
For any n points in the plane:
(a) There are n0.66 distinct distances
(b) There are n0.8 distinct distances
An Exposition by William Gasarch

1 Introduction

Let P be any set of n points in the plane. How may different distances are there
between the points?

Example 1.1

1. If they are all in a line, one inch apart, then there are n − 1 = Θ(n) distinct
distances.

2. If they are all in a line, but the distance keeps doubling, so x2 − x1 = 1,
x3−x2 = 2, x4−x3 = 22, x5−x4 = 23, etc, then there are

(
n
2

)
= Θ(n2) different

distances.

3. If they are in a uniform
√

n ×
√

n grid then there are O(n/
√

log n) different
distances (this is not obvious).

How many different distances are guaranteed?

Def 1.2 Let

diff-dist(P ) = |{d(p, q) : p, q ∈ P}|
g(n) = min{diff-dist(P ) : P is a set of n points in the plane}

Székely [13] and Solymosi and Toth [6] state that Erdös conejctured g(n) ≥ n√
log n

.

Erdös conjectured that, for all ε, g(n) = Ω(n2−ε). Chung [2] and Moser [9] state that
Erdös conjectured (∀ε)[g(n) ≥ n2−ε] They all refer to [5]; however, that paper contains
no such conjecture. It is possible that Erdös made some conjecture in talks he gave.

The following are known.

1. O(n/
√

log n) ≥ g(n) ≥ Ω(n0.5). Erdös [5].

2. g(n) ≥ Ω(n0.66...) (actually Ω(n2/3)). Moser [9].

3. g(n) ≥ Ω(n0.7143...) (actually Ω(n5/7)). Chung [2].

4. g(n) ≥ Ω(n0.8/ log n). Chung, Szemerédi, Trotter [3].

5. g(n) ≥ Ω(n0.8). Székely [13].

6. g(n) ≥ Ω(n0.8571) (actually Ω(n6/7)). Solymosi and Toth [6].
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7. g(n) ≥ Ω(n0.8634...) (actually Ω(n((4e/(5e−1))−ε)). Tardos [15].

8. g(n) ≥ Ω(n0.864...) (actually Ω(n((48−14e)/(55−16e))−ε)). Katz and Tardos [7].

All of these papers are at
http://www.cs.umd.edu/~gasarch/erdos_dist/erdos_dist.html.
In this exposition we give a complete and motivated proof of the results

g(n) ≥ Ω(n0.66...).

and

g(n) ≥ Ω(n0.8).

We present Székely’s proof of the latter result which, early on, yields the former
result. That is, the proof of g(n) ≥ Ω(n0.66...) is not the one originally given by Moser.
It will fall out of the technology used to prove g(n) ≥ Ω(n0.8).

We will actually prove something slightly stronger. We will show that if P is a
set of points then there is some point p ∈ P such that the set of distances from p is
Ω(n0.66) and then Ω(n0.8).

Def 1.3 Let P be a set of points and let p ∈ P . Then

dd-from-a-point(P, p) = |{d(p, q) : q ∈ P}|
max-dd-from-a-point(P ) = max{dd-from-a-point(P, p) : p ∈ P}

g′(n) = min{max-dd-from-a-point(P ) : P is a set of n points in the plane }

Clearly g(n) ≥ g′(n). We show g′(n) = Ω(n0.66), and g′(n) = Ω(n0.8).

2 Motivation

We assume the following throughout.

1. P is a set of n points in the plane.

2. The maximum number of distances from any point is t ≤ n0.9 (if this does not
hold we already have our theorems).

Picture the following: around every point place concentric circles that hit all of
the other points. See Figure 1.

INSERT A FIGURE.
Fix a point p. The following are clear:

1. The number of concentric circles around p is ≤ t.

2. The number of concentric circles that have only one point on them is ≤ t.
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We now form a multigraph.

Def 2.1 The multigraph GP is defined as follows.

1. V = P .

2. Any two adjacent points on a circle form an edge.

Def 2.2 Let G be a graph. The crossing number of G is the minimal number of
non-vertex crossings that the graph can be drawn with. Note that a planar graph
has crossing number 0. We denote the crossing number of G by c(G). We may use c
if the graph is understood.

Lemma 2.3 Let G = GP .

1. The number of vertices is v = n.

2. The number of edges is e = Ω(n2).

3. The maximum multiplicity of an edge is m = O(t).

4. The crossing number is c ≤ O(n2t2).

Proof:
1) Clearly there are n vertices.

2) Let p ∈ P . How many edges does it create? For every vertex that is not alone
on its circle centered at p, an edge is formed (say go clockwise). Hence every point p
is responsible for ≥ n − t edges. Therefore the total number of edges is ≥ n(n − t).
Since t ≤ n0.9 we have

e ≥ n(n− t) ≥ Ω(n2).

3) Imagine that there are two vertices u, v that have m circles passing through them.
For every circle there is a point p ∈ P that is responsible for it. Let the points be
p1, . . . , pm. It is possible that two of the pi’s have the same distance to u, but no more
than that. Hence there are ≥ m/2 different distances. Hence m/2 ≤ t, so m = O(t).

4) The crossing number: Two circles intersect in at most 2 points. Hence the crossing
numbers is bounded above by the square of the number of circles. The number of
circles: each point causes ≤ t circles, hence there are ≤ nt circles. Therefore the
crossing number is c ≤ O(n2t2).

So what to do? We need a relation between the crossing number of a multigraph
and the number of vertices, edges, and multiplicity.
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3 The Crossing Lemma for Graphs

We first prove a lower bound on the crossing number for graphs. We then use this to
get a lower bound on the crossing number for multigraphs.

The following is well known and easy to find, so we will not prove it.

Lemma 3.1 If G = (V, E) is a planar graph with v vertices and e edges then e ≤
3v − 6.

Def 3.2 Let G be a graph. The crossing number of G is the minimal number of
non-vertex crossings that the graph can be drawn with. We often denote the crossing
number by c. Note that a planar graph has crossing number 0.

Lemma 3.3 If G = (V, E) is a graph with v vertices, e edges, and crossing number
c then c ≥ e− 3v.

Proof:
First draw the graph in the plane with c non-vertex crossings. Remove the edges

that cause the crossings one at a time until the graph is planar. The new graph G′

has v vertices and e− c edges. By the prior lemma

e− c ≤ 3v − 6

e ≤ 3v + c− 6.

c ≥ e− 3v + 6 ≥ e− 3v.

We will get a much better lower bound on c. This result, called The Crossing
Lemma, was proven independently by Ajtai, Chvátal, Newborn, Szemerédi [1] and
Leighton [8].

Lemma 3.4 Let G = (V, E) be a graph with v vertices’s, e edges, and crossing
number c. If e ≥ 4v then c ≥ Ω( e3

v2 ).

Proof: Let p be a probability that we will set later. For every vertex in the graph
remove it with probability 1− p. Let the resulting graph be G = (V ′, E ′). We denote
the number of vertices by v′, the number of edges by e′, and the crossing number by
c′.

E(v′) = vp since we retain each edge with probability p.
E(e′) = ep2 since we need to retain both of the endpoints to retain the edge.
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E(c′) ≤ cp4 since if you retain all four vertices then you might retain the crossing,
but if you lose any one of them then you won’t.

By Lemma 3.3 we have

c′ ≥ e′ − 3v′.

By the linearity of expectation we have

E(c′) ≥ E(e′)− 3E(v′)

Combining this with what we already know about E(v′), E(e′) and E(c′) we obtain

cp4 ≥ E(c′) ≥ ep2 − 3vp.

c ≥ e

p2
− 3v

p3
.

Set p = 4v/e (this is where we use e > 4v).
Then we get

c ≥ e3

64v2
= Ω

(
e3

v2

)
.

Note 3.5 The hypothesis e ≥ 4v of Lemma 3.4 can be weakened to e ≥ (3 + ε)v for
any ε > 0.

Note 3.6 The above proof gives c ≥ e3

64v2 ∼ 0.0156 e3

v2 . The best result known to
date is by Pach, Radoicic, Tardos, and Toth [11, 12] who have that if e ≥ 7n then
c ≥ 0.032 e3

v2 . It is know that there are an infinite number of n such that there is a

graph on n vertices with graphs with e ≥ 7n and c ≤ 0.09 e3

v2 .

4 The Crossing Lemma for Multigraphs

The following lemma is due to Székely [13].

Lemma 4.1 Let G = (V, E) be a multigraph with v vertices, e edges, multiplicity m
and crossing number c. If e ≥ 9mn then c ≥ Ω(e3/mv2).
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Proof:
Some of the edges have high multiplicity which leads to lots of crossings (good),

but also lots of edges (bad). Some of the edges have low multiplicity (bad), but also
not that many edges (good). How to balance the two?

We assume that m is a power of 2. For 0 ≤ i ≤ lg m let Gi = (V, Ei) be
the multigraph that only uses those edges that have multiplicity in [2i, 2i+1). For
example, if between u and v there are 10 edges then in G3 there are 10 edges between
u and v but in any other Gi there are no edges between u and v. Let ei = |Ei| and
let ci = c(Gi). Note that Gi has v vertices.

It is easy to see that

c(G) ≥
lg m∑
i=0

c(Gi).

We will now estimate c(Gi). This will be easier than estimating c(G) since we
have much more information about the multiplicities.

Let G∗
i = (V, E∗

i ) be formed by collapsing all of the multiedges of Gi into edges.
Let e∗i = |E∗

i | and c∗i = c(G∗
i ). The following are easy to see:

Fact 4.2

1. e∗i ≥ ei/2
i+1 (since the multiplicity of Gi is ≤ 2i+1).

2. ci ≥ 22ic∗i (since the multiplicity of Gi is ≥ 2i).

We would like to apply Lemma 3.4 to the graph G∗
i . However, to do this we would

need e∗i ≥ 4v. This could easily not be the case.
Note that by Fact 4.2

e∗i < 4v =⇒ ei/2
i+1 < 4v =⇒ ei < 2i+3v.

Hence

ei ≥ 2i+3v =⇒ e∗i ≥ 4v.

Let

A = {i : ei ≥ 2i+3v}
B = {i : ei < 2i+3v}

We will only deal with i ∈ A for which we clearly have e∗i ≥ 4v and hence can
apply Lemma 3.4.

We will need
∑

i∈A e∗i ≥ e/9 (any constant would work). Note that

e =
∑
i∈A

ei +
∑
i∈B

ei.
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By the definition of B we have

∑
i∈B

ei ≤
∑
i∈B

2i+3v ≤ 8v
∑
i∈B

2i ≤ 8v

lg m∑
i=0

2i ≤ 8nm.

Since e ≥ 9nm we have ∑
i∈B

ei ≤ 8nm ≤ 8e/9.

Hence ∑
i∈A

ei = e−
∑
i∈B

ei ≥ e− 8e/9 = e/9 = Ω(e) = Ω(n2).

Let i ∈ A. Then, by Lemma 3.4.

c∗i ≥ Ω

(
(e∗i )

3

v2

)
.

By Fact 4.2 we get

ci

22i
≥ c∗i ≥ Ω

(
(e∗i )

3

v2

)
≥ Ω

(
e3

i

v223i

)
.

ci ≥ Ω

(
e3

i

v22i

)
.

Hence we have

c(G) ≥
∑
i∈A

Ω

(
e3

i

v22i

)
≥ Ω

(∑
i∈A

e3
i

v22i

)
≥ 1

v2
Ω

(∑
i∈A

e3
i

2i

)
≥ 1

v2
Ω

(∑
i∈A

(
ei

2i/3

)3)
.

We need to lower bound

∑
i∈A

(
ei

2i/3

)3

.

Hence we want to lower bound the min this sum can achieve. We do not know
what the ei’s, though we do know that

∑
i∈A ei ≥ e/9. We will use Hölder’s inequality.

BILL- ask RJB how to do this easier.

Lemma 4.3 (Hölder’s Inequality) Let x1, . . . , xL, y1, . . . , yL be nonnegative reals. Let
p, q be such that 1/p + 1/q = 1. Then

L∑
i=1

xiyi ≤ (
L∑

i=1

xp
i )

1/p(
L∑

i=1

yq
i )

1/q
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Proof: See Appendix.

We will use Hölder’s inequality in the following form:

L∑
i=1

xp
i ≥

( ∑L
i=1 xiyi

(
∑L

i=1 yq
i )

1/q

)p

We will use it with p = 3, q = 3/2, and i ∈ A instead of i = 0 to L.

∑
i∈A

x3
i ≥

( ∑
i∈A xiyi

(
∑

i∈A y
3/2
i )2/3

)3

Recall that we want to minimize∑
i∈A

(
ei

2i/3

)3

with the constraint that
∑

i∈A ei ≥ e/9. Let xi = ei/2
i/3 and yi = 2i/3.

Note that ∑
i∈A

xiyi =
∑
i∈A

ei ≥ e/9 = Ω(e)

(yi)
3/2 = (2i/3)3/2 = 2i/2

∑
i∈A

y
3/2
i =

∑
i∈A

2i/2 = O(2(lg m)/2) = O(m1/2)

(
∑
i∈A

y
3/2
i )2/3 = O(m1/3)

By Hölder’s inequality we get

∑
i∈A

(
ei

2i/3

)3

≥
(

e

m1/3

)3

≥ Ω

(
e3

m

)
Recall that we had:

c(G) ≥
∑
i∈A

Ω

(
e3

i

v22i

)
≥ Ω

(∑
i∈A

e3
i

v22i

)
≥ 1

v2
Ω

(∑
i∈A

e3
i

2i

)
≥ 1

v2
Ω

(∑
i∈A

(
ei

2i/3

)3)
.

We now have

∑
i∈A

(
ei

2i/3

)3

≥
(

e

m1/3

)3

≥ Ω

(
e3

m

)
.
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Hence

c(G) ≥ Ω

(
e3

mv2

)
.

Note 4.4 Lemma 4.1 and its proof are from [13]. In that paper the Lemma uses the
premise e ≥ 5mn. This appears to be a typo in that paper.

5 g′(n) ≥ Ω(n2/3)

Theorem 5.1 g′(n) ≥ Ω(n2/3). Hence g(n) ≥ Ω(n2/3).

Proof: Let G = GP . By Lemma 2.3

1. v = n.

2. e = Ω(n2).

3. m = O(t).

4. c = O(n2t2).

By Lemma 4.1 and c = O(n2t2) we have

n2t2 ≥ c ≥ Ω

(
e3

mv2

)
Hence

n2t2 ≥ Ω

(
e3

mv2

)
≥ Ω

(
n6

tn2

)
= Ω

(
n4

t

)
t3 = Ω(n2)

t = Ω(n2/3).
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6 Motivation For How to Proceed

Look at Theorem 5.1. The GOOD NEWS is that we got Ω(n2/3). The BAD NEWS
is that we didn’t do any better than that.

How can we do better? We need to get a better handle on the multiplicities. How
many edges really have that high a multiplicity? We will (much later) find a cutoff
point k and remove from the graph all edges with multiplicity ≥ k. That is, if there
are ≥ k edges between u and v then they will all be removed. The resulting graph
will still have Ω(n2) edges but only have multiplicity ≤ k.

Lets look more carefully at an edge of high multiplicity. We said (correctly) that
if there is an edge of multiplicity m then there are Θ(m) points in P that cause those
edges. Note that those points are on the same line!! See Figure 2.

INSERT A FIGURE.
They are all on the perpendicular bisector of the line from u to v. And there are

at most t + 1 of these points. This inspires us to look at a new problem:
Given a set P of n points in the plane, and a parameter k, how many incidences

are there between those points and lines in

L = {` : ` is incident to ≥ k points of P }.

To get a good bound on this number we take a rather long detour. In particular,
we prove the Szemerédi -Trotter Theorem. We already have one of the ingredients
for that proof, namely the Crossing Lemma (Lemma 3.3).

7 The Szemerédi-Trotter Theorem

If you have a set of points P , and a set of lines L, how many times do a point and
a line meet? They could of course meet 0 times. What is the maximum amount of
times they could meet?

Def 7.1 Let P be a set of points and L be a set of lines. An incidence of P and L
is a pair (p, `) ∈ P × L such that point p is on line `. Let

IP,L = {(p, `) : p ∈ P, ` ∈ L and p is on `}.

We will leave out the subscripts if they are understood.

We will prove the following theorem:

|I| = O(|P |+ |L|+ (|L||P |)2/3).

This was first proven by Szemerédi and Trotter [14]. Different proofs can be found
in [4] and [10]. We present the simplest known proof, due to Székely [13].

10



Theorem 7.2 For any set of P points and L lines in the plane,

|I| ≤ O(|P |+ |L|+ (|L||P |)2/3).

Proof:
Define a graph G = (V, E) as follows:

V = P , the set of points.
E = {(x, y) : x and y are both on some line ` ∈ L and are adjacent }.

Let v = |V | and e = |E|. It is easy to see that v = P The number of edges is
harder to determine. Let the lines be `1, `2, . . . , `L. Assume that `i has pi points of
P on it. Then `i is responsible for pi − 1 edges. Hence the total number of edges is

|L|∑
i=1

(pi − 1) = (

|L|∑
i=1

pi)− |L| = |I| − |L|.

Hence

e = |I| − |L|.
Look at the natural way to draw the graph— placing the points where they are

naturally. Where there is a crossing you must have two of the lines intersecting.
Hence there are at most |L|2 crossings. Hence

c ≤ |L|2.
We want to apply Lemma 3.4. However, for this we need e ≥ 4v. But this might

not be true. Hence we have two cases.
Case 1: e < 4v. Hence |I|−|L| ≤ 4|P |, so |I| ≤ 4|P |+|L| = O(|P |+|L|+(|L||P |)2/3).

Case 2: e ≥ 4v. We apply Lemma 3.4 to obtain

|L|2 ≥ c ≥ Ω

(
e3

v2

)
= Ω

(
(|I| − |L|)3

|P |2

)
(|L||P |)2 ≥ Ω((|I| − |L|)3)

(|L||P |)2/3 ≥ Ω(|I| − |L|)

|I| ≤ O((|L||P |)2/3 + |L|) ≤ O(|P |+ |L|+ (|L||P |)2/3).

Note 7.3 The best known upper and lower bounds on I are due to Pach, Radoicic,
Tardos, and Toth [11], [12]. They are

0.42(|L||P |)2/3 + |L|+ |P | ≤ |I| ≤ 2.5(|L||P |)2/3 + |L|+ |P |.
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8 Corollaries of the Szemerédi-Trotter Theorem

We state two corollaries of The Szemerédi-Trotter Theorem. We call them Lemmas
since we will use them to prove lower bounds on g(n).

BILL- CHECK IF YOU USE THIS LEMMA FOR THE n0.85 RESULT MUCH
LATER.

Lemma 8.1 Let P be a set of points and let k ∈ N. (We assume k is bigger than
any constant we may encounter.) Let

L = {` : ` has at least k points from P on it}.

Then

|L| = O

(
max

{
|P |
k

,
|P |2

k3

})
.

Proof: Note that the number of incidences of P and L is at least k|L|. Hence

|I| ≥ k|L|.

Using this and Theorem 7.2 to P and L to obtain

k|L| ≤ |I| ≤ O(|P |+ |L|+ (|L||P |)2/3).

There are two cases.
Case 1: (|L||P |)2/3 ≤ |P |+ |L|.

k|L| ≤ O(|P |+ |L|) ≤ O(|P |) + O(|L|)

|L| ≤ O

(
|P |
k

)
.

Case 2: |P |+ |L| ≤ (|L||P |)2/3.

k|L| ≤ O((|L||P |)2/3)

k|L|1/3 ≤ O(|P |2/3)

k3|L| ≤ O(|P |2)

|L| ≤ O

(
|P |2

k3

)
Combining the two cases yields
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|L| = O

(
max

{
|P |
k

,
|P |2

k3

})
.

We now want to bound |I|, the number of incidences between P and L. Theo-
rem 7.2 does not give us a good upper bound on |I|. It implies that |I| is bounded
above by the max of the following two quantities.

• O(|P |+ |P |/k + (|P |2/k)2/3)

• (|P |+ |P |2/k3 + (|P |3/k3)2/3) = O(|P |+ |P |2/k3 + |P |2/k2) = O(|P |+ |P |2/k2)

The second bound is good enough for our later purpose; however, the first one is not.
Hence we need and obtain a better bound.

Corollary 8.2 Let P be a set of points and let k ∈ N. (We assume k is bigger than
any constant we encounter.) Let

L = {` : ` has at least k points from P on it}.

Let I be the set of incidences between P and L. Then

|I| ≤ O

(
|P | log |P |+ |P |2

k2

)
.

Proof: We encounter the same problem, and use the same solution, as in the proof
of Lemma 4.1. The problem is that some of the lines have a ‘small’ number of points
of P on them, say roughly k, while others may have many, say roughly P . We will
partition the lines into types we can more easily reason about.

We assume that |P | is a power of 2.
If ` is a line then let I(`) be the set of (number of) incidences between ` and P .
For 0 ≤ i ≤ L let

Li = {` : i ≤ I(`) < 2i}.

Ii =
⋃
`∈Li

I(`).

We are only concerned with i = 20k, 21k, 22k, . . . , 2lg |P |k. (Actually we are really
only concerned with 20k, . . . , 2lg |P |−lg kk; however, this refinement will not help us.)
In particular we will use

|I| ≤
lg |P |∑
i=0

|I2ik|.

However, we state and proof some facts about |Ii|, |Li| in general. We will later
use these facts with i = 20k, . . . , 2lg |P |k.
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• i|Li| ≤ |Ii| ≤ 2i|Li| by the definition of |Li|.

• |Ii| ≤ O(|P |+ |Li|+ (|P ||Li|)2/3) by Theorem 7.2.

• i|Li| ≤ O(|P |+ |Li|+ (|L||P |i)2/3) by the last two items.

We bound |Li| and then later plug in 2ik for i. By the last item we have

|Li| ≤ O

(
|P |
i

+
(|L||Pi|)2/3

i

)
There are two cases;

Case 1: |P |
i
≥ (|L||Pi|)2/3

i

|Li| ≤ O

(
|P |
i

)
.

Case 2: (|L||Pi|)2/3

i
≥ |P |

i

|Li| ≤ O

(
(|L||Pi|)2/3

i

)
.

|Li|1/3 ≤ O

(
|P |2/3

i

)
.

|Li| ≤ O

(
|P |2

i3

)
.

We combine the two cases to get the more easily managed equation

|Li| ≤ O

(
|P |
i

+
|P |2

i3

)
.

Recall that |I|i ≤ 2i|Li|. Hence

|Ii| ≤ 2i|Li| ≤ O

(
|P |+ |P |2

i2

)
.

Our concern is

|I2ik| ≤ O

(
|P |+ |P |2

22ik2

)
.

|I| ≤
lg |P |∑
i=0

|I2ik| ≤
lg |P |∑
i=0

O

(
|P |+ |P |2

22ik2

)
≤ O(|P | log |P |) + O

(lg |P |∑
i=0

|P |2

22ik2

)
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≤ O(|P | log |P |) + O

(
|P |2

k2

lg |P |∑
i=0

1

22i

)
≤ O

(
|P | log |P |+ |P |2

k2

)
.

9 g′(n) = Ω(n0.8)

Theorem 9.1 g′(n) ≥ Ω(n4/5). Hence g(n) ≥ Ω(n4/5).

Proof: Let G = GP . By Lemma 2.3

1. v = n.

2. e = Ω(n2).

3. m = O(t).

4. c = O(n2t2).

As we saw in the proof of Theorem 5.1 the above facts can be used to show
g(n) ≥ n2/3. We need a more careful argument to obtain g(n) ≥ n4/5.

Let k be a parameter to be chosen later. We will are going to remove all edges
of multiplicity ≥ k to create a new graph G′. G′ has vertex set V = P and all the
edges of multiplicity ≤ k. Let e′ be the number of edges in G′ and c′ be the crossing
number of G′. Note that

c′ = Ω

(
(e′)3

kn2

)
.

We want c′ to be large. We have two conflicting requirements on k

• We want k small so that c′ has a small denominator and hence is large.

• We want k large so that e′ is large so that c′ has a large numerator and hence
is large.

What we really need to know is, how many edges have high multiplicity?
Claim 1: The number of edges of multiplicity ≥ k is at most

O

(
tn log n +

tn2

k2

)
.

Proof of Claim 1: Let

L = {` : ` has at least k points from P on it}.
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Let I be the set of incidences between P and L. By Corollary 8.2

|I| ≤ O

(
n log n +

n2

k2

)
.

Let (u, v) be an edge of multiplicity ≥ k. It exists because of the incidence of a
point of P on the the perpendicular bisector of (u, v). Map (u, v) to the incidence of
that point on that line. See Figure 3.

INSERT A FIGURE
Note that that line has ≥ k points of P on it, so its in I. Hence we are mapping

edges of multiplicity ≥ k to elements of I. (Note that I is a set of incidences, not a
set of points.) An element of I can be mapped to at most t times. Hence the number
of edges of multiplicity ≥ k is at most

t|I| ≤ O

(
tn log n +

tn2

k2

)
.

End of Proof of Claim 1
Let G′ be the graph G with all of the edges of multiplicity ≥ k removed. Let e′

be the number of edges in G′ and c′ be the crossing number of G′. Note that G′ has
n vertices. We want to pick a value of k such that e′ ≥ Ω(n2).

By Claim 1 there is a constant b so that we have removed no more than

≤ btn log n +
btn2

k2
edges .

Recall that e = Θ(n2). Let a be a constant such that e ≥ an2. Hence we have

e′ ≥ an2 − btn log n− b
tn2

k2

Recall that t ≤ n0.9. Hence we can ignore the btn log n term by lowering the a
just a little (we do not bother to rename a).

e′ ≥ an2 − btn2

k2
.

To get e′ = Ω(n2) it will suffice to have

k ≥
√

2bt

a
.

Recall that we had two goals: keep e′ large and k small. Hence it makes sense

to take k =
⌈√

2bt
a

⌉
. With this value of k we have e′ = Ω(n2) and k = Ω(t1/2). We

would like to apply 4.1. Recall that one of the premises was e ≥ 9mv. Since we
have e = Ω(n2), v = n, and m ≤ O(t1/2). Recall that we assume t = n0.9, hence
m ≤ O(n0.45). Hence 9mv = O(n1.45). Clearly e ≥ 9mv.
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By Lemma 4.1 we have the following.

c′ ≥ Ω

(
e′3

kn2

)
= Ω

(
(n2)3

t1/2n2

)
= Ω

(
n6

t1/2n2

)
= Ω

(
n4

t1/2

)
.

Recall that we also have c′ ≤ n2t2, so we have

n2t2 ≥ c′ ≥ Ω

(
n4

t1/2

)
.

t2.5 ≥ Ω(n2)

t ≥ Ω(n2/2.5) = Ω(n0.8).
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