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 A New Game Chromatic Number

 G .  C HEN ,  R .  H .  S CHELP AND  W .  E .  S HREVE

 Consider the following two-person game on a graph  G .  Players I and II move alternatively to
 color a yet uncolored vertex of  G  properly using a pre-specified set of colors .  Furthermore ,
 Player II can only use the colors that have been used ,  unless he is forced to use a new color to
 guarantee that the graph is colored properly .  The game ends when some player can no longer
 move .  Player I wins if all vertices of  G  are colored .  Otherwise Player II wins .  What is the
 minimal number  χ g *( G ) of colors such that Player I has a winning strategy? This problem is
 motivated by the game chromatic number  χ g ( G ) introduced by Bodlaender and by the
 continued work of Faigle ,  Kern ,  Kierstead and Trotter .  In this paper ,  we show that  χ g *( T  )  <  3
 for each tree  T .  We are also interested in determining the graphs  G  for which  χ  ( G )  5  χ g *( G ) ,
 as well as  χ g *( G ) for the  k -inductive graphs where  k  is a fixed positive integer .

 ÷  1997  Academic Press Limited

 1 .  I NTRODUCTION

 Let  G  5  ( V ,  E ) be a graph and let  X  be a finite set .  A vertex coloring of  G  is a
 mapping from  V  to  X .  A coloring of  G  is proper if  u  and  y    are assigned dif ferent colors
 whenever  u y    is an edge in  G .  As usual ,  the chromatic number is defined to be the
 smallest  u X  u   such that the graph  G  can be colored properly with the colors of  X .

 The game chromatic number was introduced by Bodlaender [1] ,  and developed by
 Faigle ,  Kern ,  Kierstead and Trotter [5] .  For the completeness of this paper ,  we state
 the definition of game chromatic number given in [5] .

 The game chromatic number is based on the following modified coloring problem as
 a two-person game in which the first player tries to color a graph and the second tries
 to prevent this from happening .  Let  G  5  ( V ,  E ) be a graph ,  let  t  be a positive integer ,
 and let  X  be a set of colors with  u X  u  5  t .  The two persons compete in a two-person
 game lasting at most  n  5  u V  u   moves .  They alternate turns ,  with a move consisting of
 selection of a previously uncolored vertex  x  and assigning it a color from  X  distinct
 from the colors assigned previously (by either player) to neighbors of X .  If ,  after  n ,
 moves ,  the graph is colored ,  the first player is the winner .  The second player wins if an
 impasse is reached before all vertices in the graph are colored ;  that is ,  if for every
 uncolored vertex  x  and every color  a   from  X , x  is adjacent to a vertex having color  a .
 The  game chromatic number  of a graph  G ,  denoted by  χ g ( G ) ,  is the last  t  for which the
 first player has a winning strategy .

 The  game chromatic number  of a family  ̂    of graphs ,  denoted  χ  ( ̂  ) ,  is then defined
 to be max h χ g ( G )  :  G  P  ̂  j ,  provided that the value is finite ;  otherwise ,   χ g ( ̂  ) is infinite .

 It was shown that the game chromatic number of the family of trees is at least 4 and
 at most 5 by Bodlaender [1] .  Later ,  Faigle ,  Fern ,  Kierstead and Trotter [5] showed that
 the game chromatic number of the family of trees is 4 .  Recently ,  Kierstead and Trotter
 [6] proved that the game chromatic number of the family of planar graphs is at most 33 .
 Inspired by their work ,  we present in a new coloring game with one more condition for
 the second player .  The additional condition is that the second player may only use one
 of the colors introduced earlier by the the first player unless he is forced to use a new
 color to guarantee that the graph is colored properly .  Such a game is called the
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 chromatic game II .  Similarly ,  the game chromatic number II of a graph  G ,  denoted by
 χ g *( G ) ,  is the least  t  for which the first player has a winning strategy in the chromatic
 game number II .  The game chromatic number II of a family  ̂  ,  is defined to be
 max h χ g *( G )  :  G  P  ̂  j ,  provided that the value is finite .  Otherwise ,   χ g *( ̂  ) is infinite .
 Clearly ,

 χ  ( G )  <  χ g *( G )  <  χ g ( G )  <  D ( G )  1  1 ,

 where  D ( G ) is the maximum degree of  G .
 Let  G  be a graph obtained from a complete bipartite graph  K n , n   by deleting a perfect

 matching .  Then ,   χ  ( G )  5  2 and  χ g *( G )  5  χ g ( G )  5  n .  Thus ,  there are infinitely many
 graphs such that  χ g *( G )  2  χ  ( G ) is unbounded .  In the next section ,  we will investigate
 the graphs for which  χ  ( G )  5  χ g *( G ) .  In Section 3 ,  we will determine  χ g *( T  ) for each
 tree  T  .  In Section 4 ,  the game chromatic number II is investigated for  k -inductive
 graphs with a fixed constant  k .

 Let  G  5  ( V ,  E ) be a graph and let  y    be a vertex of  G .  We will use  N ( y  ) to denote the
 open neighborhood of  y    and  N [ y  ] to denote the closed neighborhood of  y  ;  that is ,
 N [ y  ]  5  N ( y  )  <  h y  j .  In general ,  for a positive integer  m ,  we define

 N m [ y  ]  5  h w  P  V  :  the distance between  y    and  w  is at most  m j .

 Clearly ,   N 1 [ y  ]  5  N [ y  ] .

 2 .  G RAPHS   FOR  W HICH   χ  ( G )  5  χ g *( G )

 In this section ,  we investigate graphs for which the chromatic number and the game
 chromatic number II are same .  First ,  we characterize all bipartite graphs satisfying the
 above condition .

 T HEOREM  1 .  Let G  5  ( V ,  E )  be a connected bipartite graph with parts V 1   and V 2 .
 Then ,  χ g *( G )  5  2  if f there is a  y  ertex  y  P  V such that N 2 [ y  ]  5  V  ;   that is , N ( y  )  5  V j  for
 some  y  P  V i  , where  h i ,  j j  5  h 1 ,  2 j .

 P ROOF .  To prove the suf ficiency ,  without loss of generality ,  assume that there is a
 vertex  y  1  P  V 1  such that  N ( y  1 )  5  V 2 .  Clearly ,  it is suf ficient to show that  χ g *( G )  <  2 .  Let
 X  5  h 1 ,  2 j   be a color set .  Initially ,  the first player colors the vertex  y  1  with the color 1 .
 Since  N ( y  1 )  5  V 2  ,  by using the color 1 ,  the two players can only color the vertices in  V 1 .
 Thus ,  the first player has a winning strategy if he does not introduce color 2 until all
 vertices in  V 1  are colored .

 To prove the necessity ,  suppose that  N ( y  i )  ?  V i 1 1  if for every  y  i  P  V i   and  i  5  1 ,  2 ,
 where the index is taken modulo 2 .  Let  X  5  h 1 ,  2 j   be a color set .  Without loss of
 generality ,  assume that the first player first colors color a vertex  y  1  P  V 1  .  Then ,  the
 second player has a winning strategy if he colors a vertex  y  2  P  V 2  2  N ( y  1 ) with color 1
 for his first step .  Therefore ,   χ g *( G )  >  3 .

 In Bodlaender’s original game ,  the coloring number of a graph may depend on
 whether the cooperative or the obstructive player makes the first move .  In the present
 model ,  the coloring number of a graph may also depend on whether the cooperative or
 the obstructive player makes the first move .  For instance ,  let  G  be a graph obtained
 from  P 5  5  y  1 y  2 y  3 y  4 y  5  by adding a vertex  y  0  and an edge  y  0 y  3  .  Clearly ,   N 2 [ y  3 ]  5  V  ( G )
 holds .  By Theorem 1 ,   χ g *( G )  5  2 if the cooperative player makes the first move .  On the
 other hand ,  it is not dif ficult to see that the coloring number is 3 if the obstructive
 player makes the first move .  In fact ,  the strategy for the obstructive player is that of
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 coloring the vertex  y  0  at the first step and then coloring either  y  1  or  y  5  with the same
 color as used for  y  0  .  (This move depends on which vertex of  y  1  or  y  5  is available after
 the cooperative player has made his / her first move . )

 It is not dif ficult to see that the ‘if’ part of the above result can be generalized as
 follows .

 T HEOREM  2 .  Let G be a m - multipartite graph with parts V 1  ,  V 2  ,  .  .  .  ,  V m . If there is a
 y  ertex  y  i  P  V i  such that N ( y  i )  5  V  ( G )  2  V i  for each i  5  1 ,  2 ,  .  .  .  ,  m , then  χ g *( G )  5
 χ g ( G )  5  m .

 Let  K l 1 ,l 2 , . . . ,l m   be a complete  m -multipartite graph with the vertex set partition
 V 1  <  V 2  <  ?  ?  ?  <  V m   such that  u V i u  5  l i  .  Then ,   χ g *( K l 1 ,l 2 , . . . ,l m )  5  m .  If  l i  >  2 for every
 i  5  1 ,  2 ,  .  .  .  ,  m ,  χ g ( K l 1 ,l 2 , . . . ,l m )  5  2 m  2  1 .  Also ,  the following result is of interest .

 T HEOREM  3 .  Let P denote the Petersen graph . Then ,  χ  ( P )  5  χ g *( P )  5  3  and
 χ g ( P )  5  4 .

 P ROOF .  To prove the theorem ,  we refer to the outer cycle of the Petersen graph by
 y  1 y  2 y  3 y  4 y  5 y  1  ,  to the inner cycle by  y  6 y  7 y  8 y  9 y  1 0 y  6  ,  and to the matching between two
 cycles as  y  1 y  6  ,  y  2 y  9  ,  y  3 y  7  ,  y  4 y  1 0  and  y  5 y  8 .  The first player initially colors  y  1  and only
 uses color 1 until a maximum independent set has been assigned color 1 .  Without loss
 of generality ,  we assume that the second player will color one of  y  3  ,  y  7  and  y  9 :
 (i)  If the second player colors  y  3 ,  the first player colors  y  1 0  .  Then ,  the second player
 has to color  y  8  with color 1 .
 (ii)  If the second player colors  y  9  ,  the first player colors  y  7  .  Then ,  the second player
 has to color  y  4  with color 1 .
 (iii)  If the second player colors  y  7  ,  the first player colors  y  9  .  Then ,  the second player
 has to color  y  4  with color 1 .

 Notice that the graph formed from  P  by deleting the colored vertices in each
 case described above is the union of the three independent edges .  Therefore ,
 χ g *( P )  5  3 .  h

 One of the main reasons for introducing  χ g *( G ) is that it is likely that  χ g *( G )  5  χ  ( G )
 for many graphs  G .  This likelihood is intriguing in that such graphs  G  can be properly
 colored with  χ   colors by two persons (each coloring essentially one-half of the vertices)
 with only one of these persons coloring in an intelligent way .  We shall determine a
 class of graphs  G  where  χ g *( G )  5  χ  ( G ) .  It is likely that when  G  is such that
 χ  ( G )  ,  d  ( G ) ,  then  χ  ( G )  ,  χ g ( G ) .  Thus one would not expect to find many graphs  G
 for which  χ g ( G )  5  χ  ( G ) .  It is of interest to determine graphs for which the chromatic
 number and the game chromatic number II are the same .  We think that the graphs
 with bounded degrees and a very large girth may have this property .  It also is of
 interest to determine the graphs for which the two dif ferent chromatic numbers are
 same .

 The clique number  v  ( G ) of a graph  G  is the maximum order among the complete
 subgraphs of  G .  In general ,   χ  ( G )  >  v  ( G ) for every graph  G .  Seinsche [7] proved that
 the above equality holds if the graph  G  is  P 4  free ,  where  P 4  denotes the path with four
 vertices .  We have obtained the following result .

 T HEOREM  4 .  If a graph G is P 4   free , then  v  ( G )  5  χ  ( G )  5  χ g *( G ) .

 The proof depends on the following known lemma .
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 L EMMA  1 .  If a graph G is P 4   free , then each maximal independent set in G contains a
 y  ertex of each maximal clique .

 P ROOF .  Suppose that the lemma is false :  let  H  be a maximal independent set and let
 L  be a maximal clique in  G  such that  H  >  L  5  f .  For each  …  P  L ,  let  H y  5  N G #  >  H ,  i . e .
 H y   is the non-neighbors of  y    in  H .  We show that there are  y  1  ,  y  2  P  V  ( G ) such that
 H y  1  ‘

 Ö
 H y  2   and  H y  2  ‘

 Ö
 H y  1 .  Since  L  is a maximal clique ,  there is a vertex  y  P  L such that

 H y  ?  f .  Also ,  since  H  is a maximal independent set ,   H y   is a proper subset of  H  for any
 y  P  L .  Finally ,  each  w  P  H  is contained in  H y   for some  y  P  L ,  again since  L  is a
 maximal clique .  Thus ,  there are at least two vertices  y  1  ?  y  2  such that  H y  1  ‘

 Ö
 H y  2  and

 H y  2  ‘
 Ö

 H y  1 .  Thus pick  w 1  P  H y  1  2  H y  2  , w 2  P  H y  2  2  H y  1  ,  giving  w 1 y  2 y  1 w 2  as an induced  P 4
 in  G ,  a contradiction .  h

 P ROOF   OF  T HEOREM  4 .  Let the first player and the second player alternately color a
 maximal independent set  I 1  with the color 1 .  Thus ,  when color 2 is introduced (by
 either of the two players) each uncolored vertex is adjacent to some vertex of color 1 .
 Continue to color with color 2 ,  forming a maximal independent set  I 2  in  V  ( G )  2  I 1  .
 Thus each vertex of  G  2  ( I 1  <  I 2 ) is adjacent to a vertex of  I 1  and a vertex of  I 2 .
 Continue this process ,  coloring a maximal independent set  I 3  in  G  2  ( I 1  <  I 2 ) with color
 3 .  We eventually color all vertices with ,  say ,   t  colors .  The claim is proved by showing
 that  G  contains a clique of order  t .  It will be done by induction on  t ,  being clear for
 t  <  2 .  Consider the induced subgraph  G  2  I 1  which contains a maximal clique  M  on
 t  2  1   vertices (one vertex from each of  I 2  ,  I 3  ,  .  .  .  ,  I t ) .  By the lemma ,   M  is not a maximal
 clique in  G .  Thus ,  it can be enlarged to a maximal clique in  G  and ,  as such ,  contains a
 vertex of the maximal independent set  I 1  in  G .  Hence  G  contains a clique of order
 t .  h

 3 .  T REES

 The following theorem completely determines  χ g *( T  ) for all trees .

 T HEOREM  5 .  Let T be a tree with order  u V  ( T  ) u  >  2 . Then ,

 χ g *( T  )  5 H 2
 3

 if  N 2 [ y  ]  5  V  ( T  )  for  some  y  ertex  y  P  V  ( T  ) ,

 otherwise .

 P ROOF .  Theorem 1 shows that

 χ g *( T  ) H 5  2
 >  3

 if  N 2 [ y  ]  5  V  ( T  )  for  some  vertex  y  P  V  ( T  ) ,

 otherwise .

 The remainder of the proof will show that  χ g *( T  )  <  3 .  To do so ,  let  X  5  h 1 ,  2 ,  3 j   be a
 color set .  First ,  we root the tree  T  and denote the root by  r .  We will describe an
 algorithmic way of first coloring all but an independent set of vertices of  T  with the
 colors 1 and 2 .  To begin ,  the first player colors the root  r  with color 1 .

 Since  T  is a tree ,  there is an unique path ,  denoted by  P ( u ,  y  ) ,  from  u  to  y    for any
 pair vertices  u  and  y    in  T .  If  u  5  r ,  for simplicity let  P ( u ,  y  )  5  P ( y  ) .  Sometimes ,  we
 slightly vary the notation by using  P ( u ,  y  ) for  V  ( P ( u ,  y  )) .

 At any intermediate point in the game ,  we let  C  denote the set of colored vertices ,   U
 be the set of uncolored vertices ,  and  U *  ‘  U  be the set of vertices every one of which
 can be assigned to color 1 or 2 such that the resulting coloring is proper .
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 Suppose that the second player has just colored a vertex  y  .  Let  w  P  P ( y  ) such that
 there is a vertex  x  P  C  with  y  ̧  P ( x ) and  P ( x )  >  P ( y  )  5  P ( w ) and  d ( y  ,  w ) is a
 minimum .  Clearly ,   w  is well defined ,  since  r  P  C  >  P ( y  ) .  Then ,  the first player will
 choose a vertex  u  P  U * and color it with a feasible color of either 1 or 2 as follows :
 (i)  Set  u  5  w  if  w  P  U * .  Otherwise ,  go to step (ii) .
 (ii)  Set  u  to be the predecessor of  w  in  P ( y  ) if  w  ̧  U * and the predecessor is in  U * .
 Otherwise ,  go to step (iii) .
 (iii)  Set  u  to be a neighbor of  w  such that  w  P  P ( u ) and  u  P  U * .  In this step ,  if the
 successor of  w  in  P ( x ) is in  U * ,  then set  u  to be the successor ;  if the successor of  w  in
 P ( x )   is not in  U * and the successor of  w  in  P ( x 9 ) (for some  x 9  such that
 P ( x 9 )  >  P ( y  )  5  P ( w ))   is in  U * ,  set  u  to be the successor .  Otherwise ,  go to step (iv) .
 (iv)  Let  u  P  U * such that  P ( u )  >  U *  5  h u j .

 In the following ,  we will prove that if  U *  5  f   at some step during either player’s
 turn ,  then  U  is an independent vertex set .

 Suppose ,  to the contrary ,  that there are a pair vertices  x  and  y  in  U  and  xy  P  E ( G ) .
 Without loss of generality ,  assume that  y  P  P ( x ) .  For convenience ,  in the following ,  let
 C 1   be the set of vertices which are colored with color 1 ,  and let  C 2  be the set of vertices
 which are colored with color 2 .  Since  U *  5  [ , X  1  5  N ( x )  >  C 1  ?  [   and  X  2  5  N ( x )  >
 C 2  ?  [ .  For every  s  P  X  1  <  X  2  ,  let  s * be the vertex which was colored first in
 h t  P  C  :  s  P  P ( t ) j .  Let  x i  P  X i   be such that  x i * is the vertex which was first colored among
 all  h s *  :  s  P  X i j   for  i  5  1 ,  2 .  Also ,  note that  Y 1  5  N (  y )  >  C 1  ?  [   and  Y 2  5  N (  y )  >  C 2  ?  [ .
 Define  y 1  ,  y 2  ,  y 1 * ,  and  y 2 * in a manner similar to that done above .

 Note that  x 1 * and  x 2 * have been colored by the second player ,  since we assume that
 the first player uses the selection rule described above .  Without loss of generality ,
 assume that  x 1 * was colored before  x 2 * .  From the first player’s selection rule described
 above ,   x 2 * was colored before any vertex  s * for any  s  P  X  1  2  h x 1 j .  Also ,   x 2  5  x 2 * ;
 otherwise  x  would have been colored by the first player ,  a contradiction .  Since  y  is not
 yet colored and  y  is the predecessor of  x ,  y 1 * and  y 2 * must have been colored before  x 2 *
 was colored .

 If both  y 1 * and  y 2 * were colored before  x 1 * was colored ,  then the predecessor of  y  was
 either colored or it was impossible for it to be colored properly by using color 1 or
 color 2 .  Then ,   x  would have been colored by the first player after the second player
 colored the vertex  x 1 * ,  which leads to a contradiction .

 If one of  h  y 1 * ,  y 2 * j   was colored before  x 1 * was colored and the other one is colored
 after  x 1 * is colored ,  then  y  would have been colored by the first player after the second
 player had colored  x 1 * ,  a contradiction .  Thus ,  both  y 1 * and  y 2 * were colored between  x 1 *
 and  x 2 * .  Without loss of generality ,  assume that  y 1 * was colored before  y 2 * .

 If  y  P  P (  y 1 *) ,  then  y 1 * was colored by the second player and  y  would have been
 colored by the first player ,  again a contradiction .  Thus ,   y 1  5  y 1 * is the predecessor of  y  in
 P (  y ) and  y  P  P (  y 2 ) .

 Now ,  we consider which vertex the first player would color after the second player
 colored  y 2 .  Notice that  y 1  is the predecessor of  y .  Since it is impossible to color  y  with
 either color 1 or color 2 and  P (  y 2  ,  y )  5  y 2  y ,  by the selection rule ,  the first player would
 pick a vertex  u  P  N (  y )  >  U * such that  y  P  P ( u ) .  Clearly ,   x  is a qualified candidate for
 the first player to choose at this step .  We will show that  x  is the only candidate for the
 first player at this step .  To the contrary ,  suppose that there is another candidate  s  ?  x .
 Let  s * be a vertex which was first to be colored in the set  h t  :  s  P  P ( t ) j .  Also ,  let  s * be
 the one colored first among all such  s * .  Clearly ,   s * was colored by the second player ,
 since the first player uses the selection rules .  If the coloring of  s * occurs after that of  y 2 ,
 then the first player would color  x  when  y 2  is colored .  Hence  s * is colored before  y 2  and
 after  y 1  ,  and the first player’s response to this is to color  y ,  again a contradiction .  Thus ,
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 we have proved that  x  is the vertex the first player would color after the second player
 colored vertex  y 2  ,  a contradiction .

 Thus we have shown that  U  is an independent vertex set whenever  U *  5  [   and
 therefore  χ g *( T  )  <  3 .  h

 4 .  k - INDUCTIVE  G RAPHS

 Let  G  5  ( V ,  E ) be a graph and let  L  be a linear order on the vertex set  V .  For each
 vertex  x  P  V ,  we define  the back degree of x relati y  e to L  as  u h  y  P  V  :  xy  P  E  and  x  .  y  in
 L j u .  The  back degree of L  is then defined as the maximum back degree of the vertices
 relative to  L .  The graph  G  5  ( V ,  E ) is said to be  k - inducti y  e  if there is a linear order  L
 on  V  which has back degree at most  k .  If  G  is  k -inductive ,  then  χ  ( G )  <  k  1  1 .

 Again ,  let  L  be a linear order on the vertex set  V  of a graph  G  5  ( V ,  E ) .  We define
 the  arrangeability of x relati y  e to L  as  u h  y  P  V  :  y  <  x  in  L  and there is some  z  P  V  with
 yz  P  E , xz  P  E  and  x  ,  z  in  L j u  .

 The  arrangeability  of  L  is then the maximum value of the arrangeability of the
 vertices relative to  L .  A graph  G  is  p - arrangeable  if there is a linear order  L  on the
 vertices having arrangeability at most  P .  It is readily seen that a  p -arrangeable graph  G
 is  p -inductive .

 In [5] ,  Faigle ,  Kern ,  Kierstead and Trotter showed that the family of bipartite graphs
 has infinite game chromatic number by proving the following result for a family of
 2-inductive graphs .

 T HEOREM  6 .  There is an infinite class of  2- inducti y  e graphs G of order n such that
 χ g ( G )  >  1 – 3  log 2  n .

 In fact ,  from the examples that they used in their proof ,  it is not very dif ficult to see
 that there is a constant  c  such that  χ g ( S ( K n ))  >  c  log 2  n ,  where  S ( K n ) is the subdivision
 of the complete graph  K n   of order  n .  Later ,  Kierstead and Trotter [6] proved the
 following very interesting result .

 T HEOREM  7 .  Let G  5  ( V ,  E )  be a p - arrangeable graph and let  χ  ( G )  5  r . Then
 χ g ( G )  <  2 rp  1  1 .

 Considering the game chromatic number II ,  the following result holds .

 T HEOREM  8 .  Let k be a positi y  e integer and let G be a k - inducti y  e graph of order n .
 Then ,  χ g *( G )  <  c  log  n  1  1 , where c  5  3 k  / log  3 – 2 .

 P ROOF .  Let the first and second players alternately color the graph  G  with 3 k  colors
 until a new color must be introduced .  Let  U 1  denote the set of all uncolored vertices
 and let  G 1  denote the subgraph of  G  induced by  U 1  .  Clearly ,   d ( y  )  >  3 k  for each  y  P  U 1 .
 Since  G  is a  k -inductive graph ,

 O
 y  P V  ( G )

 d G ( y  )  <  2 kn .

 From above inequality ,  we see that  u h y  3  d G ( y  )  >  3 k j u  <  2 – 3 n .  Thus ,   u U 1 u  <  2 – 3 n .
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 The first and second players color the vertices of  U 1  with 3 k  new colors until a new
 color must be introduced .  Let  U 2  denote the set of all uncolored vertices and let  G 2

 denote the subgraph of  G  induced by  U 2 .  Using the same argument as above ,  we can
 show that  u U 2 u  <  2 – 3  u U 1 u  <  ( 2 – 3 ) 2 n .  Continue this process ;  generally ,  let  U t   denote the set of
 all uncolored vertices after 3 kt  colors have been used and a new color must be
 introduced in order to keep the graph colored properly .  Also ,  let  G t   be the subgraph
 induced by the vertex set  U t .  By induction ,  we can prove that  u U t u  <  ( 2 – 3 ) t n .  Since
 ( 2 – 3 ) log n /log1 . 5 n  <  1 ,  all vertices will have been colored when no more than
 log  n  / log  1 . 5  1  1 colors are used .  h

 On the other hand ,  we have the following result .

 T HEOREM  9 .  Let p be a positi y  e integer . There is a  2- inducti y  e graph G p  of order
 u V  ( G p ) u  <  3 p (  p 1 1)  such that  χ g *( G p )  >  p .

 P ROOF .  The graphs  G 1  ,  G 2  ,  .  .  .  ,  G p   will be constructed inductively as follows .
 Initially ,  let  G 1  5  K 2  ,  two independent vertices ,  and denote the vertex set of  G 1  by
 V 1 ( G 1 ) .

 To construct the graph  G 2  ,  let  V 2 ( G 2 ) be a vertex set of 3 2  5  9 vertices .  For each pair
 of vertices  u ,  y  P  V 2 ( G 2 ) ,  let  G 1 ( u ,  y  ) be a copy of  G 1  and join both vertices  u  and  y    to
 all vertices in  V 1 ( G 1 ( u ,  y  )) .  It is readily seen that  G 2  is the subdivision of a complete
 multiple edge graph  K 9  ,  where every pair of vertices of  K 9  has two edges between
 them .

 Suppose that  G 1  ,  G 2  ,  .  .  .  ,  G p 2 1  have been constructed .  Let  V p ( G p ) be a set of new
 vertices with  u V p ( G p )) u  5  3 p .  For each pair of vertices  u ,  y  P  V p ( G p ) and each  i  5
 1 ,  .  .  .  ,  p  2  1 ,  let  G i ( u ,  y  ) be a copy of  G i   and join both vertices  u  and  y    to every vertex
 in  V i ( G i ( u ,  y  )) .  Then ,  we will show that the following claim holds .

 C LAIM  1 .  Suppose that two players play the game on the  y  ertices of G p  with the
 condition that if the color i has been used , then both players can use any color from  1  to
 i . The second player has a strategy to color the  y  ertices such that at any step either there
 is a  y  ertex in V p ( G p )  that has been colored with the color p or he has a chance to color a
 y  ertex in V p ( G p )  with the color p .

 Clearly ,  claim 1 is true for the graph  G 1  Suppose that Claim 1 is true for the graphs
 G 1  ,  G 2  ,  .  .  .  ,  G p 2 1  .  We will prove that the following claim is true for  G p .

 C LAIM  2 .  The second player has a strategy to force the condition that at least three
 y  ertices in V p ( G )  are uncolored if only the colors  1 ,  2 ,  .  .  .  ,  p  2  1  are used .

 Notice that  V p ( G p ) is an independent vertex set of  G p   and every vertex in  V  ( G p ) is
 adjacent to at most two vertices in  V p ( G p ) .  Hence Claim 1 is true if Claim 2 holds .  The
 strategy for the second player used is described as follows :
 (i)  If the first player colors a vertex of  G i ( u ,  y  ) for some  u ,  y  P  V p ( u ,  y  ) and
 i  5  1 ,  2 ,  .  .  .  ,  p  2  1 ,  then ,  by the inductive hypothesis ,  the second player has a strategy
 to color a vertex in  G i ( u ,  y  ) such that either there is a vertex in  V i ( G i ) which has been
 colored with the color  i  or there is a vertex in  V i ( G i ) that can be colored with the color  i
 by the second player .
 (ii)  If the first player colors a vertex  x  P  V p ( G p ) ,  then the second player chooses ,  if
 possible ,  a pair of vertices  u  and  y  P  V p ( G p ) such that neither of them are adjacent to a
 vertex with the color 1 ,  and colors a vertex in  V 1 ( G 1 ( u ,  y  )) with the color 1 .  Such a
 vertex is available from our inductive hypothesis .  If there is no such a pair of vertices  u
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 and  y  ,  then any vertex  z  P  V p ( G p ) is either colored by the first player or the vertex  z  is
 uncolored and is adjacent to some vertex with the color 1 .

 Let  V  1
 p ( G p ) be a subset of  V p ( G p ) which is uncolored and adjacent to a vertex with

 the color 1 .  Notice that every vertex  y  P  V 1 ( G 1 ( u ,  y  )) is adjacent to only two vertices in
 V p ( G P ) ;   thus  u V  1

 p ( G p ) u  >  1 – 3  u V p ( G p )) u .  Then :
 (iii)  Following step (ii) above ,  if the first player colors a vertex in  V  1

 p ( G 1 ) ,  then the
 second player chooses ,  if possible ,  a pair of vertices  u  and  y  P  V  1

 p ( G p ) such that neither
 of them are adjacent to a vertex with the color 2 .  If there is no such pair of vertices  u
 and  y  ,  let  V  2

 p ( G p ) be a subset of  V  1
 p ( G p ) which is uncolored and adjacent to vertex with

 the color 2 .  As above ,  we have  u V  2
 p ( G p ) u  >  1 – 3  u V  1

 p ( G p ) u  >  ( 1 – 3 ) 2  u V p ( G p ) u  .  Notice that  N ( z )
 contains a vertex with the color 1 and a vertex with the color 2 .
 (iv)  Repeat the above process ,  then  V  1

 p ( G p ) , V  2
 p ( G p ) ,  .  .  .  ,  V p 2 1

 p  ( G p ) are obtained such
 that ,  for each  z  P  V  i

 p ( G p ) ,  the neighborhood  N ( z ) contains a vertex with the color  j  for
 each  j  5  1 ,  2 ,  .  .  .  ,  i .  Furthermore ,   u V  i

 p ( G p ) u  >  1 – 3  u V  i 2 1
 p  ( G p ) u  .  Hence ,   u V  p 2 1

 p  ( G p ) u  >
 ( 1 – 3 ) p 2 1  u V p ( G p ) u  5  3 .
 It is readily seen from the above that Claim 2 is proven .

 Notice that

 u V  ( G p ) u  5 S 3 p

 2
 D [ u V  ( G 1 ) u  1  u V  ( G 2 ) u  1  ?  ?  ?  1  u V  ( G p 2 1 ) u ]  1  3 p ,  for  p  >  2 .

 Then ,   u V  ( G p ) u  >  o p 2 1
 i 5 1  u V  ( G i ) u  1  1 for  p  >  2 .  Thus ,

 u V  ( G p ) u  < S 3 p

 2
 D (2  u V  ( G p 2 1 ) u  2  1)  1  3 p  <  3 2 p  u V  ( G p 2 1 ) u  ,  for  p  >  3 .

 It is readily seen that the above inequality is also true for  q  5  2 .  Therefore ,
 u V  ( G p ) u  <  3 p (  p 1 1) .  h

 Let  n  5  u V  ( G p ) u .  From the above inequality ,  we can deduce that  p  .  c 4 log  n .  Thus ,
 there are an infinite number of integers  n  such that there is a 2-inductive graph  G n   of
 order  n  such that  χ g *( G )  <  c 4 log  n  for some constant  c .

 Note that all subdivision graphs are 2-inductive .  We will show that  χ g *( G )  <  3 if  G  is
 the subdivision of some graph .  In fact ,  we prove a more general result .

 T HEOREM  10 .  Let k be a positi y  e integer and let G be a graph such that the  y  ertex
 subset  h y  P  V  :  d ( y  )  .  k j   forms an independent set of G , then  χ g *( G )  <  k  1  1 .

 P ROOF .  Let  X  5  h 1 ,  2 ,  .  .  .  ,  k ,  k  1  1 j   be a color set .  Initially ,  the two players color  G
 using only colors 1 ,  2 ,  .  .  .  ,  k .  This is continued for as long as possible .  Then ,  it is
 suf ficient to show that all uncolored vertices form an independent set .  Suppose ,  to the
 contrary ,  there are a pair of uncolored vertices  x  and  y  such that  xy  P  E .  Then ,  one of
 them ,  say  x ,  must have degree no more than  k .  Since  y  is not yet colored ,   x  can be
 colored properly by one of the colors 1 ,  2 ,  .  .  .  ,  k ,  a contradiction .

 C OROLLARY  1 .  For any graph G , let S ( G )  denote the subdi y  ision of G . Then ,
 χ g *( S ( G ))  <  3 .
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