Euclidean Ramsey Theory Exposition by William Gasarch (gasarch@cs.umd.edu)

1 Introduction

2 The Square is Ramsey

3 The set of Three Points is Not Ramsey

Let p = 0, q = 1, r = 2 on the real number line. Let $S = \{p, q, r\}$. We show that S is not Ramsey. We want to show that, for all n, there is a 16-coloring of \mathbb{R}^n such that, if $T \subseteq \mathbb{R}^n$ is a three points set which is a copy of S then T is not monochromatic. We need to clarify *copy*. Fix n. Let $\vec{p} = (0, \ldots, 0, 0)$, $\vec{q} = (0, \ldots, 0, 1)$, and $\vec{r} = (0, \ldots, 0, 2)$ where there number of coordinates is n.

Definition 3.1 A copy of S is a set of the form $\{\vec{p} + \vec{z}, \vec{q} + \vec{z}, \vec{r} + \vec{z}\}$.

Hence we need a property of a copy that is independent of \vec{z} .

Theorem 3.2 There exists a, b, d such that, for all \vec{z}

 $a((\vec{r}+\vec{z})\cdot(\vec{r}+\vec{z})-(\vec{q}+\vec{z})\cdot(\vec{q}+\vec{z}))+b((\vec{r}+\vec{z})\cdot(\vec{r}+\vec{z})-(\vec{p}+\vec{z})\cdot(\vec{p}+\vec{z}))=d.$

Proof:

We derive conditions for a, b, d and then give values that satisfy those conditions. We want

$$a((\vec{r}+\vec{z})\cdot(\vec{r}+\vec{z})-(\vec{q}+\vec{z})\cdot(\vec{q}+\vec{z}))+b((\vec{r}+\vec{z})\cdot(\vec{r}+\vec{z})-(\vec{p}+\vec{z})\cdot(\vec{p}+\vec{z}))=d(\vec{r}+\vec{z})$$

Let $z = (z_1, \ldots, z_n)$. Then the above becomes

$$a\left(\left(\sum_{i=1}^{n-1} z_i^2 + (z_n+2)^2\right) - \left(\sum_{i=1}^{n-1} z_i^2 + (z_n+1)^2\right) + b\left(\sum_{i=1}^{n-1} z_i^2 + (z_n+2)^2\right) - \left(\sum_{i=1}^{n-1} z_i^2 + z_n^2\right) = d$$

$$a\left((z_n+2)^2 - (z_n+1)^2\right) + b\left((z_n+2)^2 - z_n^2\right) = d$$

$$a(z_n^2 + 4z_n + 4 - z_n^2 - 2z_n - 1) + b(z_n^2 + 4z_n + 4 - z_n^2) = d$$

$$a(2z_n+3) + b(4z_n+4) = d$$

$$3a + 4b + (2a + 4b)z_n = d$$

We need to make 2a + 4b = 0. We take a = 2 and b = -1. This forces d = 2.

We can now rephrase the question (we pre-apologize for using \vec{z} over again in a different context, but we are running out of letters). We want to 16-color \mathbb{R}^n so that there are no monochromatic \vec{x}, \vec{y}, vz with

$$a(\vec{x}\cdot\vec{x}-\vec{y}\cdot\vec{y})+b(\vec{x}\cdot\vec{x}-\vec{z}\cdot\vec{z})=d.$$

Note that dot products give us reals. Hence we will first give a coloring of the reals and then use it to give a coloring of \mathbb{R}^n .

Lemma 3.3 For all $m \in \mathbb{N}$, for all $\epsilon > 0$ there exists a 2*m*-coloring of *R* such that, for all y, y',

$$COL(y) = COL(y') \implies y - y' \in \bigcup_{k \in \mathbb{Z}} (2km\epsilon - \epsilon, 2km\epsilon + \epsilon).$$

Proof: We color the reals by coloring intervals of length ϵ that are closed on the left and open on the right. The following picture describe the coloring.

Assume COL(y) = COL(y'). Since we are interested in y - y' we can assume that $y' \in [0, \epsilon)$. If y > y' then

$$y \in [0,\epsilon)$$
 or $y' \in [2m\epsilon, (2m+1)\epsilon)$ or $y' \in [4m\epsilon, (4m+1)\epsilon)$ or \cdots .

More succintly

$$y \in \bigcup_{k=0}^{\infty} [2km\epsilon, (2km+1)\epsilon)$$

Hence

$$y - y' \in \bigcup_{k=0}^{\infty} ((2km - 1)\epsilon, (2km + 1)\epsilon)$$

If y < y' then we get, by similar reasoning,

$$y - y' \in \bigcup_{k=0}^{-\infty} ((2km - 1)\epsilon, (2km + 1)\epsilon)$$

Hence we have

$$y - y' \in \bigcup_{k \in \mathsf{Z}} ((2km - 1)\epsilon, (2km + 1)\epsilon)$$

Lemma 3.4 For all m, for all $a_1, \ldots, z_m \in \mathsf{Z}$, for all $d \neq 0$, there is a $(2m)^m$ coloring of R such that there there is NO solution to

$$\sum_{i=1}^{m} a_i (y_i - y'_i) = d$$

with $(\forall i)[COL(y_i) = COL(y'_i)].$

Proof: For all $1 \le i \le m$ let $\epsilon_i = \frac{d}{a_i m}$ By Lemma 3.3 there exists, for $1 \le i \le m$, a coloring COL_i such that

COL(y) = COL(y') implies

$$y - y' \in \bigcup_{k \in \mathbb{Z}} \left(\frac{(2km-1)d}{a_i m}, \frac{(2km+1)d}{a_i m} \right) = \bigcup_{k \in \mathbb{Z}} \left(\frac{2kd}{a_i} - \frac{d}{a_i m}, \frac{2kd}{a_i} + \frac{d}{a_i m} \right)$$