Euclidean Ramsey Theory Exposition by William Gasarch (gasarch@cs.umd.edu)

1 Introduction

2 The Square is Ramsey

3 The set of Three Points is Not Ramsey

Let $p=0, q=1, r=2$ on the real number line. Let $S=\{p, q, r\}$. We show that S is not Ramsey.
We want to show that, for all n, there is a 16 -coloring of R^{n} such that, if $T \subseteq R^{n}$ is a three points set which is a copy of S then T is not monochromatic. We need to clarify copy. Fix n. Let $\vec{p}=(0, \ldots, 0,0), \vec{q}=(0, \ldots, 0,1)$, and $\vec{r}=(0, \ldots, 0,2)$ where there number of coordinates is n.

Definition 3.1 A copy of S is a set of the form $\{\vec{p}+\vec{z}, \vec{q}+\vec{z}, \vec{r}+\vec{z}\}$.
Hence we need a property of a copy that is independent of \vec{z}.
Theorem 3.2 There exists a, b, d such that, for all \vec{z}

$$
a((\vec{r}+\vec{z}) \cdot(\vec{r}+\vec{z})-(\vec{q}+\vec{z}) \cdot(\vec{q}+\vec{z}))+b((\vec{r}+\vec{z}) \cdot(\vec{r}+\vec{z})-(\vec{p}+\vec{z}) \cdot(\vec{p}+\vec{z}))=d
$$

Proof:

We derive conditions for a, b, d and then give values that satisfy those conditions. We want

$$
a((\vec{r}+\vec{z}) \cdot(\vec{r}+\vec{z})-(\vec{q}+\vec{z}) \cdot(\vec{q}+\vec{z}))+b((\vec{r}+\vec{z}) \cdot(\vec{r}+\vec{z})-(\vec{p}+\vec{z}) \cdot(\vec{p}+\vec{z}))=d .
$$

Let $z=\left(z_{1}, \ldots, z_{n}\right)$. Then the above becomes

$$
\begin{gathered}
a\left(\left(\sum_{i=1}^{n-1} z_{i}^{2}+\left(z_{n}+2\right)^{2}\right)-\left(\sum_{i=1}^{n-1} z_{i}^{2}+\left(z_{n}+1\right)^{2}\right)+b\left(\sum_{i=1}^{n-1} z_{i}^{2}+\left(z_{n}+2\right)^{2}\right)-\left(\sum_{i=1}^{n-1} z_{i}^{2}+z_{n}^{2}\right)=d\right. \\
a\left(\left(z_{n}+2\right)^{2}-\left(z_{n}+1\right)^{2}\right)+b\left(\left(z_{n}+2\right)^{2}-z_{n}^{2}\right)=d \\
a\left(z_{n}^{2}+4 z_{n}+4-z_{n}^{2}-2 z_{n}-1\right)+b\left(z_{n}^{2}+4 z_{n}+4-z_{n}^{2}\right)=d \\
a\left(2 z_{n}+3\right)+b\left(4 z_{n}+4\right)=d \\
3 a+4 b+(2 a+4 b) z_{n}=d
\end{gathered}
$$

We need to make $2 a+4 b=0$. We take $a=2$ and $b=-1$. This forces $d=2$.

We can now rephrase the question (we pre-apologize for using \vec{z} over again in a different context, but we are running out of letters). We want to 16 -color R^{n} so that there are no monochromatic $\vec{x}, \vec{y}, v z$ with

$$
a(\vec{x} \cdot \vec{x}-\vec{y} \cdot \vec{y})+b(\vec{x} \cdot \vec{x}-\vec{z} \cdot \vec{z})=d
$$

Note that dot products give us reals. Hence we will first give a coloring of the reals and then use it to give a coloring of R^{n}.

Lemma 3.3 For all $m \in \mathrm{~N}$, for all $\epsilon>0$ there exists a $2 m$-coloring of R such that, for all y, y^{\prime},

$$
C O L(y)=C O L\left(y^{\prime}\right) \Longrightarrow y-y^{\prime} \in \bigcup_{k \in \mathrm{Z}}(2 k m \epsilon-\epsilon, 2 k m \epsilon+\epsilon)
$$

Proof: We color the reals by coloring intervals of length ϵ that are closed on the left and open on the right. The following picture describe the coloring.

$$
\begin{array}{cccccccc}
1 & 2 & 3 & \cdots & 2 m & 1 & 2 & \cdots \\
{[0, \epsilon)} & {[\epsilon, 2 \epsilon)} & {[2 \epsilon, 3 \epsilon)} & \cdots & {[(2 m-1) \epsilon, 2 m \epsilon)} & {[2 m \epsilon,(2 m+1)} & {[(2 m+1) \epsilon,(2 m+2) \epsilon)} & \cdots
\end{array}
$$

Assume $C O L(y)=C O L\left(y^{\prime}\right)$. Since we are interested in $y-y^{\prime}$ we can assume that $y^{\prime} \in[0, \epsilon)$. If $y>y^{\prime}$ then

$$
y \in[0, \epsilon) \text { or } y^{\prime} \in[2 m \epsilon,(2 m+1) \epsilon) \text { or } y^{\prime} \in[4 m \epsilon,(4 m+1) \epsilon) \text { or } \cdots .
$$

More succintly

$$
y \in \bigcup_{k=0}^{\infty}[2 k m \epsilon,(2 k m+1) \epsilon)
$$

Hence

$$
y-y^{\prime} \in \bigcup_{k=0}^{\infty}((2 k m-1) \epsilon,(2 k m+1) \epsilon)
$$

If $y<y^{\prime}$ then we get, by similar reasioning,

$$
y-y^{\prime} \in \bigcup_{k=0}^{-\infty}((2 k m-1) \epsilon,(2 k m+1) \epsilon)
$$

Hence we have

$$
y-y^{\prime} \in \bigcup_{k \in \mathbf{Z}}((2 k m-1) \epsilon,(2 k m+1) \epsilon)
$$

Lemma 3.4 For all m, for all $a_{1}, \ldots, z_{m} \in \mathbf{Z}$, for all $d \neq 0$, there is a $(2 m)^{m}$ coloring of R such that there there is $N O$ solution to

$$
\sum_{i=1}^{m} a_{i}\left(y_{i}-y_{i}^{\prime}\right)=d
$$

with $(\forall i)\left[C O L\left(y_{i}\right)=C O L\left(y_{i}^{\prime}\right)\right]$.
Proof: For all $1 \leq i \leq m$ let $\epsilon_{i}=\frac{d}{a_{i} m}$ By Lemma 3.3 there exists, for $1 \leq i \leq m$, a coloring $C O L_{i}$ such that
$C O L(y)=C O L\left(y^{\prime}\right)$ implies

$$
y-y^{\prime} \in \bigcup_{k \in \mathbf{Z}}\left(\frac{(2 k m-1) d}{a_{i} m}, \frac{(2 k m+1) d}{a_{i} m}\right)=\bigcup_{k \in \mathbf{Z}}\left(\frac{2 k d}{a_{i}}-\frac{d}{a_{i} m}, \frac{2 k d}{a_{i}}+\frac{d}{a_{i} m}\right)
$$

