Polynomial With Minimal Deviance

(This work was done by Chebyshev in the 1800's.)
Def 0.1 If f is a function and $a<b$ then the deviance of f on $[a, b]$ is $\max _{x \in[a, b]}|f(x)|$.
We seek polynomials with minimum deviance. We first TRY to state this problem.
Problem: Given n, find the polynomial of degree n that has least deviance in the interval $[-1,1]$.

There is a problem with this problem. For degree 3 take $f(x)=\frac{1}{1000} x^{3}$. If I made the lead coefficient even smaller we could do better, so the problem has no real answer.

Def 0.2 A polynomial is monic if its lead coefficient is 1.
Problem: Given n, find the monic polynomial of degree n that has least deviance in the interval $[-1,1]$.

Example $0.3 n=1$. So $f(x)=x+c$ for some $c . f(x)=x$ has deviance 1. You can easily prove that if $c \neq 0$ then $f(x)=x+c$ will have larger deviance. Deviation is 1 which we write as $2^{0}=2^{n-1}$.

Example $0.4 n=2$. So $f(x)=x^{2}+b x+c$ for some b, c. If $b=0$ then we have $f(x)=x^{2}+c$. Lets assume that $f(1)>0$ and $f(0)<0$.
$f(1)=1+c,|f(1)|=1+c$.
$f(-1)=1+c, \mid f(-1)=1+c$.
$f(0)=c,|f(0)|=-c$.
To get these to be minimal set them equal. $1+c=-c$ so $c=-1 / 2$.
SO, a good candidate is $f(x)=x^{2}-\frac{1}{2}$. Deviation is $\frac{1}{2}$ which we write as $2(-1)=$ 2^{n-1}.

Can we do better? No. Assume that $g(x)$ was a monic quadratic that did better. Since $g(1)<f(1), g(0)>f(0)$, and $g(-1)<f(1)$, we have that the f and g functions cross twice. That is, there exists a, b such that $f(a)=g(a)$ and $f(b)=g(b)$. Since f, g are monic quadratic, we have $f=g$.

We now try to solve the general problem.
IDEAS: We try to find a polynomial that HUGS the deviance lines above and below. A function that LOOKS that way is Cosine. Unfortunately cosine is not a polynomial Even so, we can use this similarlity.

Lemma 0.5 For all n, there exists f_{n} monic, degree n, such that $f_{n}(\cos \alpha)=\frac{1}{2^{n-1}} \cos n \alpha$.
We will later prove Lemma 0.5 constructively so that the f_{n} 's can be calculated. For now we just use Lemma 0.5.

Theorem 0.6 Let f_{n} be as in Lemma 0.5. The deviance of f_{n} on $[-1,1]$ is $d=\frac{1}{2^{n-1}}$. The number of times that f_{n} hits the $y=d$ or $y=-d$ lines is exactly $n+1$.

Proof:

The key is that the function $\cos \alpha$ is a bijection from $[0, \pi]$ to $[-1,1]$.
Let $x \in[-1,1]$. Let $\alpha \in[0, \pi]$ be such that $x=\cos \alpha$. Then

$$
f_{n}(x)=f_{n}(\cos \alpha)=\frac{1}{2^{n-1}} \cos n \alpha .
$$

Since cos is always between -1 and 1 we have

$$
-\frac{1}{2^{n-1}} \leq f_{n}(x) \leq \frac{1}{2^{n-1}}
$$

Hence the deviance of $f_{n}(x)$ on $[-1,1]$ is $\frac{1}{2^{n-1}}$.
We want to know when $f_{n}(x)= \pm \frac{1}{2^{n-1}}$.

$$
\begin{gathered}
f_{n}(x)= \pm \frac{1}{2^{n-1}} \text { iff } \\
x=\cos \alpha \text { and } \cos n \alpha= \pm 1 \text { iff } \\
x=\cos \alpha \text { and } \alpha \in\left\{0, \frac{\pi}{n}, \frac{2 \pi}{n}, \ldots, \frac{n \pi}{n}\right\} \text { iff } \\
x \in\left\{\cos 0, \cos \frac{\pi}{n}, \cos \frac{2 \pi}{n}, \ldots, \cos \frac{n \pi}{n}\right\} .
\end{gathered}
$$

There are $n+1$ of these points.

Theorem 0.7 For all n the monic polynomial with the least deviance on $[-1,1]$ is f_{n} from Lemma 0.5.

Proof: If h is a monic polynomial with better deviance then f_{n} then we can show that h and f_{n} must cross in n points, and hence are the same. (draw the picture yourself).

Proof of Lemma 0.5 which we restate and elaborate on:
For all n, there exists f_{n} monic, degree n, such that $f_{n}(\cos \alpha)=\frac{1}{2^{n-1}} \cos n \alpha$.

Proof:

We first show that, for all n there exists a (not monic) polynomial g_{n} of degree n such that $g_{n}(\cos \alpha)=\cos (n \alpha)$. We will keep track of the leading coefficient of g_{n}. We prove this by induction on n.

Clearly $g_{0}(x)=1$ and $g_{1}(x)=x$.

Assume that $g_{n-1}(\cos \alpha)=\cos (n-1) \alpha$ and $g_{n}(\cos \alpha)=\cos (n) \alpha$. We get g_{n+1} in terms of g_{n} and g_{n-1}.

Recall that

$$
\begin{aligned}
& \cos (x+y)=\cos x \cos y-\sin x \sin y \\
& \cos (x-y)=\cos x \cos y+\sin x \sin y
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \cos ((n+1) \alpha)=\cos n \alpha \cos \alpha-\sin n \alpha \sin \alpha \\
& \cos ((n-1) \alpha)=\cos n \alpha \cos \alpha+\sin n \alpha \sin \alpha
\end{aligned}
$$

We add these and isolate the $\cos (n+1) \alpha)$ term to get

$$
\cos ((n+1) \alpha)=2 \cos n \alpha \cos \alpha-\cos ((n-1) \alpha)
$$

Inductively $\cos (n \alpha)=g_{n}(\cos \alpha)$ and $\cos ((n-1) \alpha)=g_{n-1}(\cos \alpha)$.
So we have

$$
\cos ((n+1) \alpha)=2 \cdot g_{n}(\cos \alpha) \cos \alpha-g_{n-1}(\cos \alpha)
$$

So
$g_{n+1}(x)=2 x g_{n}(x)-g_{n-1}(x)$.
Note that

$$
\begin{aligned}
& g_{0}(x)=1 \\
& g_{1}(x)=x \\
& g_{2}(x)=2 x^{2}-1 \\
& g_{3}(x)=4 x^{3}-2 x-x=4 x^{3}-3 x \\
& g_{4}(x)=8 x^{4}-6 x^{2}-2 x^{2}+1=8 x^{4}-8 x^{2}+1
\end{aligned}
$$

One can easily prove by induction that, for all $n \geq 1, g_{n}$ has leading coeffient 2^{n-1}. Note that g_{0} does not fit this pattern.

For $n \geq 1$ let $f_{n}(x)=\frac{1}{2^{n-1}} g_{n}(x)$. Note that f_{n} is monic, degree n, and $f_{n}(x)=$ $\frac{1}{2^{n-1}} \cos (n \alpha)$.

Note 0.8 From the recurrence we can deduce some things about g_{n}. One can easily prove by induction that (1) if n is even then g_{n} only uses even powers and if n is odd then g_{n} only uses odd powers, and (2) if $n \equiv 0(\bmod 4)$ then the constant term is 1 , if $n \equiv 2 \quad(\bmod 4)$ then the constant term is -1 , and if $n \equiv 1,3(\bmod 4)$ then the constant term is 0 .

Example 0.9

$$
\begin{aligned}
& f_{1}(x)=x \\
& f_{2}(x)=x-\frac{1}{2} \\
& f_{3}(x)=x^{3}-\frac{3}{4} x \\
& f_{4}(x)=x^{4}-x^{2}+\frac{1}{8}
\end{aligned}
$$

Is there a way to compute these without using the recurrence? There is - we derive it using generating functions. We first derive a closed form for g_{n} then modify it for f_{n}. We write g_{n} instead of g_{n}.

Let $\Phi=\sum_{n=0}^{\infty} g_{n} z^{n}$. We will obtain another expression for Φ so that we can read off the coeff of z^{n} which will be a poly in x of degree n. of degree n.

$$
\begin{aligned}
& \Phi= \sum_{n=0}^{\infty} g_{n} z^{n}=g_{0}+g_{1} z+\sum_{n \geq 2}^{\infty} g_{n} z^{n} \\
& g_{0}+g_{1} z+\sum_{n \geq 2}^{\infty}\left(2 x g_{n-1}-g_{n-2}\right) z^{n} \\
& g_{0}+g_{1} z+2 x \sum_{n \geq 2}^{\infty} g_{n-1} z^{n}-\sum_{n \geq 2} g_{n-2} z^{n} \\
& g_{0}+g_{1} z+2 x z \sum_{n \geq 2}^{\infty} g_{n-1} z^{n-1}-z^{2} \sum_{n \geq 2} g_{n-2} z^{n-2} \\
& g_{0}+g_{1} z+2 x z \sum_{n \geq 1}^{\infty} g_{n} z^{n}-z^{2} \sum_{n \geq 0} g_{n} z^{n} \\
& g_{0}+g_{1} z+2 x z\left(-g_{0}+\sum_{n \geq 0}^{\infty} g_{n} z^{n}\right)-z^{2} \sum_{n \geq 0} g_{n} z^{n} \\
& g_{0}+g_{1} z+2 x z\left(-g_{0}+\Phi\right)-z^{2} \Phi \\
& 1+x z+2 x z(-1+\Phi)-z^{2} \Phi \\
& 1+x z-2 x z+2 x z \Phi-z^{2} \Phi \\
& 1-x z+2 x z \Phi-z^{2} \Phi \\
& \Phi-2 x z \Phi+z^{2} \Phi=1-x z \\
& \Phi\left(1-2 x z+z^{2}\right)= 1-x z \\
& \Phi= \frac{1-x z}{1-2 x z+z^{2}} \\
& \Phi= \frac{1-x z}{1-\left(2 x z-z^{2}\right)}
\end{aligned}
$$

Now we want to look at

$$
\begin{aligned}
\frac{1}{1-\left(2 x z-z^{2}\right)} & =\sum_{n=0}^{\infty}\left(2 x z-z^{2}\right)^{n} \\
& =\sum_{n=0}^{\infty} \sum_{i=0}^{n}\binom{n}{i}\left(z^{2}\right)^{i}(2 x z)^{n-i}(-1)^{i} \\
& =\sum_{n=0}^{\infty} \sum_{i=0}^{n}\binom{n}{i} z^{2 i}(2 x)^{n-i} z^{n-i}(-1)^{i} \\
& =\sum_{n=0}^{\infty} \sum_{i=0}^{n}\left(\begin{array}{c}
n \\
i \\
i
\end{array} z^{n+i}(2 x)^{n-i}(-1)^{i}\right. \\
& =\sum_{n=0}^{\infty} \sum_{i=0}^{n}\binom{n}{i}(-1)^{i}(2 x)^{n-i} z^{n+i}
\end{aligned}
$$

We rewrite this so that $n+i$ is the outer sum. Let $m=n+i$. As m goes from 0 to infinity, i goes from 0 to $\lfloor m / 2\rfloor$.

$$
\begin{aligned}
\frac{1}{1-\left(2 x z-z^{2}\right)}= & \sum_{n=0}^{\infty} \sum_{i=0}^{n}\left(\begin{array}{c}
n \\
i \\
i
\end{array}\right)(-1)^{i}(2 x)^{n-i} z^{n+i} \\
& \sum_{m=0}^{\infty} \sum_{i=0}^{\lfloor m / 2\rfloor}\binom{m-i}{i}(-1)^{i}(2 x)^{m-2 i} z^{m} \\
& \sum_{m=0}^{\infty} z^{m} \sum_{i=0}^{\lfloor m} \sum_{2}\binom{m-i}{i}(-1)^{i}(2 x)^{m-2 i} \\
& \sum_{n=0}^{\infty} z^{n} \sum_{i=0}^{\lfloor n / 2\rfloor}\binom{n i}{i}(-1)^{i}(2 x)^{n-2 i}
\end{aligned}
$$

Let $h_{n}(x)=\sum_{i=0}^{\lfloor n / 2\rfloor}\binom{n-i}{i}(-1)^{i}(2 x)^{n-2 i}$. Then $\frac{1}{1-\left(2 x z-z^{2}\right)}=\sum_{n \geq 0} h_{n}(x) z^{n}$. But we are interested in $\frac{1-x z}{1-\left(2 x z-z^{2}\right)}=(1-x z) \sum_{n \geq 0} h_{n}(x) z^{n}$.

$$
\begin{aligned}
(1-x z) \sum_{n \geq 0} h_{n}(x) z^{n} & =\sum_{n \geq 0} h_{n}(x) z^{n}-x z \sum_{n \geq 0} h_{n}(x) z^{n} \\
& =\sum_{n \geq 0} h_{n}(x) z^{n}-\sum_{n \geq 0} x h_{n}(x) z^{n+1} \\
& =\sum_{n \geq 0} h_{n}(x) z^{n}-\sum_{m \geq 1} x h_{m-1}(x) z^{m} \\
& =\sum_{n \geq 0} h_{n}(x) z^{n}-\sum_{n \geq 1} x h_{n-1}(x) z^{n} \\
& =h_{0}+\sum_{n \geq 1} h_{n}(x) z^{n}-\sum_{n \geq 1} x h_{n-1}(x) z^{n} \\
& =h_{0}+\sum_{n \geq 1}\left(h_{n}(x)-x h_{n-1}(x)\right) z^{n}
\end{aligned}
$$

Recall that we want the coef of z^{n}. Hence we want $\left.h_{n}(x)-x h_{n-1}(x)\right)$. We first get a neater form for h_{n}. There are two cases. We do the first case, m even, and leave the second case, m odd, to the reader.
Case 1: n is even. So $n=2 m$ and $\lfloor n / 2\rfloor=m,\lfloor n-1 / 2\rfloor=m-1$.

$$
\begin{aligned}
h_{n}(x) & =\sum_{i=0}^{\lfloor n / 2\rfloor}\binom{n-i}{i}(-1)^{i}(2 x)^{n-2 i} \\
& =\sum_{i=0}^{m}\binom{2 m-i}{i}(-1)^{i}(2 x)^{2 m-2 i} \\
& =\sum_{i=0}^{m}\binom{2 m-i}{i}(-1)^{i}(2 x)^{2(m-i)} \text { now set } j=m-i \\
& =\sum_{j=0}^{m}\binom{m+j}{m-j}(-1)^{m-j}(2 x)^{2 j} \\
& =\sum_{i=0}^{m}\binom{m+i}{m-i}(-1)^{m-i} 2^{2 i} x^{2 i} \\
h_{n-1}(x) & =\sum_{i=0}^{m-1}\binom{2 m-i-1}{i}(-1)^{i}(2 x)^{2 m-2 i-1} \\
& =\sum_{i=0}^{m-1}\binom{2 m-i-1}{i}(-1)^{i}(2 x)^{2 m-2 i-1} \\
& =\sum_{i=0}^{m-1}\binom{2 m-i-1}{i}(-1)^{i}(2 x)^{2(m-i)-1} \text { now set } j=m-i \\
& =\sum_{j=1}^{m}\binom{m+j-1}{m-j}(-1)^{m-j}(2 x)^{2 j-1} \\
& =\sum_{i=1}^{m}\binom{m+i-1}{m-i}(-1)^{m-i} 2^{2 i-1} x^{2 i-1}
\end{aligned}
$$

$$
x h_{n-1}(x)=\sum_{i=0}^{m-1}\binom{m+i-1}{m-i}(-1)^{m-i} 2^{2 i-1} x^{2 i}
$$

So

$$
\begin{aligned}
h_{n}(x)-x h_{n-1}(x) & =\sum_{i=0}^{m}\binom{m+i}{m+i}(-1)^{m-i} 2^{2 i} x^{2 i}-\sum_{i=1}^{m}\binom{m+i-1}{m-i}(-1)^{i} 2^{2 i-1} x^{2 i} \\
& =(-1)^{m}+\sum_{i=1}^{m}\left(\binom{m+i}{m-i}(-1)^{m-i} 2^{2 i}-\binom{m+i-1}{m-i}(-1)^{i} 2^{2 i-1}\right) x^{2 i}
\end{aligned}
$$

Hence if $m=2 n$ then
$g_{n}(x)=(-1)^{m}+\sum_{i=1}^{m}\left(\binom{m+i}{m-i}(-1)^{m-i} 2^{2 i}-\binom{m+i-1}{m-i}(-1)^{i} 2^{2 i-1}\right) x^{2 i}$
Thus

$$
\begin{aligned}
& f_{n}(x)=\frac{1}{2^{n-1}} g_{n}(x)= \\
& \frac{(-1)^{m}}{2^{n-1}}+\sum_{i=1}^{m}\left(\binom{m+i}{m-i}(-1)^{m-i} 2^{2 i-n+1}-\binom{m+i-1}{m-i}(-1)^{i} 2^{2 i-n}\right) x^{2 i}
\end{aligned}
$$

