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To B. L. van der Waerden on his eightieth birthday

1. For every set X and every cardinal number r we put

Let A = {0, 1, 2, ...} and re{\, 2, ...}. A partition, or colouring, of [A]r is a function
/ : [A]r -*• F, where Fis a set. Let L £ {0, 1, ..., r — 1}. The partition/is called L-canonical
on B if B £ A and, for

{x0, xlt ..., xr_i} < , {y0, ..., ^r_J < c B,

we have/{x0,..., xr_J =f{y0, ..., y^} if and only if xk = ^ for XeL.
In [1] the following result was proved:

THEOREM 1. Given any partition f: [A]r -> F, there is an infinite set B ^ A and a
set L £ {0, ..., r— 1} such that fis L-canonical on B.

The object of this note is (i) to give a new proof of Theorem 1 which is in some
ways simpler than the proof in [1], (ii) to discuss connections between canonicity and
some other properties of a partition. If Xe [A]r we sometimes write

and similarly for letters other than X.

2. We begin by showing that for every L there exists a L-canonical partition
of [AY.

THEOREM 2. Given any set L £ {0, ..., r— 1}, there exists a L-canonical partition
of [AY.

Proof. We define/by putting, for every Pe[A\r,

fP = {Qe[A]r: Qx = Pk for XeL}.

We now show that / i s L-canonical. We shall apply the definition of/repeatedly
without referring to this fact.

(i) Let fP =fQ. Then QefQ =fP; Qk = Pk for XeL.
(ii) Let Px = Qx for XeL, for some P, Qe[A]r. Consider any set RefP. We have,

Since R is arbitrary, we have/P £/(?. By symmetry,/2 ^fP, and Theorem 2 follows.
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3. Proof of Theorem 1. For {x0, ..., x2r_1}< c A put

g{x0,..., x2r_x) = {(Oo, ..., a ^ ) : ^ < ... < a,.! < 2r;
OV < ... < <xzr_x < 2r;f{xao, ..., x a r _ J =f{xar, ..., x a 2 r _ , } } .

The range of the function g is finite. Hence, by Ramsey's theorem [2], there is an infinite
set B' e A such that g is constant on [B']2r. Let 1? = {bo,bx,bt, ...}K and
5 = {bQ> b2, b4,...}. Let L be the set of all numbers p0 < r such that, whenever

yp = y'p for p * p0 and ^ 0 # ^ 0 , then/{^0, ..., yr_x} # / { ^ , . . . , J V . J . To complete the
proof of Theorem 1 we show that / i s .L-canonical on B.

(a) Let {y0,..., yr.x)<, {y'o,..., X-J< c B and

(1) ^A = ^ for AeL.

We have to show that f{y0, ...,yr_x} =f{y'o, ...,y'r-i). To this end we define an
operator T thus: Let

{̂ o» •••» A - J < , 0>o, ••-, yr-i)<
 c A

If yp = yp for p < r then put

Now let yp ± y'p for at least one p. Let p0 = min {/?: yp # ^ } . Then, by our assumption
(1), /?o££. Put zp = ^p and z; = y'p for/? ^ ^0> and zpo = z;o = min{^0,ypo}. It follows
from p0 $ L and the definition of L that

/{z0, . . . ,2r_1}=
f{Zoi...iz'r_l}=f{/Ot...ty'r_1}.

W e p u t

^ ( { ^ —,yr-i}> iy'o, - J H } ) = ({^o. •••> Z r - J 5 ( 4 - , 4 - i ) ) -

W e i t e ra te T r t imes a n d o b t a i n

Tr({y0, •••, J>r-l}> {^0. •••> J>r-l}) = ({Wo» •••» *V r _ 1 } < 5 {»V0, ..., HV.J ) .

Then/{;;0, ...,>'r_1} =/{w0, ..., wr_J =/{^;, ...,X-iK as required,
(b) Let{x0, ...,xr_1}<,{x;, . . . ,x;_1}< cB;poeL;

(2) ^o < ^o-

To complete the proof of Theorem 1, we now proceed to deduce that
f{xQ,..., xr_J *f{x'o,..., jf;_J. Let us assume that/{x0,..., x^} =f{x'o, ..., x'^}.
We have to deduce a contradiction.

For P, F, Q, Q' e [B]r let (P, P') = (Q, Q') mean that there is an order preserving
bijection (j>:P[) F -> Q\J Q' such that (f>P = Q and ^>F = Q'.

LEMMA: Let P, F, Q, Q'e[BY;fP =fF; (/>, F) = (g, Q'). ThenfQ =fQ'.

Proof of the Lemma. There is a set £e[2?]2r~|PUP'1 such that x < y whenever
xeP[)F[)QvQ' and.ye£. Then

P[)F[)E, Q[)Q'\jEe[B]2r

and hence g(P U F U E) = g(Q U Q' U £) . It follows from the definition of g that
fQ =fQ> a n d the Lemma is proved.
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To continue the proof of Theorem 1 put, for /e{l , 2, 3, . . .} ,

B(t) = {bo,bt,b2t,...}.

Let r < se{2, 3,...}. There are sets Xo, Xxe[B(rs)]r such that

Then there is a set X2 e [5(rs~1)]r such that [Zo, JTJ = (Zl5 X2). There is a set
X3e[B(r8-2)]r such that (A ,̂ Jira) s (X,, X,), and so on until there is a set Xse[B(r)]r

such that (A"s_2, *,_!) = (JIT,.!, JT,). We have A ^ , . . . , A^-1}< for a ^ s. Then, by
(2) and the definition of =, we have

In view of s > r there is a0 with 1 ^ <r0 < s such that

(3) * » * * g for /7<r.

There is a number TT such that *g» = ^27t. Put Zff0 = {Z«o, ..., Z^x}<, where Zg0 = J^o

for p # p0 and Zgg = b2n+1. Since poeLwe have/X^ #/Zff0.
On the other hand, we have, by choice of a0 and the definition of Zao, that

\XQ, X-j = (Af f 0_1 , Jcff0); ( A 0 , JLff0) = \XQ, Zao).

We haveyX0 =fX1 = ... =JXao. Hence, by (3) and the Lemma, JXao =fX0 =fZao,
which yields the required contradiction. This proves Theorem 1.

4. We now consider connections between canonicity and some other properties
of partitions. Let A and B denote infinite subsets of {0, 1, ...}. Consider a partition
/ : [A U B]r -> F. We require some definitions.

(/, A) is called invariant if, whenever P, Q, F, Q' e [A]r and (P; Q) = (P', (?'), then
//> =fQ if and only if/P' =fQ'.

(/, >4) is called isomorphic to (/, 5) [in symbols (/, /4) ̂  (/, B)] if, whenever
P, ^ G [yl]r and <f>: A -> 5 is an order preserving bijection, then/P =/(? if and only if

(/, y4) is called stationary if, whenever B £ A then (/, 5) = (/, A).

THEOREM 3. The following three conditions are equivalent:

(i) (/, A) is invariant,
(ii) (/, /I) w stationary,

(iii) (/, /i) w L-canonical for some L.

Proof of (\)=>{n). (/, .4) is invariant. Let B ^ A. There is an order preserving
bijection <f>:A^>B. Let P, Qe W . Then (P, 0 = (^P, 0 0 . By invariance we have
fP =fQ if and only iff</>P =f</>Q, and (ii) holds.

Proof of (ii) => (iii). (f, A) is stationary. By theorem 1 there is an infinite set B c A
such that (/, B) is L-canonical for some L. Then, by (ii), (/, E) ̂  (/, /4) which implies
that (/, A) is L-canonical, and (iii) holds.
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Proof of (in) => (i). (f, A) is L-canonical for some L. Let P, Q, F, Q'e[A]r and
(P, Q) s (F, Q'), Then we have

i/P =fQ)o{Pk = Qx for XeL)o(Fl = Q'k for XeL)o(fF =fQ'\

and (i) holds. This proves Theorem 3.

The author would like to thank the referee.
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