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Abstract

Explicit construction of Ramsey graphs or graphs with no large clique or independent set, has remained
a challenging open problem for a long time. While Erdős’ probabilistic argument shows the existence of
graphs on

���
vertices with no clique or independent set of size

���
, the best explicit constructions achieve a

far weaker bound. Constructing Ramsey graphs is closely related to polynomial representations of Boolean
functions; a low degree representation for the OR function can be used to explicitly construct Ramsey graphs
[17].

We generalize the above relation by proposing a new framework. We propose a new definition of OR rep-
resentations: a pair of polynomials represent the OR function if the union of their zero sets contains all points
in ���
	��� � except the origin. We give a simple construction of a Ramsey graph using such polynomials. Fur-
thermore, we show that all the known algebraic constructions, ones to due to Frankl-Wilson [12], Grolmusz
[17] and Alon [2] are captured by this framework; they can all be derived from various OR representations
of degree ����� ���

based on symmetric polynomials.
Thus the barrier to better Ramsey constructions through such algebraic methods appears to be the con-

struction of lower degree representations. Using new algebraic techniques, we show that better bounds cannot
be obtained using symmetric polynomials.

�
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1 Introduction

This paper studies a problem at the intersection of combinatorics and computational complexity.
The combinatorial problem is that of explicitly constructing Ramsey graphs. Ramsey’s theorem shows

that every graph on ��� vertices has either a clique or an independent set of size ����� . In his seminal 1947 paper
introducing the probabilistic method, Erdős showed that there exist graphs with � � vertices where �	��
��������
����
����������������� [11]. He posed the question of constructing such Ramsey graphs explicitly and offered a prize of �"!�! for it. This is a central open problem in explicit combinatorial constructions; the best known constructions
to date are far from the probabilistic bound. The first breakthrough on this problem was due to Frankl and Wilson
in 1981 [12]; their construction gives �#��
���������
��$��%'& �)(+*�,-� . For over two decades, there was no improvement
on this bound despite much effort. However there were other constructions known due to Grolmusz and Alon
[17, 2] that achieved exactly the same bound, and also extended to the problem of constructing multi-color
Ramsey graphs, which is to . -color the edges of the complete graph so that there is not large monochromatic
clique. At first sight, the construction of Grolmusz is quite different from that of Alon and Frankl-Wilson, yet it
gives exactly the same bound. All three constructions use algebraic techniques, though in different ways. Very
recently in 2006, the Frankl-Wilson bound was beaten by a new construction due to Barak, Rao, Shaltiel and
Wigderson [8] which relies on machinery from pseudorandomness.

The complexity problem is to prove tight degree bounds for polynomials computing Boolean functions over/10
. A central open problem in circuit complexity is to show lower bounds for ACC, the class of circuits

with And, Or and Mod gates. As a first step towards this goal, Barrington, Beigel and Rudich (BBR) studied
polynomial representations of Boolean functions modulo composites [9]. They found surprisingly that such
representations are much more powerful over

/32
than over

/54
when 6 is prime. They showed that the OR

function can be represented by symmetric polynomials of degree 78�:9 �;� over
/<2

. In contrast an =��>��� lower
bound is known for the degree of such polynomials over

/14
. BBR proved a matching =�� 9 �;� lower bound for

symmetric polynomials representing the OR function over
/?2

, and asked if better representations exist using
asymmetric polynomials. Tardos and Barrington proved a lower bound of =�A@CB�D5��� [22]. This is the best lower
bound known for any function, despite much effort [16, 23, 15, 3, 10]. The main open question in this area is
whether asymmetric polynomials can give lower degree representations of symmetric functions than symmetric
polynomials.

A surprising connection between these two problems was discovered by Grolmusz, who used the OR poly-
nomials of BBR to construct Ramsey graphs [17, 18]. As an intermediate step, he constructed a set system of
size �FEHGJI�K on � elements where all set sizes are ! mod 6 but all intersections are non-zero mod L , settling an
open problem in extremal set theory. He constructed Ramsey graphs from this set system and showed that lower
degree OR representations mod 6 would give better Ramsey graphs.

1.1 Our Results

Our work generalizes and extends the connection between OR polynomials and Ramsey graphs. We propose
a new definition of an OR representation: a pair of polynomials represent the OR function on � variables if
the union of their zero sets contains all points in M�!N�O�'P�� except the origin. We give a simple construction of a
Ramsey graph from such representations. This viewpoint based on OR polynomials unifies the constructions of
Frankl-Wilson, Alon and Grolmusz: they can all be derived from various OR representations of degree 7Q�R9 ���
based on symmetric polynomials. Thus the barrier to better Ramsey constructions through algebraic techniques
appears to be the construction of lower degree representations. On one hand, since the best lower bound for any
of these representations is only =��A@CB�D	��� there is the possibility of better constructions. On the other hand, we
show that further improvements cannot come from representations using symmetric polynomials; we prove an
=�� 9 �;� lower bound for such representations.
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1.1.1 Ramsey Graphs from OR Representations:

Let � � ��� I �������;��� � � denote a vector of variables and ��� ��	 I �������;��	 � � denote a Boolean vector. The
following definition of Boolean function representation modulo 
 was introduced by BBR [9].

Definition 1 Polynomial �Q��� �� /�0�� ��� weakly represents the function � mod 
 if for � ���� M�!N�O�'P � , if
� ���������� ��� � then �Q�������� �Q��� ��� B���
 .

We propose the following definition of an OR representation.

Definition 2 Polynomials � ��� �� / 4 � ��� and !8��� �" /$#%� ��� represent the OR function on � variables if

�Q�A!N������� �:! � � �$�8B&�36 and !Q�A!N���������:! � � �$� B��('
and for �) M�!N�O�'P �+* �A!N���������:! �

�Q����� � !,� B��?6 or !8����� � !-� B��.'
where 6;�/' are primes. The degree of the representation is 0(�1�.243 ���65"DF��� ���/�65"D �7!��� .

One can combine the two polynomials using the Chinese Remainder Theorem (CRT) to get a single polyno-
mial that weakly represents OR mod 68' . However the specific choice of values output by the weak representation
is important for our application. The construction of BBR gives a degree 78� 9 ��� OR representation using poly-
nomials over

/$9
and

/�:
. A simple representation of degree 7Q� 9 ��� with �;� 68'=< � using polynomials over/ 4

and
/$#

can be derived from Alon’s construction. This highlights another difference about our definition and
weak representations: for Ramsey constructions, we are not restricted to any fixed moduli 6 and ' , we are free
to choose them in any way, (possibly as functions of � ) so that the degree is minimized as a function of � .

We give a simple Ramsey construction based on OR representations: the vertex set is M�!N�O�'P � and we add
edge ��� ��� � to 
 if ��>?� is in the zero set of �Q��� � , where �@>?� denotes the symmetric difference of � and � .
In order to bound �#��
�� and ����
� , we use the notion of representations of graphs over spaces of polynomials
introduced by Alon [2]. The idea is to assign polynomials to the vertices of 
 so that the polynomials assigned
to vertices in a clique are linearly independent.

Definition 3 Let 
8�7A �/B � be a graph and C be a set polynomials in � variables over field D . A polynomial
representation of 
 over D is an assignment of a polynomial �FE ��� �"@C and a point �GE=HD � to I��A where:

��� For each I@�A , �JE ���KE����� ! .
� � If ��L���IN��HB then �JE ���KMN��� ! .

It is easy to see that ����
����;0ONP
 �QCQ� which is the dimension of the D vector space spanned by polynomials
in C . We use the polynomial �Q��� � to construct a representation of 
 over

/<4
and !Q��� � to construct a represen-

tation of 
 over
/$#

. The Frankl-Wilson construction can also be viewed in this framework, where we represent

 over

/ 4
and 
 over R . However, quoting Alon ‘It seems that this construction does not extend to the case of

more than 2 colors’ [2]. We propose a definition of OR representation which leads to such an extension.

Definition 4 Polynomials � ��� �� / 4�S4� ��� and !Q��� �" / 4UT � �V� represent the OR function on � variables if

�Q�A!N������� �:! ���� !=� B&�36XW and !8�A!N���������:! �,�� !,�8B&�?6XY
and for �) M�!N�O�'P�� * �A!N���������:! �

� ����� � !,� B��?68W or !8����� � !=� B&�36XY
where 6 is prime and Z �\[�] � .The degree of the representation is 0��1�V243 ���65"DF��� ���/�65"D �7!��� .
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To differentiate the representations of Definitions 2 and 4, we refer to them as prime representations and prime-
power representations respectively. The Frankl-Wilson construction can be used to show that for � � 6

9
< � ,

there exist OR representations of degree 78� 9 ��� . The interesting feature of this representation is that it does not
use the Chinese Remainder Theorem (CRT). The construction of Ramsey graphs from prime-power representa-
tions stays the same; the difference is in the analysis. For this, we introduce polynomial representations of 

over

/ 4 S
.

Definition 5 Let 
 �7A �/B � be a graph and C a set of polynomials in � variables over
/

. A polynomial represen-
tation of 
 over

/54�S
is an assignment of a polynomial � E-��� ��@C and a point �GE= / � to I  A s.t.:

��� For each I@�A , �JE ���KE����� !-� B��?6 W .
� � If ��L���IN��HB then �JE ���KMN� � !-� B��36 W .

We show that the polynomials assigned to a clique are linearly independent over R so ����
�� is bounded
by the dimension of the R -vector space spanned by C . Like polynomial representations of graphs over R ,
representations over

/ 4�S
assign linearly independent polynomials over R to vertices in a clique. A crucial

difference is that representations over R tensor, those over
/ 4 S

do not. This means that if we have sets of
polynomials C I and C 9 that represent 
 I and 
 9 over R , then C I � C 9 represents 
 I �H


9
over R for an

appropriate definition of graph product (see [2] for definitions and proofs). This is important for the original
application of these representations, which was to bound the Shannon capacity of the graph. However, this
property implies that one cannot get low dimensional representations of both 
 and 
 over R , since 
 � 

always has a large clique. But since

/ 4 S
has zero divisors, we lose this tensor product property, so we can

simultaneously get low dimensional representations of 
 and 
 over
/<4 S

.
We could restate this argument from the viewpoint of OR representations. We cannot get low degree prime

representations by taking 6@�1' since then �Q��� ��!Q��� �� /	4 � ��� is ! at every point in M�!N�O�'P � except the origin,
and such a polynomial requires degree � . But this argument does not extend to prime-power representations
because of zero-divisors.

All the OR representations above achieve a bound of 7Q� 9 �;� using symmetric polynomials. Plugging them

into the simple construction above gives �#��
���������
�� � % & � (+*�, �I as opposed to the best bound of % & �)(+*�,-� .
However, by massaging the polynomials and working with set intersections as opposed to distances, we can get
exactly the constructions of Frankl-Wilson, Grolmusz and Alon. Here are some advantages of our unified view
of these constructions:

� It places the constructions of Alon and Frankl-Wilson in the context of OR polynomials, and raises the
possibility of getting better constructions from low degree representations. The notions of prime-power
representations of graphs and Boolean functions arising from the Frankl-Wilson construction are of inde-
pendent interest.

� It relates the construction of Grolmusz to those of Frankl-Wilson and Alon, which look very different at
first. Our Ramsey graph construction from the OR polynomial of BBR is simple and direct. In fact it
takes some work to show that we get the same graph as Grolmusz. Viewing this construction in terms of
set intersections, we derive improved bounds for set systems with restricted intersections modulo prime
powers.

� In this view, all the constructions naturally extend to multicolor Ramsey graphs. To construct . -color
Ramsey graphs, we define OR representations involving . polynomials over

/-#�� �������;� /�#�� where ' I ����� �/'��
are prime powers. Taking powers of the same prime 6 extends the Frankl-Wilson construction.
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1.1.2 Lower Bounds:

A natural question is to show tight degree bounds for OR representations. A better upper bound would lead to
better Ramsey graphs. Lower bounds are interesting from the complexity-theory viewpoint of understanding
polynomial representations over composites. For the OR function, we believe Definition 2 is the right one to
use, since it seems to eliminate dependence of the degree on the modulus 68' . Also it places the problem in the
context of understanding the zero-sets of low degree polynomials over

/�4
. This question has been studied in

various other contexts including low degree testing, zero-testing and derandomization (see Section 6). Prime-
power representations are interesting since they do not rely on the CRT. Interestingly, the =�A@CB�D5��� lower bound
[22] also does not use the CRT, so it applies to prime-power representations too. It is possible that proving
bounds for prime-power representations is easier than the prime case.

Degree lower bounds extend a line of work in combinatorics aimed at understanding why explicit Ramsey
graphs are hard to construct, by showing limitations to various natural techniques. A conjecture of Babai states
that one cannot construct good Ramsey graphs based on the sign of a set of real polynomials. There has been
considerable progress towards proving this conjecture by Alon et al. [1, 4]. Degree lower bounds are weaker
since they say the known technique for bounding �#��
�� and ����
�� does not yield good bounds, as opposed to
showing either �	��
�� or ����
�� is large. But on the other hand, there are no good Ramsey constructions using
signs of real polynomials, while OR representations are the best technique known for this problem. Further, the
Ramsey graph constructions based on symmetric polynomials result in graphs where the vertex set is M�!N�O�'P � and
where edges are added between vertices based on the Hamming distance between them. Such graphs possess a
high degree of symmetry which is unlikely in a random graph. Our degree lower bound suggests that perhaps
such Ramsey graph constructions cannot give better parameters (see Section 6).

We show a degree =�� 9 ��� lower bound for OR representations by symmetric polynomials. Thus better
representations if they exist must use asymmetric polynomials. A lower bound of =���9 �;� is known for symmetric
polynomials that weakly represent OR mod L [9]. Bhatnagar et al. [10] introduced the use of tools from
communication complexity for proving degree lower bounds for symmetric polynomials. One might guess that
similar arguments should work even for our definition of OR representations, but this is incorrect. In fact those
arguments will not suffice even for prime representations. The precise bound they prove, and which holds for
all weak representations is �65"D)��� � �U�65"DF�7!��] ���N� 68' � . This is good enough when 6;�/' are small, but if ��� 68'
as in Alon’s construction, this gives a bound of � . One cannot hope for a stronger result since the polynomial��� � � of degree � weakly represents OR on ��� 68' variables over

/#4U#
. Our definition restricts the values output

by the weak representation, making it possible to show bounds independent of the modulus 
 . But exploiting
this difference calls for new techniques, beyond the periodicity based arguments used for weak representations
[9, 10].

1.1.3 Our Techniques:

While lower bounds for the prime and prime-power cases are very different, they have similar high-level struc-
ture: an algebraic part where we show that if the zero-set of the polynomial has certain structure, then the
polynomial must have high degree, and a combinatorial part where we argue that there is no good partition of
hypercube, that any partition results in one of the polynomials having high degree.

For the prime-power case, we translate the problem to one about univariate polynomials modulo
/ 4 S

. How-
ever over

/ 4 S
it is no longer true that a degree 0 polynomial can have only 0 roots (take � W for instance); so

we need new tools for degree lower bounds. Building on an algorithm for interpolation over
/ 4 S

by the author
[14], we define a greedy sequence, which roughly is a sequence that is distributed uniformly among various
congruence classes modulo powers of 6 . We show that the longest greedy sequence in the zero-set lower-bounds
the degree of a polynomial. Then a combinatorial argument shows that in any partition of integers

� ��������� ��� �
into � and � , one of them contains a long greedy sequence.

5



For the prime case, we view a symmetric polynomial � acting on a 0-1 vector � as a polynomial �� acting
on in the digits of the base 6 expansion of the weight � ."����� following Bhatnagar et al.[10]. There it was shown
that �� can be used to bound �65"D)��� � within a factor of 6 ; we introduce a notion of weighted degree of �� that
exactly captures the degree of � . The combinatorial part of the proof uses a number theoretic lemma which
seems of independent interest. It says that if 6;�/' are primes, ����6X' and � � / �4

and � � / �#
are subsets so

that every number in
� ���������;��� � lies in � mod 6 or in � mod ' , then one of � or � has to be large.

We present our Ramsey constructions in Section 2. The lower bounds for prime-power representations are
in Section 3. In Section 5, we give an alternate construction based on set intersections that results in exactly
the constructions of Frankl-Wilson, Grolmusz and Alon. We also give improved bounds for set systems with
restricted intersections modulo prime powers. We conclude with some open problems in Section 6.

A preliminary version of this paper appears in CCC’06 [13].

1.2 Preliminaries

Let �?� �A!N�������;�:! � . Given �  M�!N�O�'P�� let � . ����� denote its Hamming weight. Given � ���  M�!N�O�'P'� , ��>?�
denotes symmetric difference, ����� denotes the bitwise AND and 0 ��� ���5� denotes Hamming distance. Let� ��	��
 � � � � � 
 for N	�;0 . Let �� ��� � � � � � � ����� � ��� denote the � ��� elementary symmetric polynomial. Every
multilinear symmetric polynomial can be written as a linear combination of these polynomials. We will use
Lucas’ Theorem about binomial coefficients modulo 6 which states:

Fact 1 Let � ��� ���	� � � 6 � � !8� � � � 6
�V� � ���	� � � 6 � � ! ��� � � 6

Then � � ��� ��� � � � �� � � � B��36 �
For 	  /

, let the valuation of 	 denoted I 4 � 	 � be the highest power of 6 that divides 	 . Let I 4 � !4� �"! . We
have the ultrametric inequality I 4 � 	 �$# � ];�&%�' ��I 4 � 	 ����I 4 � # �>� and I 4 � 	(# �X� I 4 � 	 �N�?I 46� # � .

We say a Ramsey graph 
8�7A �/B � is explicit if there is a deterministic )FB @�* �,+ -&++� time algorithm to compute
the adjacency matrix and very explicit if there is a deterministic )FB @�* �A@CB�D.+ -/++� algorithm that computes the
adjacency relation. We briefly describe the known explicit constructions of Ramsey graphs in chronological
order.
< Frankl-Wilson [12]: Take 6 prime and 
 ��6

:
. The vertex set consists of all subsets of

� 
@� of size 6
9
< � .

Two vertices � and 0 are adjacent if +1�2�304+��� <��$� B��36 . One can bound the size of �	��
�� and ����
�� using
well-known results from extremal set theory [12, 5].
< Grolmusz [17, 18] : The main step is to construct a set system C on

� � � of size � EHGJI�K so that +1�5+ � !-�8B&�QL
but +1�6��07+G�� !,�8B&�QL . The vertices of the graph 
 are sets of C and � �80 are adjacent if +1�9��04+ is odd. One
can bound �#��
�� and ����
�� using results from extremal set theory.
< Alon [2]: Take 6��1' to be nearly equal primes and 
 ��6

:
. The vertex set consists of all subsets of

� 
@� of
size 68' < � . Two vertices � and 0 are adjacent if +1�&�:07+8�� <�$� B��36 . To bound �#��
�� and ����
�� , we construct
representations of 
 over

/ 4
and 
 over

/ #
.

< Barak [7]: Barak gives a product based construction (discovered independently by Pudlak and Rodl) where
we first explicitly search for a good Ramsey graph in a small sample space and then use the Abbot product to
get a larger graph. This gives + A�+X� � � and �#��
���������
�� � �<; & �F(+*�, � for any =7> ! . A similar product based
construction, but with worse parameters is given by Naor [20].
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< Barak-Rao-Shaltiel-Wigderson [8]: In a recent breakthrough, Barak et al. give a construction that achieves
�#��
���������
���� �'��� � ��� . In fact they solve a more general problem, which is to construct bipartite Ramsey graphs.
Their construction is rather intricate and makes significant use of machinery developed for extracting random-
ness from weak random sources.

The first three constructions above are very explicit, the last two are merely explicit.

2 OR Polynomials and Ramsey graphs

In this section, we prove the correctness of the construction described in the introduction. While the graphs
obtained are not quite optimal, the construction is simple and best explains the close connections between OR
representations and Ramsey graphs.

If graph 
 has a representation over a field D as in Definition 3, it is easy to show that ����
�� ��0ON7
 �QC �
where 0ONP
 �QCQ� is the dimension of the D -vector space spanned by C [2]. For representations over

/ 4 S
, we show

that ����
��?� 0ON7
 �QC � where 0 N7
 �QC � is the dimension of the R -vector space spanned by C . The proof is by a
valuation based argument similar to one used by Babai et al. [6].

Lemma 2 If 
 �7A5�/B � has a polynomial representation over
/ 4 S

, then ����
��1�;0 N7
 �QC � .
PROOF: Let � � A be a clique. We claim that the polynomials � E ��� � for I��� are linearly independent over
R . Assume for contradiction that �E��
	 � E � E ��� � � !
By clearing denominators, w.m.a that

� EH /
, and by removing common factors w.m.a that 6 does not divide� M for some L��� . Rearranging terms, we have� MO�JM ��� � � < �E��	�� E�� M

� E � E ��� �

Substituting ��� � M , � M � M ��� M � � < �E��	�� E�� M � E � E ��� M �
Since � M �������,�� !,�8B&�?6 W and I 46� � M � � ! , we have I 4 � � MO�JM ���KM-�P� � Z < � . But I@�� and I ���L , then ��I ��LF�
is an edge, hence � E ��� M � � !-� B��36 W . So the RHS is divisible by 6 W , which is a contradiction. �

Construction 1 Graph 
8�7A �/B � from OR polynomials.
< Let AQ��
��F� M�!N�O�'PO� .
< If �Q��� >?� � � ! , add an edge ��� ��� � .

Theorem 3 Given a degree 0 OR representation, graph 
 has � � vertices and �#��
���������
���� � ��	��
 .
PROOF: Assume that we have a prime representation. We give a polynomial representation of 
 over

/�4
.

For each vertex �  M�!N�O�'P � , let

� � � � ��< � � if � � � �
� � if � � � !
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Define ���F��� I ����������� � � to be the polynomial obtained by multi-linearizing �Q� � I �������;� � � � (i.e setting � �� �
� � ). Note that for �  M�!N�O�'P�� ,

��� � � � �1� � �@> � ���
Hence

��� � � �F�1�Q� � �-�� !,� B��?6 �
On the other hand, from our construction, if � � � � �� B then �Q� �H> � �,�� !-� B��36 . Hence

��� � � � ���Q� �H> � ���� !=� B&�36 �
Thus we get a polynomial representation of 
 over

/14
. Since the ��� ��� � s are all multilinear polynomials

of degree at most 0 in � variables, they lie in a vector space of dimension
� ��	� 
 . This shows that ����
��� � ��	��
 .

Similarly, if � � � � � is not an edge then �Q� � > � � �� !,� B&��6 , hence !8� �)> � � � !-� B��(' . Using this we
construct a representation of 
 over

/ #
and bound �#��
�� .

For prime-power representations of OR, we can represent 
 and 
 over
/<4�S

by the same argument. �
One can construct explicit Ramsey graphs by plugging in various OR representations described below; all of

which give 0�� 7Q� 9 �;� using symmetric polynomials. This gives a bound of % & � (+*�, �I for some constant % I on
the clique size. In fact the constructions below are very explicit, since given vertices � ���� M�!N�O�'P � , the color
of the edge ��� ��� � can be computed in time 78�>��� .
��� Alon [2]: Let 6 � ' be primes and let ��� 68'�<�� . Define �Q��� �" /	4O� ��� and !Q��� �� /�#�� ��� as

� ��� � � �$<
� � � ���

4��
I

!Q��� � � �$<
� � � ���

#	�
I (1)

For � �� � , since � � ��� � ."������� 68',< � , by the CRT � . �������� !-� B��36 or � ."�����(�� !,�8B&�.' . By Fermat’s
Theorem, in the former case �Q����� � !,� B��?6 , in the latter !Q����� � !,� B��.' . Taking 6��/' nearly equal gives
degree 0�� ���	� ���������:9 � .

� � BBR [9]: Let ��� � �
� < � . Define �Q��� �" /$9 � ��� and !8��� �" /$: � �V� as

�Q��� � � � ��� � � � �  < �
�  <�� � �

!8��� � � � ��� � � � 
� < �
 � <�� � (2)

Since
�����	� � 
 � �  ����� for �  M�!N�O�'P � , �Q��� � and !8��� � in fact have coefficients from

/ 9
and

/$:
. For 	;�� � ,

� � ��� � ."������ � �
� < � . Lucas’ theorem implies that if � ."�����V�� !-�8B&�8�  then � ����� � !-� B��8� , and if� ."�������� !=� B&� 
 � then !Q����� � !-� B�� 
 . We can choose �)��� s.t. 0 � ���#���'� 9 � for any � > ! [19].

Both representations above are prime representations, we now construct prime power representations. For
ease of exposition, we restate Definition 4 of prime-power representations in terms of rational polynomials; we
omit the simple proof of equivalence.

Definition 6 Polynomials � ��� ��� !Q��� ��HR � ��� represent the OR function on M�!N�O�'P�� if

�Q�A!N������� �:! � � �$� B��36 and !Q�A!N���������:! � � �$� B��36
and for �) M�!N�O�'P �+* �A!N���������:! �

�Q����� � !,� B&��6 or !8����� � !-� B��?6
for a prime 6 . The degree of the representation is 0��1�.243 ���65"D)��� ���/� 5"DF�7! ��� .
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Note that in general � ����� could be rational. When we say �Q����� � ! �-� � B&��6 , we mean � ����� is an integer
satisfying the condition. However, if � �� � and !8����� � !-� B��36 , then �Q����� need not be an integer and vice
versa.
 � Frankl-Wilson [12]: Take 6 prime and ��� 6

9
< � . Define �Q��� ��� !8��� �$ R � ��� as

�Q��� � �
4��
I�� � I
� � � � � <����

!8��� � �
4��
I�� � I �
� � � �
6 <�� � (3)

For a non-zero vector �? M�!N�O�'P � we have � � � . �����$� 6
9
< � . If � . �����=�� �V� B���� then �Q����� � !=� B&��6 .

If � . ����� � !,� B��?6 , then ��
	 � G���K4 � 6�<�� hence !Q����� � !,� B��?6 . The degree is 0 � 6�< � � 9 � . � We construct representations with the prime fixed and � varying, analogous to [9]. Let ��� �
9  < � . Define

�Q��� ��� !8��� �$ R � ��� as

�Q��� � � � ��� � � � �  < �
�  <�� �

!8��� � � � � ��� �9 � ���  <��
�  < � � (4)

The proof of correctness is through Lucas’ theorem. If � . ����� �� !-� B��8�  then � ����� � ! . If � �� ! but� ."����� � !=� B&� �  then !Q����� � ! .

Plugging any of these polynomials into construction 1 gives the following type of graph : Add ��� ��� � to B
if 0)��� ��� �,�� !,� B�� � where � is either a prime or a prime power close to 9 � .

For constructing . -color Ramsey graphs, we define OR representations with . polynomials � I ��� ��������� �/� � ��� �
such that the union of their zero sets if M�!N�O�'P � * M �FP . We can extend constructions in Equations 1, 2 by taking .
distinct primes. To extend the construction of Equation 3, let ��� 6 � <�� . For ������� . define

� �O��� � �
4��
I�� � I �
��� � �
6 � < N � (5)

We can similarly extend Equation 4, we omit the details.

3 Lower Bounds for Prime-power Representations

In this section we prove a lower bound for prime-power representations by symmetric polynomials.

Theorem 4 Let �Q��� �" / 4 S4� ��� and !Q��� �" / 4UT � ��� be symmetric polynomials that represent the OR function
on � variables. Then ���65"DF��� � � ��� � ���65"D)�7! � � ���"] � 9 .

Since a symmetric polynomial on 0-1 inputs is essentially a polynomial in the weight of the input, we can
restate Theorem 4 in terms of integer polynomials. The formal proof is easy and is omitted. While we could
also work with polynomials in

/	4�S4� � � , the presence of zero divisors would make it messier to use valuations.

Proposition 5 Let � ��� ��� !8��� �$ /-� � � be univariate polynomials such that for 	� M ������������� P ,
I 4 � �Q�A! �P� �;I 4 � � ��	F�P� or I 46� !Q�A! �P� � I 4 � !8��	 �P� (6)

Then ���65"D)��� � � ��� � ���65"DF�7!� � ���$] � 9 .
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The next two Lemmas (6 and 7) develop tools to show degree bounds for such polynomials.

Definition 7 A sequence � � ��� I ��������� � � � of integers is called a greedy sequence if for all � ,� ��� � I 4 � � � < � � � � � ��� � I 4 � � �< � � � for � �� �
Let us define

�
I ��� �"� � and

� � ��� �"��� ��� � ��� < � � � for � > � . The definition of a greedy sequence can be
restated as I 4 � � � ��� � �P� � I 4 � � � ��� ��P� for �)�� � . Given any set � , we can order it elements greedily as follows
to get a greedy sequence: we choose � I arbitrarily; having chosen ��� I �������;� � � � I � we choose � � 2� to be the
element that minimizes I 4 � � � ��� � �P� .
Lemma 6 Let � � ��� I ������� � � � � be a greedy sequence. Let �Q��� �� /-� � � be such that

I 4 � �Q��� � �P� � I 46� �Q��� � �P� for N �;0 <��
Then �65"D ��� �"] 0+<�� .
PROOF: The proof is by induction on 0 . We will show the converse, namely that if �65"DF��� �1�;0+< � .

I 4 � � ��� � �P� ] �&% '� �	� � I I 46� �Q��� � �P�
The base case 0V� � is trivial, in this case � is constant so it is clear that I 4 � � ��� 9 �P�J� I 4 � � ��� I �P� . Assume

the property holds for greedy sequences of length 0@< � . Given a polynomial �Q��� � of degree 0 < � , since� � � I ��� � is a monic polynomial of degree 0 < � , we write �Q��� � � !Q��� � ��% � � I � � � I ��� � , where !8��� � is a
polynomial of degree 0+< 
 . Substituting � � � � ,

�Q��� � ��� !Q��� � � � % � � I � � � I ��� � �
hence by the ultrametric inequality

I 4 � �Q��� � �P�H] �&%�' M I 4 � !8��� � �P����I 4 � % � � I � � � I ��� � �P��P (7)

To lower bound I 4 � !Q��� � �P� , note that the sequence ��� I ������� � � � � 9 � � � � of length 0 < � obtained by deleting
� � � I is also greedy. Hence applying the inductive hypothesis to !Q��� � � , we get

I 4 � !8��� � �P� ] �&%�'� �	� � 9 I 4 � !Q��� � �P�V� �&%�'� �	� � 9 I 4 � �Q��� � �P� (8)

The last equality follows since
� � � I ��� � � � ! for N8� 0 < � , hence !8��� � ��� �Q��� � � . We now lower bound

I 4 � % � � I � � � I ��� � �P� . Using the greedy property of the sequence ��� I �������;� � � � ,
I 4 � % � � I � � � I ��� � �P� ] I 4 � % � � I � � � I ��� � � I �P�
% � � I � � � I ��� � � I � � �Q��� � � I � < !8��� � � I �

Hence we have
I 4 � % � � I � � � I ��� � � I �P�H] �&%�')M I 4 � �Q��� � � I �P����I 4 � !Q��� � � I �P��P (9)

Since ��� I ������� � � � � I � is a greedy sequence and ! has degree 0+< 
 , we get by induction that

I 4 � !8��� � � I �P� ] �&%�'� �	� � 9 I 4 � !Q��� � �P�V� �&%�'� �	� � 9 I 4 � �Q��� � �P� (10)
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Combining Equations 7, 8, 9, 10 gives the desired result. �
An example of a greedy sequence is when ��� I ������� � � � � are consecutive integers. Thus while a degree 0

polynomial over
/ 4�S

can have several zeroes, the lemma implies that it can have at most 0 consecutive zeroes.
The intuition for this Lemma is from an algorithm for polynomial interpolation over

/�4�S
by the author [14].

Given a set � , and values � ��	F� for 	  � of some polynomial in
/ 4 S4� � � , the algorithm will output the smallest

degree polynomial � ��� � that fits the data, provided it sees the elements of � in the above greedy order. If the
polynomial is ! on every element but the last, the algorithm is forced to output a polynomial of degree 0+< � .

Next we define the notion of a greedy array which we use to construct long greedy sequences. Given a
. -dimensional matrix � of dimension 0 ��� ����� � 0 � � I , we use � ��� � to denote � � N � ������� ��N � � I � .
Definition 8 A . -dimensional matrix of distinct integers � is called a greedy array if

I 46� � ��� � <�� � � �&�X�1�&%�')MUZ�+ N W �� � W P (11)

We define an ordering of the array indices, which is essentially the reverse lexicographic (revlex) ordering.

Definition 9 Given a . -dimensional integer vectors
�

and
�
, let � �1�.243)MUZ + N W �� � W P . Then

� � �
if N�� � � � .

Note that for a greedy array, the valuation should equal the smallest index where
�

and
�

differ. However to
order elements, we look at the largest index where they differ. For example, consider the 6 � ����� � 6 array where
� � N � �������;��N � � I �J� N � � N I 6=�����/N � � I 6 �

�
I and ! � N � � 6@< � . Thus the array contains N� M�!N������� �A6 � < �'P with

numbers indexed by their base-p expansion. Since I 4 � N < � � depends on the smallest digit where N and � , this is a
greedy array. The ordering defined above is the usual ordering of integers, it depends on the largest digit where
the expansions differ.

Lemma 7 Ordering elements of a greedy array gives a greedy sequence.

PROOF: We want to show that for � �� �

� � ��� I 4 � � � � �8<�� ��� � � � � � ��� I 4 � � � �X�8<�� ��� �&� (12)

For ! �;Z � . <�� , we define the set� W � M � + N W � � W � N W
	 I � � W
	 I �������;� N � � I � ��� � I P
The indices N � ����������N W � I are unrestricted. Note that the � W s are disjoint and they partition the set M � + � � � P . We
show that for every Z , and for �;�� �

�� ��� S I 4 � � � � �8<�� ��� � � � �� ��� S I 4 � � � �X�X<�� ��� �&� (13)

Equation 12 will follow by summing over all Z . Hence consider a fixed Z . Note that if
� "� W then ! �

I 4 � � � � �8<�� ��� � ��� Z . Accordingly we partition � W into  �A! ��������� ��5��Z�� as follows: for !8� ���;Z+< � ,
 � ��� � M � 6� W + N � � � � �������;��N � � I � � � � I ��N��-�� � � P

� M � 6� W + I 4 � � � � �8<�� ��� ���X� �'P
 ��Z�� � M � 6� W + N � � � � �������;��N W � I � � W � I P

11



For
�   ��Z�� we have I 4 � � � � �G< � ��� �X�F� Z since for all

�  � W , N W � � W so N W �� � W . Now given � �� �
let us

define the sets � �A! ���������;� � ��Z�� as follows. For ! �����;Z�< � ,
� � �O� � M � 6� W + N � � � � ������� ��N�� � I ����� � I ��N �=�� ��� P

� M � 6� W + I 4 � � � �X�8<�� ��� � � � � P� ��ZN� � M � 6� W + N � � � � ������� ��N W � I � � W � I P
Unlike for  ��ZN� , for N  � ��Z�� it could be that N W � � W , so we have I 4 � � � �X�J< � ��� �X��] Z . Since the indices
N � ����������N W � I are unrestricted in � W , we have +  � ��� +O� + � � ��� + for !8�����;Z . We now prove Equation 13.�� ��� S I 4 � � � � �X<�� ��� �&� � �� � � � W �� � � G � K I 4 � � � � �8<�� ��� ���

� �� � � � W � � +  � ��� +�� ��� S I 4 � � � �X�X<�� ��� �&� � �� � � � W �� �
	 G � K I 46� � � �X� <�� ��� �&�
] �� � � � W � � + � � ��� +
] �� � � � W � � +  � ��� +

Hence the claim follows. �
A two-dimensional greedy array is a matrix 
 of integers such that elements in the same row are congruent

mod 6 , while elements in distinct rows are not congruent mod 6 . Lemma 7 says that ordering the elements of 

column-wise gives a greedy sequence.

This concludes the algebraic step of the proof. Let us sketch the rest of the proof when � � 6
9
< � , which

corresponds to the Frankl-Wilson construction (see Figure 1). Define the sets

� � M�!-P�� M 	  M �����������A6
9
<��'P + I 46� �Q�A! �P� � I 4 � �Q��	F�P��P

� � M�!-P�� M 	  M �����������A6
9
<��'P + I 4 � �Q�A! �P� ];I 4 � � ��	F�P��P

Note that I 4 � !Q�A! �P� � I 4 � !Q��	F�P� for every 	 �� ! in � . Further � and � partition the set M ���������;�A6
9
< �'P and

they intersect only at ! . We will show that � and � contain large greedy arrays.

1. Arrange M�!N��������6
9
<��'P in 6 � 6 grid, each row corresponding to a congruence class mod 6 .

2. Within each row, place elements lying in � before those in � . Since ! lies in ����� , place all other
elements in � which are !-�8B&�36 before ! .

3. Sort the rows according to how many elements from � they contain.

This reordering is illustrated in Figure 1, the dark line separates � and � . It is clear that � and � contain
greedy arrays 
 of size � � � � I and � of size � � � � I respectively (indicated by shaded regions) so that� � � � � � � I � � I � 6 � � . From this it follows that ++
&+�+ � +"] 6

9
. Also, we can ensure that ! is the last

element of these arrays in the column-wise ordering. So I 4 � �Q��	 �P� is minimized at the last element in 
 , hence
by Lemma 7 �65"DF��� ��] ++
&+ < � . Similarly � 5"D �7!��] + � + < � , which proves the desired bound. Also, ++
/+�+ � +
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Figure 1: Lower bound for 6
9
< � and the Frankl-Wilson construction

is minimized when � � M 	 + 	 � !-� B��?6 P , and � � ! � M 	 + 	 �� !-� B��36 P (or vice versa), the corresponding
polynomials give exactly the Frankl-Wilson construction.

The proof for general � is a high dimensional extension of this argument. The next lemma (Lemma 8) says
that any disjoint partition of M�!N������� ��� < �'P into � � � will result in one of the partitions having a greedy array
of size 9 � . In fact we prove something stronger, we can choose the dimensions of the array to be any solution
to Equation 14. We also assume that � is of the form � � 6 �

�
I which makes it easier to use induction.

Lemma 8 Let ��� � � � 6 . Let �� � be disjoint sets of integers such that � � � � M�!N������� ��� � 6 �
�
I < �'P . Given

any positive integers � � ��������� � � � I ��� � ������� ��� � � I satisfying

For N	� . < � � � � � � � 6 � � (14)� � � I � � � � I � � � � �
either � contains a greedy array of size � ��� ����� � � � � I or � contains a greedy array of size � � � ����� � � � � I .
PROOF: The proof is by induction on . (the dimension of the greedy arrays).

When .-� � , we have disjoint sets �� � so that � � � � M�!N������� ��� � < �'P hence + �4+�� + � + � � � . Since
� � < � � 6 any ordering of � and � gives greedy arrays of size + �7+ and + � + respectively. Given � � ��� � such that� � � � � � � � � � , if + �7+-��� � <�� , then + � +&] � � � ��< � � � � � .

Assume that the claim is true up to . < � . For !8� N	� 6�<�� , we define the following sets

� ��N��F� M 	  �7+ 	 � N � B&�36;P
�� ��N � � MN��	�< N ��� 6 + 	� � ��N � P

We define sets � ��N � and
�� ��N � similarly. Note that for each N , �� ��N � and

�� ��N � are disjoint, further
�� ��N�� � �� ��N � �

M�!N������� ��� � 6 �
� 9

< �'P . So the induction hypothesis applied to
�� ��N�� and

�� ��N � with � I �������;� � � � I ��� I �������;��� � � I
implies that either � contains a greedy array of size � I � ����� � � � � I or � contains a greedy array of size� I

� ����� � � � � I . We define the following sets�)� M N + �� ��N � has a greedy array
�
 � of size � I � ����� � � � � I P01� M N + �� ��N � has a greedy array
�
�
�

of size � I
� ����� � � � � I P
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Since � �80 are disjoint and +1�5+ ��+ 07+���6 we have either +1� + ] � � or + 07+8] � � . Assume +1�5+8] � � . We define a
greedy array 
 of size � ��� ����� � � � � I as follows. Choose � ��� � of size � � . For each NF � � , the N ��� row of 

contains the pre-image 
 � of

�
 � in � ��N � of dimension � I � ����� � � � � I .
We need to verify that 
 satisfies I 4 ��
 ��� � < 
 � � �>�@� �&%�' MUZ�+ N W �� � W P . Given

�
and

�
, if N � �� � � , then


 ��� � �� 
 � � �X� B&��6 so the condition holds. Now assume that N � � � � , so that
� � ��N � � � � ��� � � ��N � � � � � . Since 
 ��� �

and 
 � � � are in the same row, 
 ��� � � 
 � � � � %��8B&�36 for !8� %�� 6�<�� . So


 ��� �8< 
 � � � � 
�� ��� � � < 
�� � � � �
� � 6 �
 � ��� � �-� %O� < � 6 �
 � � � � �-� %O�
� 6 � �
�� ��� � � < �
�� � � � �>�

� I 4 � 
 ��� �X< 
 � � ���X� �	�?I 46� 
�� ��� � �8< 
�� � � � �&�
� �	� �/%�' MUZ + N � W �� � �W P

Note that �&%�' MUZ�+ N W ��1N W P�� � � �&%�')MUZ�+ N � W �� N � W P . Hence 
 is a greedy array of the right dimension. �
The next Lemma is the key step in the combinatorial argument. Now we consider sets � and � which

intersect only at ! , and we want to produce greedy arrays that end at ! by our ordering. We show that such
arrays exist whose dimensions satisfy Equation 14.

Lemma 9 Partition Lemma: Let ��� � � � 6 . Let � � � be sets of integers such that

� � � � M�!N����������� � 6 �
�
I < �'P � � � � � M�!-P

Then there exist positive integers � � �������;� � � � I ��� � ����������� � � I satisfying Equation 14, so that � contains a greedy
array 
 of size � � � ����� � � � � I and � contains a greedy array � of size � � � ����� � � � � I , and both 
 and �
contain ! as the last element.

PROOF: The proof is by induction on . .
When .�� � , we have sets � � � so that � � � � M�!N������� ��� � < �'P and � � � � M�!-P so + �7+"� + � + � � � � � .

We take � � � + �7+ ��� � � + � + . Define 
 to be an ordering of � where ! comes last, similarly for � .
Assume that the claim holds up to .F< � . For ! � N�� 6 < � , we define the sets � ��N ��� �� ��N ��� � ��N ��� �� ��N � as

before. Note that
�� �A! � � �� �A! � � M�!N������� ��� � 6 �

� 9
<��'P

�� �A! � � �� �A! � � M�!-P
By induction, there exist � I ��������� � � � I and � I ����������� � � I as above so that

�� �A! � contains a greedy array of size� I � ����� � � � � I and
�� �A! � contains a greedy array of size � I

� ����� � � � � I . For �� N � 6�< � we have
�� ��N � � �� ��N � � M�!N������� ��� � 6 �

� 9
< �'P

�� ��N � � �� ��N � � �
Hence applying Lemma 8, either

�� ��N � contains an array of size � I � ����� � � � � I or
�� �A! � contains a greedy array

of size � I
� ����� � � � � I . Again we define the sets�)� M N + �� ��N � has a greedy array

�
 � of size � I � ����� � � � � I P01� M N + �� ��N � has a greedy array
�
�
�

of size � I
� ����� � � � � I P
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Let � � � +1�5+ ��� � � + 07+ . Since �/� 0�� M�!-P and � � 0�� M�!N���������A6�< �'P we have � � � � � � 6�� � . Order � and0 so that ! is the last element. We define a greedy array 
 of size � � � ����� � � � � I as follows. For each N�2� ,
the N ��� row of 
 contains the pre-image 
 � of

�
 � in � ��N � of dimension � I � ����� � � � � I . Similarly we define
� where the N ��� row contains the pre-image �

�
of

�
�
�

in � ��N � . The proof that these are greedy arrays follows
Lemma 8. They both contain ! as the last element by induction. �

We now complete the proof of Theorem 4.
PROOF OF THEOREM 4:
Assume that 6 �

�
I � ��� 6 � . We can choose � � so that ��� � � � 6 and ����� � � � 6 �

�
I <��� � . Define the sets

�1� M�!-P � M 	6+ ��� 	 � � � 6 �
�
I <���� I 46� �Q�A! �P� �;I 4 � � ��	F�P��P

� � M�!-P � M 	6+ ��� 	 � � � 6 �
�
I <���� I 46� �Q�A! �P� ];I 4 � � ��	F�P��P

Applying Lemma 9 implies that � and � contain greedy arrays 
 and � of size � � � ����� � � � � I and � � � ����� � � � � I
respectively where � � and � � satisfy Equation 14. Applying Lemma 7, by ordering 
 we get a greedy sequence
M � I �������;� � � � I �:!-P in � of length 0(� � � � � . By the definition of set � , I 4 � �Q�A! �P� � I 4 � �Q��� � �P� for N �;0 . So by
Lemma 6 �65"D)��� �"] � � � � <�� .

Similarly we get a greedy sequence of length � � � � in � ending in ! . Note that by Equation 6, 	  � and
	 �� ! implies I 4 � !Q�A! �P� � I 4 � !Q��	F�P� . So by Lemma 6, �65"D)�7! ��] � � � � < � . By Equation 14, � � � � ] 6 for� � . < � and � � � I � � � I ] � � . Hence

���65"D)��� � � ��� ���65"D �7!� � ��� ] � � � � � �
] � � 6 �

�
I > ����� �

For the Frankl-Wilson construction where ��� 6
9
< � , we get ���65"DF��� ��� ��� ���65"DF�7! ��� ����] 6

9
which is tight. �

4 Lower Bounds for Prime Representations

In this section we prove a lower bound for prime representations using symmetric polynomials.

Theorem 10 Let �Q��� �" /54O� ��� and !Q��� �" /�#�� ��� be symmetric polynomials that represent the OR function
on � variables. Then �65"D)��� ���/�65"D �7!�"] ���-�"! .

Note that this requires �65"D)��� ���/�65"D �7!��] � but if � 5"D ��� �F� ! , then it is easy to show that �65"D �7! �F� � , so
this case is not interesting. The hard case of this theorem is when 6 and ' are fast-growing functions of � , as in
Alon’s construction. To handle this case, we prove a partition lemma (Lemma 11) which says that taking 6 and
' large does not help.

Definition 10 Let 6���' be distinct primes, let � � 68' . Let � � / �4
and � � / �#

. We say that 	 is covered by
� if 	�� B��?6� � . We say � and � cover

� � � if every 	  M ��������� ��� P is covered by � or � .

If � � 68' , we can cover
� � � by taking � � / �4

and � � / �#
. Given � � / �4

and � � / �#
, the number of

elements in M ��������� �A68' P that are covered by � or � is + �4+ '� + � + 6�<�+ �7+�+ � + which can be much larger than+ �4+�+ � + . The partition lemma states that to cover the first � integers however, + �7+�+ � + needs to be =��>��� .
Lemma 11 Partition Lemma: If � � / �4

and � � / �#
cover

� � � , then �,+ �7+O� ��� � �,+ � +O� ��� > � 9 .
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Figure 2: Proof of Prop 12

Using + �7+�� � rather than + �4+ in the product lets us ignore the case when + �7+K� ! . Let us sketch the idea
behind the proof of the Partition Lemma. Let � � � # ' . Assume that to begin with, we have � � / �#

and
� � MU'-� � '-������� ��� # ' P . It is clear that � and � cover � , however �,+ �7+�� ��� �,+ � +�� ��� > � . One could try and
reduce + � + by removing elements from it. We want to show that this results in an increase in + �7+ . Removing
N- / �#

from � results in the numbers M N ��N � ' ����������N�� �>� # < ��� ' P being uncovered. Call this set �<��N � . The
various elements of �<��N � are less than 68' and they are congruent mod ' , hence the CRT implies they cannot also
be congruent mod 6 . But the problem is for N �� � ,there could be considerable overlap between the residues
of �<��N � and �<� �-� mod 6 . Hence it is not clear that removing many elements from � does actually cause + �4+
to increase. However, by suitably reordering the elements of

/14
, we show that every element removed from �

causes the size of � to increase by at least � . In fact Figure 2 shows that + �4+ could increase by just � . This is
sufficient to prove the Partition Lemma.

Set � 4 �65 � 487 and � # �95 � #)7 . Given set � of integers, define � �8B&�36 � / 4
to be the set M 	��8B&�?6 + 	�6�	P .

Proposition 12 Let �)] ' . If � and � cover
� � � and + � + �1'�< � then + �7+�]65 � # 7 � ��<�� .

PROOF: Note that since �)];' , � # ] � . Let � denote the complement of � in
/ #

, so !( � . For each N  � , take�<��N � to be the first � # numbers in M ��������� ��� P congruent to N � B��36 . In other words, �<�A! ��� MU' � � '"��������� # ' P
and for N �� !N������N �F� M N ��N � '-����������N)� �>� # < ��� ' P . Let�)�;:� � < �<��N��
If 	 6� , then 	 is not covered by � so it must be covered by � . We want to lower bound the size of �)� B��36 .

Let us reorder the set
/ 4

as M�!N�/'-� � '-������� ��� 6(< ��� ' P (this is a reordering since ��' �A6 � � � ). It sends �=� B��36
to %�� �-� ' such that %�� �-� ' � �=� B��36 . This map sends �<�A! � � B��?6 to MU'-�������;��� # ' P and the set �<��N � � B��?6 to
the interval M�%���N � '-���A%���N �5� ��� '-�������;���A%���N � ��� # < ��� ' P of length � # for N+�� ! . None of these intervals contain
! , since that would give 	  M ���������;��� P such that 	 � N � B��.' and 	 � !-�8B&�36 . Such an 	 is not covered by
� or � . Each interval �<��N � �8B&�36 begins at a distinct point %���N�� . Sorting the intervals by their starting points, it
follows that the union of � such intervals of length � # contains at least � # � �"< � elements of

/ �4
. �

Figure 2 illustrates this argument for 6@� = �/'=� ������� �  
. Here � � /

I�I * M�!N�O�'P .
PROOF OF LEMMA 11:
We consider the cases ��� 6 , 6 � � �;' and ' � � separately. The non-trivial case is when ' � � .
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1. Let � � 6 �;' . Numbers M ���������;��� P lie in distinct congruence classes mod 6 and ' . Hence+ �7+O��+ � +&]�� � �,+ �4+O� ��� � �,+ � +"� ��� > �
2. Let 6 � � � ' . The numbers M �����������A6;P lie in distinct congruence classes modulo 6 and ' . Hence+ �4+O��+ � +&] 6 and �,+ �7+O� ��� � �,+ � +O� ��� > 6 . This proves the claim if � � ��6 so let � > ��6 .

Let + �4+ � 6H< � for �8����� 6 . There are � 4 numbers � � in each congruence class mod 6 . Thus � 4 �
numbers are not covered by � and have to be covered by � . Since � � ' , they lie in distinct congruence
classes mod ' . Hence + � +=] � 4 � . Using the fact that �)] ��6 hence 6 � 4 ] ����� we get

�,+ �4+O� ��� � �,+ � +"� ��� > � 6�< ��� ���8�-� 4 ] 6 � 4 > �����
3. Let � >;' . By Prop. 12, if + � + �1' < � , then + �7+6] � # � � < � . Since + �7+�� 6=< � , we get ������� 6=< � # .

Hence for ����?� 6�< � # we have

�,+ �7+O� ��� �,+ � +�� ��� ] ��'�< � � ���F�A� # � ���
We will show that this is lower bounded by ����� . By differentiating, this bound is minimized at one of the
extreme values of � , so it suffices to check the bound is at least � 9 for those values. When �$� � ,

��',< � � ��� ��� � '�� � � � � '4��� � '�� � � � > �

When � � 6�< 5 � # 7
��'�< � � ��� ��� � '�� � � � � � '�< 6 ��� � '�� � � � 6

] � '�< 6 � �
' � 6

� ��',< 6F� 6 � �N6
'

One of ��'�< 6 � 6 and �>�N6F���4' is at least ����� : If ' � ��6 , �>�N6F���4'7> ����� . If '7> ��6 , then ��'�< 6F� 6 > ����� .

�
We now proceed to the algebraic step of the proof. Every symmetric polynomial �Q��� �  / 4 � �V� computes

a symmetric function � ��� ��� / 4
. Let � ����� � � � � � � � 6 � . Every polynomial �� � � � ������� � � �R� also computes

a function � ��� ��� /54
. The following equivalence between the two kinds of polynomials is given by Theorem

2.4 of [10].

Proposition 13 The functions that can be computed by symmetric polynomials �Q��� �= /�4O� � � of degree less
than 6 � 	 I are the functions which can be computed by polynomials ��Q� � � �������;� � � � .

For each variable � � , let �65"D � � � � denote the degree of � � in �� . If � is the largest index so that �65"D)� � � � >�!
then 6 � � �65"D)��� � � 6 � . This gives a bound with an error factor of 6 . By defining an appropriate weighted
degree of �� , we can make the correspondence exact.
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Definition 11 Given �� � � � �������;� � ���= / 4 � � � ��������� � � � , the degree of a monomial � � � � �� with 0 � � 6H< � is
defined as �65"D � � � � � �� � � � � 0 � 6 � . The degree of �� denoted �65"D � �� � is the maximum degree over all monomials.

Note that if � is the largest index such that � 5"D � � � � >�! then � 5"D)� �� �����8�;�65"D)� � � � 6 � �;�65"D)� �� � .
Lemma 14 Given a symmetric polynomial �Q��� �  /	4 ��� � there is a unique polynomial ��Q� � � ������� � � �R� that
computes the same function � ��� � � /	4

and vice versa. This correspondence preserves the degree.

PROOF: Given a symmetric multilinear polynomial �Q��� �" /14 � ��� of degree 0 , write it as �Q��� � � �  �	� %  �  ��� � .
On at 0-1 input � ����N����� � � 	 G���K 
 . By Lucas’ Theorem

� � ������ � � � � � � � � �� � � � B��?6

Further the polynomial � � � � � 	 � � 
 has degree
��� � � 6 � � � . Thus � ��� � computes the same function as

�� � � � �������;� � �R��� �� � � %  � � � � � � �� � � �8B&�?6

and they have the same degree.
To prove the other direction, observe that the monomials � � � � � 	 � � 
 with � � � 6 < � form a basis for

polynomials in
/54O� � � ������� � � ��� with degree at most 6�<�� in each � � . Further writing a polynomial in this basis

does not change the degree as defined above. Let � � � � � � 6 � be the degree of the monomial � � � 	 � � 
 . Hence
given ��Q� � � ��������� � � � with degree 0 , one can write

��Q� � � �������;� � � � I ��� �� � � %  � ��� � � � �� � �
By Lucas’ theorem, this computes the same function as the polynomial �Q��� � � �  �	� %  � -��� � . �

For �  M�!N�������;��� P , let � � � � � � � L � 6 � � � � � � I � ' � denote the base 6 and base ' expansions of � . For��Q��L � �������;��L ���= / 4 � L � �������;��L ��� let ��Q� � � denote the polynomial �� applied to the base 6 expansion of � . As
consequence of Lemma 14, to prove Theorem 10 it suffices to prove the following Proposition.

Proposition 15 Let ��Q� � �" / 4 � L � �������;��L � � and �! � � �$ /�#%� I � ����������I<U� be polynomials such that��Q�A! � � �$�8B&�36 and �!8�A! � � �$� B��.'
For ��� � ��� , ��Q� � � � !,� B��?6 or �!Q� � � � !,� B&�V'
Further � 5"D � �� �J�U�65"D)� �!�"] �I

�
.

PROOF: Let Z denote the largest index such that �65"DF��L W �=] � in �� . This implies �65"D)� �� �+] 6 W and ��Q� � �,���Q��L � �������;��L W � . Similarly let [ be the largest index so that �65"D ��I Y � ] � . Then �65"DF� �! � ] ' Y and �!Q� � � ��!8��I � ������� ��I Y � . Hence �65"D � �� � � �65"D � �! � ] 6 W ' Y . This proves the desired bound for � � �"!R6 W ' Y . So we may
assume that �)] �"!R6 W ' Y .

Also � � 6 W 	 I ' Y 	 I , since if � � 6 W
	 I ' Y 	 I � � , then L � ����������L W � ! and I � �������;��I Y � ! so�� � 68W
	 I ' Y 	 I � � ��Q�A!N������� �:! � � � � B&�36
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�!Q� 6 W
	 I ' Y 	 I � � �!Q�A!N�������;�:! � � �$� B��36
which contradicts the hypothesis. Let

�� � 5 �4 S%# T 7 � 68' .

Let us consider inputs of the form � � # 6 W ' Y where !8� # � �� . Observe that this implies L � ����������L W � I � !
and L W � #�' Y � B��?6 . Similarly I � �������;��I Y � I � ! and I Y � # 6 W � B��.' . Define polynomials

� � � �+ / 4 � � �
as
� � � �H� �� �A!N�������;�:!N� � ' Y � , and �<� � �  /�# � � � as �<� � �H� �!8�A!N�������;�:!N� � 6 W � . This implies �65"D � � �H�

�65"DF��L W �#� 6�<�� and �65"DF� �5� �1�65"D)��I Y �1�;'�<�� . Note that

� �A! � � �$� B��36 and �<�A! � � ��� B��.' (15)
� ��#H� � !-� B��36 or ����#�� � !-� B��(' ��� # � ��

We define � � / �4
and � � / �#

to be the ! sets of
� � � � and �<� � � respectively. By equation 15 � and � cover� �� � . So by Lemma 11,

��� 5"D)��L W � � ��� ���65"D ��I Y � � ��� ] ������
Since �65"D)��L W ���/�65"D)��I Y ��] � , this implies that �65"DF��L W � � �65"D ��I Y � ] ������ . Since �65"D)� �� ��] 6 W � 5"D ��L W � and
�65"DF� �!� ];' Y �65"D ��I Y � ,

�65"D � �� �J� �65"D � �!� ]
��
� 68W ' Y$> �

�

� �
�"! > �

�"!
The second inequality uses the fact that �)] �"!R6 W ' Y hence 6 W ' Y 5 �4�S # T 7 >�� �I � . �
5 Ramsey Graphs based on Set Intersections

The constructions of Frankl-Wilson, Alon and Grolmusz use a coloring scheme based on the size of set intersec-
tions. In this section we show that these can be constructed from certain polynomials that are closely related to
OR polynomials. These polynomials are also used by Grolmusz [18] and Kutin [19] to give simple constructions
of set systems with restricted intersections mod 6.

Definition 12 The weight- � function � � is a partial function defined on M�!N�O�'P
0

for 
 ] � as follows

� � ����� � ! if � ."����� � � � � ����� � � if � ."����� � �
The function is undefined for � ."������ � � � ������������
@� .

Note that � � on � variables is simply the NAND function. We now define polynomial representations of
� 0

. We give an extension of Definition 2, a similar extension holds for Definition 4

Definition 13 Polynomials �Q��� �" / 4O� ��� and !8��� �" /$#�� �V� represent the � � function on 
 variables if

�Q�������� !,�8B&�?6 and !8�������� !,� B&�V' if � . ����� � �
�Q����� � !,�8B&�?6 or !8����� � !,� B��.' if � . ����� � �

The degree of the representation is 0��1�V243 ���65"DF��� ���/�65"D �7!��� .
Assume that �Q��� I ������� ���

0 � and !8��� I �����������
0 � represent � � with degree 0 for some 
 ] � . Define��Q��� I ����������� � � and

�!8��� I ����������� � � to be polynomial by substituting � <?� � for � � when N?� � and setting
� � � ! for N�] � . It is easy to verify that

�� and
�! represent OR on � variables with degree at most 0 . Further

if � and ! were symmetric polynomials, then so are
�� and

�! . Thus lower bounds for OR representations
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imply lower bounds for � � representations. In particular our lower bounds for OR representations rule out
representations of � � with symmetric polynomials of degree ��� 9 � � .

Conversely one can construct degree 0 representations of � � from degree 0 symmetric polynomials repre-
senting OR on � variables. We do not know if a similar statement is true for asymmetric polynomials.

Lemma 16 A degree 0 representation of OR on � variables using symmetric polynomials gives a degree 0
representation of � � on � variables for all 
 ] � ,

PROOF: Let � ��� ��� !Q��� � be symmetric polynomials of degree at most 0 on 
 variables that represent OR.
Replace each � � by ��< � � and multi-linearize. It is easy to show that the resulting polynomials � � ��� ��� ! � ��� �
represent � � on � variables. Further, they are symmetric multilinear polynomials of degree 0 , hence we can
write them as

� � ��� I �������;��� � ��� � � �	� Z � � � ��� I ����������� � � ! � ��� I ����������� � � � � � �	� [ � � � ��� I �������;��� � �

We obtain new polynomials � � �
and ! � �

by replacing � � ��� I �������;��� � � by � � ��� I �����������
0 � .

� � � ��� I �������;���
0 ��� � � �	� Z � � � ��� I �������;���

0 � ! � � ��� I �������;���
0 � � � � �	� [ � � � ��� I �������;���

0 �

Since the value of a symmetric function on a !N�O� -input depends only on the weight of the input, one can show
that � � �

and ! � �
represent � � on 
 variables. �

We can use the 78� 9 ��� OR representations to construct representations of � � . We give a construction of
explicit Ramsey graphs from representations of � � .

Construction 2 Ramsey Graph 
 �7A5�/B � from representations of � � .< A ��
�� consists of vectors �  M�!N�O�'P
0

of weight � .
< If �Q����� � � � ! , add ��� ��� � to B ��
�� .

Theorem 17 Given a degree 0 representation of the weight-n function on M�!N�O�'P
0

, the graph 
 has
� 0
� 
 vertices

and �#��
���������
���� � 0�	� 
 .
PROOF: Assume we have prime representation of � � . We associate a polynomial � � ��� � with each vertex �
so that ��� � � �@� �Q� � � � � . Given � � ��I I ������� ��I

0 � , let
� � � ! if I � � ! and

� � � � � if I � � � . Set
� � ��� �(� �Q� � I �������;� � 0 � and multi-linearize. Using an argument like in Theorem 3, we can show that this
gives a polynomial representation of 
 over

/#4
. Since the � � ��� � s are multilinear polynomials of degree 0 , we

get ����
�1� � 0�	� 
 . Similarly we bound �	��
�� by representing ��
�� over
/�#

.

For prime-power representations of OR, we can represent 
 and 
 over
/<4 S

and get a similar bound. �
The OR representation of Equation 1 gives the following construction due to Alon [2]. Let ��� 68' < ����
 �

�
9
. The vertices are all subsets of

� 
@� of size � . Add ��� ��� � to B ��
�� if + �3� � + �� <��� B&��6 .
The OR representation of Equation 3 gives the Frankl-Wilson construction: Let � � 6

9
< ����
 � �

9
. The

vertices are all subsets of
� 
@� of size � . Add edge ��� ��� � to B ��
�� if + �:�+� +K�� <��� B&�36 . This construction can

be extended to ."] � colors using the polynomials constructed in Equation 5.
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Construction 3 Extending the Frankl-Wilson construction to . colors.
< Take ��� 6 � <�����
 � 6 � 	 I . Vertices are all � subsets of 
 .
< Edges are colored M�!N������� ��.G< �'P . Edge ��� ��� � is given color I 4 ��� � + �7�
� ++� .

The OR representation of Equation 2 gives the following graph 
8�7A �/B � . Let � � � �
� < ����
 � �
9
. The

vertices are all subsets of
� 
@� of size � . Add ��� ��� � to B ��
�� if + � � � +X�� <��$� B��8�  . In fact the graph obtained

is the same as Grolmusz. To show this, we first present his construction, following the simplified exposition of
Grolmusz himself [18] and Kutin [19].
��� Let ��� � �
� <�� . The BBR polynomials give the following representation of � � .

�Q��� � � � � � �
�  < � � ��!8��� � � � � � �
 � < � �

Define
� ��� �" /�2 � ��� to be the polynomial obtained by combining these polynomials using the CRT. It follows

that
� ����� � �$� B��8L when � ."����� � � and

� ��� is divisible by 2 or 3 when � ."����� � � .
� � We can view

� ��� � as an integer polynomial with coefficients in M�!N����������� P . By repeating each monomial
sufficiently many times, we can write � ��� � � ��� �� � � � �
The elements of the universe are the monomials. If � is repeated % times in

� ��� � , then there are % elements
in the universe, one for each occurance of � . For each �  M�!N�O�'P

0
of weight � , the set �<����� consists of

monomials that evaluate to � on � . One can verify that this system has restricted intersections mod 6 since+1�<����� �9�<��� � + � � ��� � � � .
 � The vertices of the graph � are the sets �<����� . We add edge � �����������<��� ��� if + ������� � �<��� � + � !-� B��8� .
We wish to show that this graph � is the same as the graph 
 constructed above. We identify � ;A ��
��

with �<������)AQ� � � . In � , we add an edge between �<����� and �<��� � if
� ���3�@� � � !,�8B&�Q� . By the CRT, this

implies that � ��� � � � � !,� B��Q� . By Lucas’ theorem, this happens if � . ���6� � ���� <���� B��Q�  . But this is
precisely when ��� ��� � is an edge of 
 .

This equivalence can also be seen from Kutin’s construction [19]. While Grolmusz’s set system construction
is an important result, our approach seems to be simpler for the purpose of Ramsey graph construction. One
can interpret the bounds on clique and independent set size as coming from an extension of the modular Ray-
Chaudhuri-Wilson theorem to prime powers, which we prove below (Theorem 18).

5.1 Set Systems with restricted Intersections modulo Prime Powers

Definition 14 A set system C�� M � � P on
� � � is said to have restricted intersections mod ' if there exists � � / #

so that +1� � +4�8B&�.' ��� but +1� � � � � +4� B��.'��� .

For a fixed modulus ' , we study the problem of how large + C6+ can be as a function of � . When 'V� 6 is a
prime, the non-uniform modular Ray-Chaudhuri Wilson theorem proved by Deza, Frankl and Singhi [5] gives a
bound of + C6+� � �

� + �.+ � � � �
� 6 <�� �

When ' is not a prime power, Grolmusz shows a lower bound of � EHG I�K [17]. We give a near-tight bound of� �� 4 S � I 
 for the prime power case. This improves the bound of
� �� 9�� �	� 
 � 
 due to Babai et al. [6]. Previously
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stronger bounds than ours were known for the special case when + � + � 6 W < � i.e. when all set sizes are congruent
to � �8B&� 6 W for some � (see theorems 5.30 and 7.18 in the book by Babai and Frankl [5]). To prove our result,
we use the fact that every function from

/#4�S
to
/ 4

can be written as a polynomial.

Theorem 18 Let C be a set system with restricted intersections modulo 6 W . Then + C6+N� � �� 4 S � I 
 .
PROOF: We construct a univariate integer-valued polynomial � ��� �" R � � � of degree 6 W <�� such that

�Q��	F� �
� � � B&�36 	�� B��?6 W ��
!=� B&�36 	�� B��?6 W ���

By Lucas’ theorem,

� 	
6 W <�� � �

� � � B&��6 	 � 6 W <��$�8B&�36 W
!=� B&��6 	 �� 6 W <��$�8B&�36 W

� � 	 < �5� 6 W <��
6 W <�� � �

� � � B&��6 	 � �$� B��36 W
!=� B&��6 	 �� �$� B��36 W

Set �Q��� �F� �� ��� � � < � � 6 W <��
6 W <�� �

By Lemma 3.1, of [6] this implies the desired bound. We sketch the argument below.
We will use

� �
to denote the incidence vector of set � � . Let � � ��� I �������;��� � �����Q� � � ��� � � � � and multi-

linearize. It is easy to show that

� � � � � � �1� �,+1� � � � � ++� � � ��� B��?6 N � �
!,� B��?6 N �� �

Using this one can show that the polynomials � � ��� � are linearly independent over R . Since they are multilinear
polynomials in � variables of degree 6 W <�� , the bound follows. �
6 Discussion and Open Problems

Following the breakthrough of Barak et al. [8], the algebraic construction described here are no longer the best
constructions known. However, the appeal of these constructions is their simplicity and elegance, together with
the fact that they are very explicit. So we believe that it is important to resolve the question of whether this
approach can beat the Frankl-Wilson bound. As we have seen, this problem is intimately linked to well-studied
questions in complexity theory.

Lower Bounds for Asymmetric Polynomials:

The question of whether there are lower degree weak representations of the OR function mod 6 has been open
for a while. This work raises the question of whether low degree OR representations exist for our definition.
Better upper bounds would give better Ramsey graphs. Lower bounds for prime representations will imply
lower bounds for weak representations mod 6. Prime-power representations are exciting from the lower bound
viewpoint since they have not been studied previously and might turn out to be easier to work with. The =��A@CB�D	���
lower bound of Barrington and Tardos citebar-tar applies to both kinds of representations.
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Both our lower bounds for symmetric polynomials follow a similar scheme: we characterize the zero-sets
of low-degree symmetric polynomials and then show that there is no good partition of the hypercube. A natural
question is whether such a scheme could extend to the general case. The first step would be to give a of
characterization of zero-sets of low degree polynomials. Motivated by this we pose the following problems:

1. Given � � M�!N�O�'P�� * � , let �65"D 4 � �5� denote the smallest degree of a polynomial in
/ 4 � ��� which is ! at

every point in � but not at the origin. Give a lower bound on �65"D 4 � �5� .
2. Given � � M�!N�O�'PO� , let �65"D �4 � �5� denote the smallest degree of a polynomial in

/ 4 � ��� which is ! over �
but not at every point in M�!N�O�'P � . Give a lower bound on �65"D �4 � �5� .

Note that both these quantities are easy to compute, since they involve checking whether a system of equa-
tions is feasible. We are looking for a combinatorial lower bound, perhaps analogous to Lemma 6. The latter
quantity 0���� �� � �5� is closely related to the notion of the degree of a subset studied by Smolensky with a view
towards proving circuit lower bounds [21]. The main difference is that he requires the zero-set to be exactly the
set � .

Limitations to Constructions based on Distances:

We have shown that using symmetric polynomials in out construction, current techniques cannot give better
bounds on �#��
���������
�� . Note that for the constructions of Alon, Frankl-Wilson and Grolmusz, this technique
gives tight bounds.This raises the question: do constructions based on symmetric polynomials contain either a
large clique or independent set?

Using a symmetric polynomial in our construction gives a graph where edges are added between vertices
based on the Hamming distance between them. More formally, let �

� M ��������� ��� P . The graph 
 ��� � is defined
as follows: The vertex set is M�!N�O�'P'� . We add ��� ��� � to B if 0 ��� ��� �-�� . Is it true that for every choice of � ,

 ��� � contains a large clique or independent set?

Similarly in Construction 2, symmetric polynomials give graphs where the vertices are sets and edges are
added based on intersection sizes. Do such graphs always contain large cliques or independent sets?
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