 1 \\
& \Longrightarrow \frac{m}{s V} \leq 1-\frac{m}{s(V-1)}
\end{aligned}
$$

The third implication follows because $\frac{x}{2 x+1}$ is increasing for positive x. We present a procedure that will, if m, s satisfy conditions to be named later (though they will include the premise of Lemma 1.7) yield $f(m, s)=\mathrm{FC}(m, s)$.
(1) Divide $V s_{V}$ muffins

$$
\left\{\frac{m}{s V}, 1-\frac{m}{s V}\right\} .
$$

(Need $\frac{m}{s V} \leq 1-\frac{m}{s(V-1)}$.)
(2) Divide $\left(s_{V-1}-r\right) r$ muffins

$$
\left\{\frac{1}{2}-\frac{1}{s_{V-1}}\left(\frac{1}{2}-\frac{m}{s V}\right), \frac{1}{2}+\frac{1}{s_{V-1}}\left(\frac{1}{2}-\frac{m}{s V}\right)\right\} .
$$

(3) Divide
$\frac{1}{2}\left(s_{V-1}(V-1-q-2 r)+2 r^{2}-r\right)=m-V s_{V}-\left(s_{V-1}-r\right) r$ muffins

$$
\left\{\frac{1}{2}, \frac{1}{2}\right\}
$$

(We will later see that this equality holds and does not need a condition on m, s.)
(4) Give s_{V} students $\left\{V: \frac{m}{s V}\right\}$. (These students have $\frac{m}{s}$ muffins.)
(5) Give $s_{V-1}-r$ students

$$
\left\{q: 1-\frac{m}{s V}, r: \frac{1}{2}+\frac{1}{s_{V-1}}\left(\frac{1}{2}-\frac{m}{s V}\right), V-1-q-r: \frac{1}{2}\right\} .
$$

(Need $V-1-q-r \geq 0$.)
(6) Give r students
$\left\{q+1: 1-\frac{m}{s V}, s_{V-1}-r: \frac{1}{2}-\frac{1}{s_{V-1}}\left(\frac{1}{2}-\frac{m}{s V}\right), V-q-2-s_{V-1}+r: \frac{1}{2}\right\}$.
(Need $\left.V-q-2-s_{V-1}+r \geq 0.\right)$
Claim 1: $\frac{1}{2}\left(s_{V-1}(V-1-q-2 r)+2 r^{2}-r\right)=m-V s_{V}-\left(s_{V-1}-\right.$
$r) r$.
Proof:
We give two proofs.
Proof 1: A Conceptual Approach
Consider steps $1,2,3$ with step 3 dividing

$$
m-V s_{V}-\left(s_{V-1}-r\right) r
$$

muffins into $\left(\frac{1}{2}, \frac{1}{2}\right)$. Step three creates

$$
2\left(m-V s_{V}-\left(s_{V-1}-r\right) r\right)
$$

pieces of size $\frac{1}{2}$.
Distribute all of the pieces as in steps 4, 5, and 6, except do not distribute the $\frac{1}{2}$ pieces yet. We can compute that the students in the s_{V-1} group still need

$$
s_{V-1}(V-1-q-2 r)+2 r^{2}-r
$$

pieces of muffin, and nobody else needs any more pieces. After step 3, we have cut every muffin into 2 pieces. Thus, we have exactly enough pieces to give s_{V-1} students $V-1$ pieces and s_{V} students V pieces. We have computed already that we have $2\left(m-V s_{V}-\left(s_{V-1}-r\right) r\right)$ pieces left to give out, and that the students still need to receive

$$
s_{V-1}(V-1-q-2 r)+2 r^{2}-r
$$

pieces, so those values must be equal. Dividing by two yields the desired result.

Proof 2: An Algebraic Approach

It is clear by algebra that

$$
(V-1)(s+(V-1) s-2 m)-2 m+(V)(2 m-(V-1) s)=0
$$

By definition of s_{V-1} and s_{V},

$$
\Longrightarrow(V-1) s_{V-1}-2 m+V s_{V}=0
$$

Since $q s_{V-1}+r=V s_{V}$,

$$
\Longrightarrow(V-1) s_{V-1}-q s_{V-1}-r=2 m-2 V s_{V}
$$

$$
\Longrightarrow(V-1) s_{V-1}-q s_{V-1}-r-2 r s_{V-1}+2 r^{2}=2 m-2 V s_{V}-2 r s_{V-1}+2 r^{2}
$$

$$
\Longrightarrow \frac{1}{2}\left(s_{V-1}(V-1-q-2 r)+2 r^{2}-r\right)=m-V s_{V}-\left(s_{V-1}-r\right) r
$$

End of Proof of Claim 1
Claim 2: Every student gets $\frac{m}{s}$.

Proof:

Clearly the s_{V} students will receive $\frac{m}{s}$ muffins. Thus if we distribute the remaining muffin evenly among the s_{V-1} students, they will each receive $\frac{m}{s}$ muffin also. We may compute

$$
\begin{aligned}
& q\left(1-\frac{m}{s V}\right)+r\left(\frac{1}{2}+\frac{1}{s_{V-1}}\left(\frac{1}{2}-\frac{m}{s V}\right)\right)+\frac{1}{2}(V-1-q-r) \\
& -\left((q+1)\left(1-\frac{m}{s V}\right)+\left(s_{V-1}-r\right)\left(\frac{1}{2}-\frac{1}{s_{V-1}}\left(\frac{1}{2}-\frac{m}{s V}\right)\right)\right) \\
& -\left(\frac{1}{2}\left(V-2-q-s_{V-1}+r\right)\right) \\
& =\frac{m}{s V}-1+\left(\frac{1}{2}-\frac{m}{s V}\right)+\frac{1}{2} \\
& =0
\end{aligned}
$$

So each student receives $\frac{m}{s}$.
End of Proof of Claim 2

Lemma 1.8. If $m \geq \frac{s^{3}+2 s^{2}+s}{2}$ and $s_{V-1}>s_{V}$, then $V-1-q-$ $r \geq 0$ and $V-q-2-s+r \geq 0$ are satisfied.

Proof.

$$
\begin{aligned}
& s_{V-1}-1 \geq s_{V} \text { and } V s_{V}=q s_{V-1}+r \\
& \Longrightarrow V\left(s_{V-1}-1\right) \geq q s_{V-1}+r \\
& \Longrightarrow V-1-q \geq \frac{r+V}{s_{V-1}}-1
\end{aligned}
$$

Also,
$m \geq \frac{s^{3}+2 s^{2}+s}{2} \geq \frac{s^{3}+s^{2}+s}{2} \Longrightarrow \frac{2 m}{s}-1 \geq s^{2}+s$
$\Longrightarrow V-1=\left\lfloor\frac{2 m}{s}\right\rfloor \geq s^{2}+s$
$\Longrightarrow V-1 \geq s_{V-1} r+s_{V-1}$
$\Longrightarrow V-1 \geq s_{V-1} r+s_{V-1}-r-1$
$\Longrightarrow \frac{r+V}{s_{V-1}}-1 \geq r$
The two inequalities give us $V-1-q-r \geq 0$
Also,
$m \geq \frac{s^{3}+2 s^{2}+s}{2} \Longrightarrow \frac{2 m}{s}-1 \geq s^{2}+2 s$
$\Longrightarrow V-1=\left\lfloor\frac{2 m}{s}\right\rfloor \geq s^{2}+2 s$
$\Longrightarrow V-1 \geq s s_{V-1}+2 s_{V-1}$
$\Longrightarrow V-1 \geq s s_{V-1}+2 s_{V-1}-r s_{V-1}-r-1$
$\Longrightarrow \frac{r+V}{s_{V-1}}-2-s+r \geq 0$
Thus, $V-q-2-s+r \geq 0$ so we are done.
Putting this all together we have the following theorem:
Theorem 1.9. If $s_{V-1}>s_{V}$ and $m \geq \frac{s^{3}+2 s^{2}+s}{2}$ then $f(m, s)=$ $\mathrm{FC}(m, s)$.

1.3 Case II: $s_{V-1}<s_{V}$

We show that if $s_{V-1}<s_{V}$ and m is large enough then $f(m, s)=$ $\mathrm{FC}(m, s)$.

Let q, r be such that $(V-1) s_{V-1}=q s_{V}+r$ with $0 \leq r \leq$ $s_{V}-1$.
Lemma 1.10. If $s_{V-1}<s_{V}$ then $\frac{m}{s V} \geq 1-\frac{m}{s(V-1)}$.

Proof. In fact, we will prove that $1-\frac{m}{s(V-1)} \leq \frac{m}{s V}$ if and only if $(V-1) s_{V-1} \leq V s_{V}$. Since $V-1<V$, the lemma follows.
Note that $\left((V-1) s_{V-1}\right)\left(\frac{m}{s(V-1)}\right)+\left(V s_{V}\right)\left(\frac{m}{s V}\right)=m=\frac{1}{2}((V-$ 1) $\left.s_{V-1}\right)+\frac{1}{2}\left(V s_{V}\right)$. Let $x=\frac{m}{s(V-1)}-\frac{1}{2}$ and let $y=\frac{1}{2}-\frac{m}{s V}$. Then we have $\left((V-1) s_{V-1}\right)\left(\frac{1}{2}+x\right)+\left(V s_{V}\right)\left(\frac{1}{2}-y\right)=\frac{1}{2}((V-$ 1) $\left.s_{V-1}\right)+\frac{1}{2}\left(V s_{V}\right)$, so $(x)\left((V-1) s_{V-1}\right)=(y)\left(V s_{V}\right)$, so $\frac{x}{y}=$ $\frac{V s_{V}}{(V-1) s_{V-1}}$. The lemma follows.

We present a procedure that will, if m, s satisfy conditions to be named later (though they will include the premise of Lemma 1.10) yield $f(m, s)=\mathrm{FC}(m, s)$.
(1) Divide $s_{V-1}(V-1)$ muffins $\left\{\frac{m}{s(V-1)}, 1-\frac{m}{s(V-1)}\right\}$.
(2) Divide $\left(s_{V}-r\right) r$ muffins

$$
\left\{\frac{1}{2}-\frac{1}{s_{V}}\left(\frac{1}{2}-\frac{m}{s(V-1)}\right), \frac{1}{2}+\frac{1}{s_{V}}\left(\frac{1}{2}-\frac{m}{s(V-1)}\right)\right\} .
$$

(3) Divide
$\frac{1}{2}\left(s_{V}(V-1-q-2 r)+2 r^{2}-s_{V}+r\right)=m-s_{V-1}(V-1)-\left(s_{V}-r\right) r$ muffins

$$
\left\{\frac{1}{2}, \frac{1}{2}\right\} .
$$

(4) Give s_{V-1} students $\left\{V-1: \frac{m}{s(V-1)}\right\}$. (These students have $\frac{m}{s}$ muffins.)
(5) Give $s_{V}-r$ students
$\left\{q: 1-\frac{m}{s(V-1)}, r: \frac{1}{2}+\frac{1}{s_{V}}\left(\frac{1}{2}-\frac{m}{s(V-1)}\right), V-q-r: \frac{1}{2}\right\}$
(Need $V-q-r \geq 0$.)
(6) Give r students
$\left\{q+1: 1-\frac{m}{s(V-1)}, s_{V}-r: \frac{1}{2}-\frac{1}{s_{V}}\left(\frac{1}{2}-\frac{m}{s(V-1)}\right), V-1-q-s_{V}+r: \frac{1}{2}\right\}$.
(Need $V-1-q-s_{V}+r \geq 0$.)

Claims 1 and 2 below have proofs very similar to Claims 1 and 2 in Section 1.2 ,
Claim 1: $\frac{1}{2}\left(s_{V}(V-1-q-2 r)+2 r^{2}-s_{V}+r\right)=m-s_{V-1}(V-$ 1) $-\left(s_{V}-r\right) r$ is identical.

Claim 2: Every student gets $\frac{m}{s}$.
Theorem 1.11. If $m \geq \frac{s^{3}+s}{2}$ and $s_{V-1}<s_{V}$, then $V-q-r \geq 0$ and $V-1-q-s_{V}+r \geq 0$ are satisfied.

Proof. From Lemma 1.10, we know that $s_{V-1}<s_{V}$ implies
Case 2. $s_{V-1}<s_{V}$ and $(V-1) s_{V-1}=q s_{V}+r$

$$
\begin{aligned}
& \Longrightarrow(V-1)\left(s_{V}-1\right) \geq q s_{V}+r \\
& \Longrightarrow V-1-q \geq \frac{V-1+r}{s_{V}}
\end{aligned}
$$

Also,

$$
\begin{aligned}
m \geq \frac{s^{3}+s}{2} & \Longrightarrow \frac{2 m}{s}-1 \geq s^{2} \\
& \Longrightarrow V-1=\left\lfloor\frac{2 m}{s}\right\rfloor \geq s^{2} \\
& \Longrightarrow V-1 \geq r s_{V} \\
& \Longrightarrow V-1 \geq r s_{V}-s_{V}-r \\
& \Longrightarrow \frac{V-1+r}{s_{V}} \geq r-1
\end{aligned}
$$

Thus, $V-q-r \geq 0$
Also,

$$
\begin{aligned}
m \geq \frac{s^{3}+s}{2} & \Longrightarrow \frac{2 m}{s}-1 \geq s^{2} \\
& \Longrightarrow V-1=\left\lfloor\frac{2 m}{s}\right\rfloor \geq s^{2} \\
& \Longrightarrow V-1 \geq\left(s_{V}\right)^{2} \\
& \Longrightarrow V-1 \geq\left(s_{V}\right)^{2}-r s_{V}-r \\
& \Longrightarrow \frac{V-1+r}{s_{V}} \geq s_{V}-r
\end{aligned}
$$

The two inequalities give us $V-q-s_{V+1}+r \geq 0$ so we are done.

Theorem 1.12. If $s_{V-1}<s_{V}$ and $m \geq \frac{s^{3}+s}{2}$ then $f(m, s)=$ $\mathrm{FC}(m, s)$.

$1.4 \quad s_{V-1}=s_{V}$

Lemma 1.13. $s_{V-1}=s_{V} \Longrightarrow s=4$.
Proof. Assume $s_{V-1}=s_{V}$. Then $s+(V-1) s-2 m=2 m-$ $(V-1) s$ so:

$$
s+2(V-1) s=4 m \Longrightarrow \frac{2 m}{s}=V-\frac{1}{2}
$$

So $\left\{\frac{2 m}{s}\right\}=\frac{1}{2}$. But since $2 m$ is even, s must be a multiple of 4. Letting $s=4 k, 2 m=4 k\left(V-\frac{1}{2}\right)=2 k(2 V-1)$ so $m=$ $k(2 V-1)$. Therefore, (m, s) is of the form $(k[2 V-1], 4 k)$, and m, s relatively prime implies that $k=1$ and $s=4$, which we have solved in the book.

1.5 For almost all $m, f(m, s)=\mathrm{FC}(m, s)$ and Has a Nice Form

Recall that we are assuming:

- $s \geq 3$.
- $m>2 s$ and m, s are relatively prime.
- $V=\left\lceil\frac{2 m}{s}\right\rceil$. (Each student will get either V or $V-1$ pieces.)

Combining these assumptions with Theorem's 1.9 and 1.12 we get:

Theorem 1.14. If $s \geq 3, m, s$ are relatively prime, and $m \geq$ $\frac{s^{3}+2 s^{2}+s}{2}$ then $f(m, s)=\mathrm{FC}(m, s)$.

For large $m, \mathrm{FC}(m, s)$ has a very nice form.
Theorem 1.15. Let $s \geq 3$.
(1) There exists $\left\{a_{i}\right\}_{i=0}^{s-1},\left\{b_{i}\right\}_{i=0}^{s-1},\left\{c_{i}\right\}_{i=0}^{s-1},\left\{d_{i}\right\}_{i=0}^{s-1}$ such that, for all $m \geq \frac{s^{2}+s}{4}$ if $m=k s+i$ with $0 \leq i \leq s-1$ then

$$
\mathrm{FC}(m, s)=\frac{a_{i} k+b_{i}}{c_{i} k+d_{i}}
$$

(2) For all $m \geq \frac{s^{3}+2 s^{2}+s}{2} f(m, s)$ follows the formula in Part 1. (this follows from Part 1 and Theorem 1.14).
(3) Fix s. Then $f(m, s)$ can be computed in $O\left(s^{3} M(L)\right)$ time where L is the length of $\lfloor\mathrm{m} / \mathrm{s}\rfloor$ and $M(L)$ is the time to multiply two L-bit numbers. Hence $f(m, s)$ is fixed parameter tractable. (By Part $1 f(m, s)$ can be computed with a mod, 2 multiplications by constants, 2 additions, 1 division, with all number of magnitude $O(\mathrm{~m} / \mathrm{s})$. The Newton-Raphson division algorithm takes $O(M(L))$ time.
Proof. Given $m \geq \frac{s^{2}+s}{4}$ Lemma 1.7 and Lemma 1.10 show which of $\left\{\frac{m}{s V}, 1-\frac{m}{s(V-1)}\right\}$ is smaller. It is easy to see whether $\left\{\frac{2 m}{s}\right\}<\frac{1}{2}$, or whether equivalently $s_{V-1}>s_{V}$ (see proof of Lemma 1.6), for each i, and substituting $m=k s+i$ gives the following result:
Case 1: $1 \leq i \leq\left\lceil\frac{s}{4}\right\rceil-1 . \mathrm{FC}(m, s)=\frac{s k+i}{2 s k+s}$.
Case 2: $\left\lceil\frac{s}{4}\right\rceil \leq i \leq\left\lceil\frac{s}{2}\right\rceil-1 . \mathrm{FC}(m, s)=\frac{s k-i}{2 s k}$.
Case 3: $\left\lceil\frac{s}{2}\right\rceil \leq i \leq\left\lceil\frac{3 s}{4}\right\rceil-1 . \mathrm{FC}(m, s)=\frac{s s k+i}{2 s k+2 s}$.
Case 4: $\left\lceil\frac{3 s}{4}\right\rceil \leq i \leq s-1 . \mathrm{FC}(m, s)=\frac{s k+s-1}{2 s k+s}$.

