
An Exposition of Neural Cryptanalysis of Classical Ciphers

David Z.

February 24, 2021

In this paper, we further explain how to leverage machine learning techniques described
in Neural Crytanalysis of Classical Ciphers to crack classical ciphers. More pre-
cisely, we show how to use neural networks to predict the keys of ciphertexts encrypted by
the Shift, Affine, and General Substitution Ciphers. We provide insight on the algorithms
described in [1] by ...

Contents

1 Terminology 2
1.1 Ciphers . 2

1.1.1 The Shift Cipher . 2
1.1.2 The Affine Cipher . 2
1.1.3 The General Substitution Cipher . 2

1.2 Neural Networks . 3

2 Cracking the Shift Cipher 5
2.1 Method 1 . 5

2.1.1 Generating Data . 5
2.1.2 Creating the Neural Network . 6
2.1.3 Applying the Model . 6

2.2 Method 2 . 7
2.2.1 Generating Data . 7
2.2.2 Creating the Neural Network . 7
2.2.3 Applying the Model . 8

3 Cracking the Affine Cipher 9
3.1 Generating Data . 9
3.2 Creating and Applying the Neural Network 10

4 Cracking the General Substitution Cipher 11
4.1 Generating Data . 11
4.2 Creating the Neural Network . 12
4.3 Applying the Model . 12

1

David Z.
Machine Learning

and
Cryptography

§1 Terminology

A corpus is a collection of written texts. These will be a useful source of data for
creating our own sets of data to train and test the models we create.

A n-gram is a continuous sequence of n items from a given sample of text or speech.
In this context, these “items” will be letters from the alphabet. If n = 2, then the n-gram
is a pair of letters. For n > 1, analyzing n-gram frequencies of texts will allow our models
to get higher accuracies. The number of possible n-grams is 26n.

§1.1 Ciphers

A cipher is an algorithm for performing encryption and decryption. The keyspace
of a cipher is the set of all possible keys. Consider encrypting English plaintext. We will
associate the letters a with 0, b with 1, c with 2, and so on.

is English

§1.1.1 The Shift Cipher

The Shift Cipher with key s ∈ {0, 1, 2, · · · , 25} has the encryption function, Es(x) =
(x+ s) mod 26 and decryption function, Ds(x) = (x− s) mod 26, where x is a letter
shifted by s characters in the alphabet. To encrypt a plaintext T , we apply Es(x) to
each letter in T to receive a ciphertext C. Likewise, to decrypt a ciphertext C, we apply
Ds(x) to each letter in C to receive a plaintext T . The keyspace of the Shift Cipher is
{0, 1, 2, · · · , 25}, which has size 26.

§1.1.2 The Affine Cipher

The Affine Cipher with key a, b has the encryption function Ea,b(x) = (ax + b)
mod 26 and decryption function Da,b(x) = a−1(x − b) mod 26, where a is relatively
prime with 26 and a−1 is the modular multiplicative inverse of a modulo 26. To encrypt
a plaintext T , we apply Ea,b(x) to each letter in T to receive a ciphertext C. Likewise,
to decrypt a ciphertext C, we apply Da,b(x) to each letter in C to receive a plaintext
T . The keyspace of the Affine Cipher is {1, 3, · · · , 25} × {0, 1, 2, · · · , 25}, which has size
12× 26 = 312.

§1.1.3 The General Substitution Cipher

The General Substitution Cipher with key k, a permutation of {0, 1, · · · , 25},
has the encryption function Ek(x) = k(x) and decryption function Dk(x) = k−1(x),
where k(i) is the ith element of k and k−1 is the inverse of k. The keyspace of the
General Substitution Cipher is every permutation of the set {0, 1, · · · , 25}, which has
size 26! ≈ 4× 1026.

2

David Z.
Machine Learning

and
Cryptography

§1.2 Neural Networks

Figure 1: Labeled diagram of a basic neural network [2]

A neural network is a network of layers consisting of neurons, a node containing a
number between 0 and 1 (or activation). The first layer of the neural network is called
the input layer, which takes in input data. The last layer of the neural network is
called the output layer, which outputs a value(s). Any layers in between the input and
output layers are called hidden layers, which act as “breathing room” for the neural
network to recognize patterns in input data.

Every neuron in a layer is connected to every neuron in the next layer by an edge,
which has an associated value or weight. There is a bias value associated with each
neuron, which represents the tendency for the node to be activated. Each neuron has an
associated activation function, which applies a non-linear mapping to a real number;
they are designed to map real numbers to a value between 0 and 1 to create an effective
choice operator—the output value of the activation function becomes the activation
associated with each neuron. The activation value in each non-input layer neuron is
computed as a weighted sum of the weights and biases of the neurons and edges of the
previous layers, then rescaled using the activation function.

Each neuron in the output layer can be associated with a certain class (e.g. cat or
dog). The “goal” of classification for a neural network is to recognize patterns in input
data and associate the entry of input data with a particular class. This is achieved by
changing the weights and biases of each neuron and edge in the neural network. The
larger the activation is in a neuron, or “brighter” the neuron is, the more the neural
network thinks that a given set of input data is associated with that particular “class”.
A prediction by the neural network given some input data is essentially choosing the
class associated with the neuron containing the highest activation value.

A loss function is a a function of activation values from neurons in the output layer
and actual known computed values that outputs a number or loss. The loss indicates
how well the neural network is performing based on a set of input data—the higher the
loss, the worse the neural network is performing. Backpropagation is an algorithm ...

Training is the process of modifying the weights and biases of each neuron and edge
in a neural network, which are initialized to random values at the start, based on a set of

3

David Z.
Machine Learning

and
Cryptography

input data.
An epoch is a run through a given training set.
One-hot encoding is...
A sigmoid function is . We will be using this as the activation function for nodes in

the output layer.
A rectified linear unit (ReLU) is . We will be using this as the activation function

for the nodes in the input and hidden layers.
In this paper, we will be using feedforward neural networks, a class of neural

networks where connections between nodes do not form a cycle.

4

David Z.
Machine Learning

and
Cryptography

§2 Cracking the Shift Cipher

In this section, we will show two different ways to use a feedforward neural networks
to crack the Shift Cipher. The Shift Cipher only has 26 possible keys — making it an
easy task to find the key using brute force since only one key will “make sense.” The
purpose of using a neural network for this cipher is solely to demonstrate how to leverage
machine learning techniques for more complex ciphers and by no means is this a better
way for cracking the Shift Cipher.

§2.1 Method 1

To use a neural network, we need to train it to recognize patterns in a dataset. However,
the dataset is not exactly clear, so we will have to generate it from a corpus of English
plaintext. For this method, we will train a neural network to recognize what a plaintext
is shifted by, given the letter frequencies of the ciphertext.

§2.1.1 Generating Data

a freq. b freq. · · · z freq. key 0 key 1 · · · key 14 · · · key 25

0.50 0.25 · · · 0.25 0 0 · · · 1 · · · 0

Figure 2: Entry of data for the string “aaaabbzz” and a key of 14

The first step is to get data to train and test the neural network. The input will
be letter frequencies of a plaintext and the output will be the key. The key will be a
vector of length 26 to perform one-hot encoding for each of the shifts. More precisely, the
ith entry of the key vector is equal to 1 if i = s and 0 otherwise (using zero-based indexing).

Then, we can generate a dataset using a corpus as follows:

1. Take a plaintext, T , from the corpus of sufficiently many characters — [1] takes
blocks of 100 words from the British national corpus

2. Pick a random integer s ∈ [0, 25] and encrypt T by shifting each character in T by
s many characters to generate a ciphertext, C

3. Compute the letter frequencies of C. An entry in the dataset will be an input/output
pair of vectors of length 26: the input will be the frequency vector and the output
vector will be the key vector

4. Repeat steps 1-3 until we have sufficiently many entries in the dataset

5

David Z.
Machine Learning

and
Cryptography

§2.1.2 Creating the Neural Network

Figure 3: Model used to crack the Shift Cipher

Now, we will discuss the architecture of the feedforward neural network. We use a
simple feedforward neural network consisting of 3 layers: an input layer, a hidden layer,
and an output layer. Each of the layers consist of 26 neurons. For activation functions,
we choose a sigmoid function for the nodes in the output layer and a rectified linear unit
(ReLU) for the nodes in the other layers. Figure 3 shows the model we described in
Keras, an open-source neural network library written in Python.

After defining the model, we can train the model through backpropagation. The model
takes only a few epochs to train. This step only takes a few seconds, depending on the
size of the dataset and computing power of your machine. Once trained, the model can
be saved and used later.

§2.1.3 Applying the Model

Now that we have a fully-trained model, we may use the model to actually crack the
Shift Cipher:

1. Given a ciphertext C, compute the letter frequencies of C, denote it as ~f

2. Using the trained neural network, input the frequency vector f to get a key vector
k.

3. The key s is the index of the max element in k. Namely, we choose the node that
is most ”brightly” lit or has the highest activation.

Upon successfully training the model, we can store the model locally to remove the
necessity of training the model each time we want to crack the Shift Cipher. Cracking the
Shift Cipher sing a pretrained neural network model is near instantaneous. When tested
on an independent dataset, we get 100% accuracy. By no means is this an advancement
on existing methods and anything less than 100% is not worth looking into. In the next
section, we will look into a different method using neural networks, similar to the “is
English” algorithm.

6

David Z.
Machine Learning

and
Cryptography

§2.2 Method 2

Now, we introduce a second neural network model to crack the Shift Cipher that will
be useful later on for more complex ciphers. We will introduce the notion of a “goodness”
value that measures how close a text is to English based on its frequencies. The primary
differences between the first and second method are that in the second method, the
output is a scalar value, rather than a key vector, and we will be using the neural network
indirectly to crack the Shift Cipher.

§2.2.1 Generating Data

The first step is to get data to train and test the neural network. The input will be
letter frequencies of a plaintext and the output will be a scalar value between 0 and 1,
the goodness value. The closer the “goodness” value is to 1, the closer the plaintext is to
English, in terms of letter frequencies.

Then, we can generate a dataset using a corpus as follows:

1. Take a plaintext, T , from the corpus of sufficiently many characters

2. Randomly pick 0 or 1. Half of the dataset will be English plaintexts and half of
the dataset will be ciphertexts encrypted by the Shift Cipher

a) If 1, then do not apply the Shift Cipher to T (shift of 0), T = C

b) If 0, then pick a random integer s ∈ [0, 25] and encrypt T by shifting each
character in T by s many characters to generate a ciphertext, C

3. Compute the letter frequencies of C. An entry in the dataset will be a vector of
length 26 as input and a scalar value as output: the input will be the frequency
vector and the output will be 1 if the entry is an English plaintext and 0 if the
entry is a ciphertext

4. Repeat steps 1-3 until we have sufficiently many entries in the dataset

§2.2.2 Creating the Neural Network

Figure 4: Model used to identify ciphertexts encrypted by the Shift cipher

Now, we will discuss the architecture of the feedforward neural network. We use a
simple feedforward neural network consisting of 3 layers: an input layer, a hidden layer,
and an output layer. The input layer and hidden layer consists of 26 neurons, but the
output layer only consists of a single neuron. For activation functions, we choose a
sigmoid function for the nodes in the output layer and a rectified linear unit (ReLU) for
the nodes in the other layers. Figure 4 shows the model we described in Keras.

7

David Z.
Machine Learning

and
Cryptography

The model takes only a few epochs to train. This step only takes a few seconds and
the model can easily identify whether a text is English or not, given the letter frequencies
of the text. It is important to note that we cannot directly use this neural network to
find the key since it outputs a scalar value.

§2.2.3 Applying the Model

We will now propose an algorithm to crack the Shift Cipher (by finding the key) using
the neural network .

First, we will define auxiliary functions to be used in the algorithm:

• FREQ(T) is a function that takes in a plaintext, T , and returns the letter frequencies
of T , a vector of length 26

• DECRYPT(C, n) is a function that takes in ciphertext C and an integer n and returns
a decrypted plaintext by the Shift Cipher with key n

• NN(~v) is a function that takes in a letter frequency vector, ~v, and returns a scalar
value representing the goodness of the text with letter frequencies ~v—essentially a
call to the pretrained neural network

Then, we can crack the Shift Cipher using the following algorithm:

Algorithm Crack Shift Cipher

1: let C be the given ciphertext
2: ~f ← FREQ(C)
3: max ← NN(~f) . Store current max goodness value
4: key ← 0 . Store key associated with max goodness value
5:

6: for i = 1 to 25 do
7: C

′ ← DECRYPT(C, i)
8: f ‘ ← FREQ(C

′
)

9: goodness ← NN(f
′
)

10: if goodness > max then
11: max ← goodness
12: key ← i
13: end if
14: end for
15:

16: return key

The algorithm runs in O(1) time since it is guaranteed to crack within 26 iterations.
In practice, cracking the Shift Cipher using this method is near instantaneous as well.
While this method may seem trivial, it solves the issue of having too many output
nodes by introducing a “goodness” value. We will see in the next few sections that this
architecture will be useful when attempting to crack more complex ciphers—those with
larger keyspaces.

8

David Z.
Machine Learning

and
Cryptography

§3 Cracking the Affine Cipher

The Affine Cipher is a more complex cipher than the Shift Cipher as it has a larger
keyspace. Namely, the keyspace is {1, 3, 5, ..., 25} × {0, · · · , 25}, which contains 312
elements. However, we may still follow a similar process used in cracking the Shift Cipher.
The only difference is accounting for a slightly larger keyspace when generating the
dataset.

§3.1 Generating Data

a freq. b freq. · · · z freq. key 1-1 key 1-2 · · · key 3-1 · · · key 25-25

0.50 0.25 · · · 0.25 0 0 · · · 1 · · · 0

Figure 5: Entry of data for the string “aaaabbzz” and a key of 3− 1

First, we will generate data to train and test the neural network. Again, the input will
be letter frequencies of a long text and the output will be the key. However, the length
of the key vector will be 312 instead—one entry for each possible key. Let a key for the
Affine Cipher be of the form: a− b. Then, the possible keys are

{1− 1, 1− 2, · · · , 3− 1, 3− 2, · · · , 25− 1, 25− 1, · · · , 25− 25}

Using zero-based indexing, the zeroth index is equal to 1 if the key is 1−1 and 0 elsewhere,
the first index is equal to 1 if the key is 1− 2 and 0 elsewhere, the twenty-sixth indedx is
equal to 1 if the key is 3− 1 and 0 elsewhere.

Then, we can generate a dataset using a corpus as follows:

1. Take a long text, T , from the corpus

2. Pick random integers a ∈ {1, 3, · · · , 25} and b ∈ [0, 25]. Encrypt T using the Affine
Cipher with key a, b to generate a ciphertext, C

3. Compute the letter frequency of C. An entry in the dataset will be an input/output
pair of vectors of lengths 26 and 312, respectively: the input is the frequency vector
and the output is the key vector.

4. Repeat steps 1-3 until we have sufficiently many entries in the dataset

9

David Z.
Machine Learning

and
Cryptography

§3.2 Creating and Applying the Neural Network

Figure 6: Model used to crack the Affine Cipher

The model we will use to crack the Affine Cipher will be similar to the one used in
the first method to crack the Shift Cipher. The model will consist of 3 layers: an input
layer, hidden layer, and an output layer. The input layer consists of 26 neurons, the
hidden layer consists of 256 neurons, and the output layer consists of 312 neurons. For
activation functions, we choose a sigmoid function for the neurons in the output layer
and a rectified linear unit (ReLU) for the neurons in the other layers. Figure 6 shows the
model we described in Keras.

It only takes a few seconds to both train the model and crack the Affine Cipher itself.
To actually use the model, a similar procedure can be follow to that of the first method
used to crack the Shift Cipher. Briefly, we input letter frequencies of a ciphertext, C,
and use the model to get a vector of length 312. The highest activation corresponds to
the key that the model predicts. When testing the model on an independent dataset, we
were able to achieve 100% accuracy.

10

David Z.
Machine Learning

and
Cryptography

§4 Cracking the General Substitution Cipher

In this section. we will show how to use a feedforward neural network to crack the
General Substitution Cipher. Compared to the Shift and Affine Ciphers, the General
Substitution Cipher is a substantially more complex cipher as its keyspace is several
orders of magnitude larger. The keyspace of the General Substitution Cipher is every
permutation of the alphabet, which has length 26! ≈ 4× 1026. It is impractical to have a
neural network with that many nodes in a layer since you would quickly run out of space.
We will proceed with a method similar to the second method used to crack the Shift Cipher.

§4.1 Generating Data

aaa freq. aab freq. · · · azz freq. · · · zzz freq. is English

0.50 0.50 · · · 0 · · · 0 1

0 0 · · · 0.5 · · · 0.5 0

Figure 7: Entries of data for the strings “aaab” and “azzz”

First, we will generate a dataset to train and test the neural network. Rather than use
letter frequencies of a long text, we will use 3-gram frequencies to get a better sense of
how close a text is to English. So, the input will be 3-gram frequencies of a long text
and the output will be a scalar value between 0 and 1, the goodness value. The closer
the “goodness” value is to 1, the closer the long text is to English, in terms of 3-gram
frequencies.

The 3-gram frequencies will be a vector of length 263 = 17, 576—one for each possible
sequence of 3 letters from the alphabet. The zeroth index of the vector will be the
frequency of ”aaa,” the first index will be the frequency of ”aab,” the twenty-sixth index
will be the frequency of ”aba.” Let a = 0, b = 1, · · · , z = 25. Then, the frequency of
the 3-gram σ1σ2σ3 lies in index 262σ1 + 261σ2 + 260σ3, where σ1, σ2, σ3 are letters in the
alphabet.

We can generate a dataset using a corpus as follows:

1. Take a long text, T , from the corpus of sufficiently many characters

2. Randomly pick 0 or 1. Half of the dataset will be English texts and half of the
dataset will be ciphertexts encrypted by the General Substitution Cipher

a) If 1, then do not apply the General Substitution Cipher to T . The key is the
alphabet (or {0, 1, 2, · · · , 25}), so T = C

b) If 0, then take a random permutation of the alphabet to be the key, ~k, and
encrypt T by using the General Substitution Cipher with key ~k to generate a
ciphertext, C

3. Compute the 3-gram frequencies of C. An entry in the dataset will be a vector
of length 17, 576 as input and a scalar value as output: the input is the 3-gram

11

David Z.
Machine Learning

and
Cryptography

frequency vector and the output is 1 if the entry is an English text and 0 if the
entry is a ciphertext

4. Repeat steps 1-3 until we have sufficiently many entries in the dataset

§4.2 Creating the Neural Network

Figure 8: Model used to identify ciphertexts encrypted by the substitution cipher

We will use a model similar to the neural network used in the second method to crack
the Shift Cipher. The model consists of 3 layers: an input layer, a hidden layer, and
an output layer, which have 17.576, 676, and 1 node(s), respectively. For activation
functions, we choose a sigmoid function for the nodes in the output layer and a rectified
linear unit (ReLU) for the nodes in the other layers. Figure 8 shows the model we
described in Keras.

The neural network takes a few epochs to train, which is a matter of seconds. Upon
completing its training, the model is able to identify whether a text is English or not,
given the 3-gram frequencies of a text, with 100% accuracy.

§4.3 Applying the Model

We will now propose an algorithm to crack the General Substitution Cipher using the
neural network.

First, we will define auxiliary functions to be used in the algorithm:

• FREQ3(T) be a function that takes in a text, T , and returns the 3-gram frequencies
of T , a vector of length 263 = 17, 576

• DECRYPT(C, ~v) is a function that takes in ciphertext C and a key vector ~v and
returns a decrypted text by the General Substitution Cipher with key ~v

• SHUFFLE(~v) is a function that returns a random permutation of the vector ~v

• NN(~v) is a function that takes in a 3-gram frequency vector ~v of length 17, 576 and
returns a scalar value representing the goodness of the text with 3-gram frequencies
~v—we feed ~v through the pretrained neural network

12

David Z.
Machine Learning

and
Cryptography

Then, we can crack the General Substitution Cipher using the following algorithm:

Algorithm Crack General Substitution Cipher

1: let C be the given ciphertext
2: let guess be an initial key vector
3: let keys[] and goodness[] be a lists of length MAXITERATIONS
4:

5: for i = 0 to MAXITERATIONS - 1 do
6: keys[i] ← guess
7: C

′ ← DECRYPT(C, keys[i])
8: goodness[i] ← NN(FREQ3(C

′
))

9:

10: for j = 0 to MAXSWAPS - 1 do
11: new key ← keys[i]
12: Swap two random values in new key
13: C

′ ← DECRYPT(C, new key)
14: new goodness ← NN(FREQ3(C

′
))

15: if new goodness > goodness[i] then
16: keys[i] ← new key
17: goodness[i] ← new goodness
18: end if
19: end for
20: end for
21:

22: return key[k] where k is the index of the max element in goodness[]

The algorithm as as follows: given a ciphertext C, the algorithm begins with an initial
key or “guess.” We swap a random value in the current key to create a new key, then
decrypts C using the new key. If the goodness value of the decrypted text using the new
key is higher than the goodness value of the decrypted text using the previous key, we
update the current key with the new key. In other words, if the text using the new key is
closer to English than the text using the old key, we update the key. We use the neural
network to decide if a text is close to English or not. This swapping routine is repeated
for MAXSWAPS many times.

What exactly do we use for the initial “guess?” [1] discusses picking a random permu-
tation of the alphabet as the initial guess. However, we found that it is not feasible at all
to use, contrary to their results. So, we use their second proposed option: a key that
matches the letter frequencies of English. Namely, we compute the letter frequencies of
ciphertext C and map the highest frequency to the letter e, the next highest frequency
to the letter t, and so on.

One problem that occurs when swapping random values in the key is that we can end
up updating the current key with a new key that is actually further away from the actual
key. This “false swap” results in the algorithm getting stuck and may not increase in
“goodness” for subsequent swaps. In other words, the algorithm gets stuck at a “local
maximum.” This occurs because of letters that have similar frequencies in English, and
it happens more often for texts of shorter length. To prevent this issue, we perform

13

David Z.
Machine Learning

and
Cryptography

the swapping routine more than once. More precisely, we perform the swapping routine
MAXITERATIONS many times, storing the keys and max goodness values from each
of the routines, then picking the key with the maximum goodness value out of all of
the iterations. [1] finds that MAXITERATIONS = 10 and MAXSWAPS = 400 yields
sufficient results.

We were able to reproduce similar results to [1] with a slightly slower runtime, most
likely due to differences in computer performance. Although the full key is not always
recovered, the predicted key is only off by one or two mappings, which can easily be
corrected by inspection. Though this method does not completely crack the General
Substitution Cipher (recover the correct key 100% of the time), we demonstrate a way to
automate cracking the General Substitution Cipher.

14

David Z.
Machine Learning

and
Cryptography

References

[1] Focardi, R. & Luccio, F. (2018). Neural Cryptanalysis of Classical Ciphers.
http://ceur-ws.org/Vol-2243/paper10.pdf

[2] Portwood, Gavin & Ragusa, Jean & Tano Retamales, Mauricio. (2020). Accelerating
Training in Artificial Neural Networks with Dynamic Mode Decomposition.

15

	Terminology
	Ciphers
	The Shift Cipher
	The Affine Cipher
	The General Substitution Cipher

	Neural Networks

	Cracking the Shift Cipher
	Method 1
	Generating Data
	Creating the Neural Network
	Applying the Model

	Method 2
	Generating Data
	Creating the Neural Network
	Applying the Model

	Cracking the Affine Cipher
	Generating Data
	Creating and Applying the Neural Network

	Cracking the General Substitution Cipher
	Generating Data
	Creating the Neural Network
	Applying the Model

