
Ergodic Proofs of VDW Theorem

1 Introduction

Van Der Waerden [5] proved the following combinatorial theorem in a combinatorial
way

Theorem 1.1 For all c ∈ N, k ∈ N, any c-coloring of Z will have a monochromatic
arithmetic progression of length k.

Furstenberg [1] later proved it using topological methods. We give a detailed
treatment of this proof using as much intuition and as little topology as needed. We
follow the approach of [3] who in turn followed the approach of [2].

2 Definitions from Topology

Def 2.1 X is a metric space if there exists a function d : X ×X → R≥0 (called a
metric) with the following properties.

1. d(x, y) = 0 iff x = y

2. d(x, y) = d(y, x),

3. d(x, y) ≤ d(x, z) + d(z, y) (this is called the triangle inequality).

Def 2.2 Let X, Y be metric spaces with metrics dX and dY .

1. If x ∈ X and ε > 0 then B(x, ε) = {y | dX(x, y) < ε}. Sets of this form are
called balls.

2. Let A ⊆ X and x ∈ X. x is a limit point of A if

(∀ε > 0)(∃y ∈ A)[d(x, y) < ε].

3. If x1, x2, . . . ∈ X then limi xi = x means (∀ε > 0)(∃i)(∀j)[j ≥ i ⇒ xj ∈ B(x, ε)].

4. Let T : X → Y .

(a) T is continuous if for all x, x1, x2, . . . ∈ X

lim
i

xi = x ⇒ lim
i

T (xi) = T (x).
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(b) T is uniformly continuous if

(∀ε)(∃δ)(∀x, y ∈ X)[dX(x, y) < δ ⇒ dY (T (x), T (y)) < ε].

5. T is bi-continuous if T is a bijection, T is continuous, and T− is continuous.

6. T is bi-unif-continuous if T is a bijection, T is uniformly continuous, and T− is
uniformly continuous.

7. If A ⊆ X then

(a) A′ is the set of all limit points of A.

(b) cl(A) = A ∪ A′. (This is called the closure of A).

8. A set A ⊆ X is closed under limit points if every limit point of A is in A.

Fact 2.3 If X is a metric space and A ⊆ X then cl(A) is closed under limit points.
That is, if x is a limit point of cl(A) then x ∈ cl(A). Hence cl(cl(A)) = cl(A).

Note 2.4 The intention in defining the closure of a set A is to obtain the smallest
set that contains A that is also closed under limit points. In a general topological
space the closure of a set A is the intersection of all closed sets that contain A.
Alternatively one can define the closure to be A∪A′ ∪A′′ ∪ · · ·. That · · · is not quite
what is seems- it may need to go into transfinite ordinals (you do not need to know
what transfinite ordinals are for this paper). Fortunately we are looking at metric
spaces where cl(A) = A ∪ A′ suffices. More precisely, our definition agrees with the
standard one in a metric space.

Example 2.5

1. [0, 1] with d(x, y) = |x− y| (the usual definition of distance).

(a) If A = (1
2
, 3

4
) then cl(A) = [1

2
, 3

4
].

(b) If A = {1, 1
2
, 1

3
, 1

4
, . . .} then cl(A) = A ∪ {0}.

(c) cl(Q) = R.

(d) Fix c ∈ N. Let BISEQ be the set of all c-colorings of Z. (It is called
BISEQ since it is a bi-sequence of colors. A bi-sequence is a sequence in
two directions.) We represent elements of BISEQ by f : Z → [c].
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2. Let d : BISEQ× BISEQ → R≥0 be defined as follows.

d(f, g) =

{
0 if f = g;

1
1+i

if f 6= g and i is least number s.t. f(i) 6= g(i) or f(−i) 6= g(−i);

One can easily verify that d(f, g) is a metric. We will use this in the future alot
so the reader is urged to verify it.

3. The function T is defined by T (f) = g where g(i) = f(i + 1). One can easily
verify that T is bi-unif-continuous. We will use this in the future alot so the
reader is urged to verify it.

Notation 2.6 Let T : X → X be a bijection. Let n ∈ N.

1. T (n)(x) = T (T (· · ·T (x) · · ·)) means that you apply T to x n times.

2. T (−n)(x) = T−(T−(· · ·T−(x) · · ·)) means that you apply T− to x n times.

Def 2.7 If X is a metric space and T : X → X then

orbit(x) = {T (i)(x) | i ∈ N}
dorbit(x) = {T (i)(x) | i ∈ Z} (dorbit stands for for double-orbit)

Def 2.8 Let X be a metric space, T : X → X be a bijection, and x ∈ X.

1.
CLDOT(x) = cl({. . . , T (−3)(x), T (−2)(x), . . . , T (2)(x), T (3)(x), . . .)

CLDOT(x) stands for Closure of Double-Orbit of x.

2. x is homogeneous if

(∀y ∈ CLDOT(x))[CLDOT(x) = CLDOT(y)].

3. X is limit point compact1 if every infinite subset of X has a limit point in X.

Example 2.9 Let BISEQ and T be as in Example 2.5.2. Even though BISEQ is
formally the functions from Z to [c] we will use colors as the co-domain.

1Munkres [4] is the first one to name this concept “limit point compact”; however, the concept
has been around for a long time under a variety of names. Originally, what we call “limit point
compact” was just called “compact”. Since then the concept we call limit point compact has gone
by a number of names: Bolzano-Weierstrass property, Frechet Space are two of them. This short
history lesson is from Munkres [4] page 178.
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1. Let f ∈ BISEQ be defined by

f(x) =
{

RED if |x| is a square;
BLUE otherwise.

The set {T (i)(f) | i ∈ Z} has one limit point. It is the function

(∀x ∈ Z)[g(x) = BLUE].

This is because their are arbitrarily long runs of non-squares. For any M there
is an i ∈ Z such that T (i)(f) and g agree on {−M, . . . , M}. Note that

d(T (i)(f), g) ≤ 1

M + 1
.

Hence

CLDOT(f) = {T (i)(f) | i ∈ Z} ∪ {g}.

2. Let f ∈ BISEQ be defined by

f(x) =
{

RED if x ≥ 0 and x is a square or x ≤ 0 and x is not a square;
BLUE otherwise.

The set {T (i)(f) | i ∈ Z} has two limit points. They are

(∀x ∈ Z)[g(x) = BLUE]

and
(∀x ∈ Z)[h(x) = RED].

This is because their are arbitrarily long runs of REDs and arbitrarily long runs
of BLUEs.

CLDOT(f) = {T (i)(f) | i ∈ Z} ∪ {g, h}.

3. We now construct an example of an f such that the number of limit points of
{T (i)(f) | i ∈ Z} is infinite. Let fj ∈ BISEQ be defined by

fj(x) =
{

RED if x ≥ 0 and x is a jth power;
BLUE otherwise.

Let Ik = {2k, . . . , 2k+1 − 1}. Let a1, a2, a3, . . . be a list of natural numbers so
that every single natural number occurs infinitely often. Let f ∈ BISEQ be
defined as follows.

f(x) =
{

fj(x) if x ≥ 1, x ∈ Ik and j = ak;
BLUE if x ≤ 0.

For every j there are arbitrarily long segments of f that agree with some trans-
lation of fj. Hence every point fj is a limit point of {T (i)f | i ∈ Z}.
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Example 2.10 We show that BISEQ is limit point compact. Let A ⊆ BISEQ be
infinite. Let f1, f2, f3, . . . ∈ A. We construct f ∈ BISEQ to be a limit point of
f1, f2, . . .. Let a1, a2, a3, . . . be an enumeration of the integers.

I0 = N
f(a1) = least color in [c] that occurs infinitely often in {fi(a1) | i ∈ I0}

I1 = {i | fi(a1) = f(a1)}

Assume that f(a1), I1, f(a2), I2, . . . , f(an−1), In−1 are all defined and that In−1 is
infinite.

f(an) = least color in [c] that occurs infinitely often in {fi(an) | i ∈ In−1}
In = {i | (∀j)[1 ≤ j ≤ n ⇒ fi(aj) = f(aj)]}

Note that In is infinite.

Note 2.11 The argument above that BISEQ is limit point compact is a common
technique that is often called a compactness argument.

Lemma 2.12 If X is limit point compact, Y ⊆ X, and Y is closed under limit points
then Y is limit point compact.

Proof: Let A ⊆ Y be an infinite set. Since X is limit point compact A has a limit
point x ∈ X. Since Y is closed under limit points, x ∈ Y . Hence every infinite subset
of Y has a limit point in Y , so Y is limit point compact.

Def 2.13 Let X be a metric space and T : X → X be continuous. Let x ∈ X.

1. The point x is recurrent for T if

(∀ε)(∃n)[d(T (n)(x), x) < ε].

Intuition: If x is recurrent for T then the orbit of x comes close to x infinitely
often. Note that this may be very irregular.

2. Let ε > 0, r ∈ N, and w ∈ X. w is (ε, r)-recurrent for T if

(∃n ∈ N)[d(T (n)(w), w) < ε ∧ d(T (2n)(w), w) < ε ∧ · · · ∧ d(T (rn)(w), w) < ε.]

Intuition: If w is (ε, r)-recurrent for T then the orbit of w comes within ε of
w r times on a regular basis.

Example 2.14
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1. If T (x) = x then all points are recurrent (this is trivial).

2. Let T : R → R be defined by T (x) = −x. Then, for all x ∈ R, T (T (x)) = x so
all points are recurrent.

3. Let α ∈ [0, 1]. Let T : [0, 1] → [0, 1] be defined by T (x) = x + α (mod 1).

(a) If α = 0 or α = 1 then all points are trivially recurrent.

(b) If α ∈ Q, α = p
q

then it is easy to show that all points are recurrent for the

trivial reason that T (q)(x) = x + q(p
q
) (mod 1) = x.

(c) If α /∈ Q then T is recurrent. This requires a real proof.

3 A Theorem in Topology

Def 3.1 Let X be a metric space and T : X → X be a bijection. (X, T ) is homoge-
neous if, for every x ∈ X,

X = CLDOT(x).

Example 3.2

Let X = [0, 1], d(x, y) = |x− y|, and T (x) = x + α (mod 1).

1. If α ∈ Q then (X, T ) is not homogeneous.

2. If α /∈ Q then (X, T ) is homogeneous.

3. Let f, g ∈ BISEQ, so f : Z → {1, 2} be defined by

f(x) =
{

1 if x ≡ 1 (mod 2);
2 if x ≡ 0 (mod 2)

and
g(x) = 3− f(x).

Let T : BISEQ → BISEQ be defined by

T (h)(x) = h(x + 1).

Let X = CLDOT(f). Note that

X = {f, g} = CLDOT(f) = CLDOT(g).

Hence (X,T ) is homogeneous.

4. All of the examples in Example 2.9 are not homogeneous.

6



The ultimate goal of this section is to show the following.

Theorem 3.3 Let X be a metric space and T : X → X be bi-unif-continuous. As-
sume (X, T ) is homogeneous. Then for every r ∈ N, for every ε > 0, T has an
(ε, r)-recurrent point.

Important Convention for the Rest of this Section:

1. X is a metric space.

2. T is bi-unif-continuous.

3. (X, T ) is homogeneous.

We show the following by a multiple induction.

1. Ar: (∀ε > 0)(∃x, y ∈ X, n ∈ N)

d(T (n)(x), y) < ε ∧ d(T (2n)(x), y) < ε ∧ · · · ∧ d(T (rn)(x), y) < ε.

Intuition: There exists two points x, y such that the orbit of x comes very
close to y on a regular basis r times.

2. Br: (∀ε > 0)(∀z ∈ X)(∃x ∈ X, n ∈ N)

d(T (n)(x), z) < ε ∧ d(T (2n)(x), z) < ε ∧ · · · ∧ d(T (rn)(x), z) < ε.

Intuition: For any z there is an x such that the orbit of x comes very close to
z on a regular basis r times.

3. Cr: (∀ε > 0)(∀z ∈ X)(∃x ∈ X)(∃n ∈ N)(∃ε′ > 0)

T (n)(B(x, ε′)) ⊆ B(z, ε) ∧ T (2n)(B(x, ε′)) ⊆ B(z, ε) ∧ · · · ∧ T (rn)(B(x, ε′))) ⊆
B(z, ε).

Intuition: For any z there is an x such that the orbit of a small ball around x
comes very close to z on a regular basis r times.

4. Dr: (∀ε > 0)(∃w ∈ X, n ∈ N)

d(T (n)(w), w) < ε ∧ d(T (2n)(w), w) < ε ∧ · · · ∧ d(T (rn)(w), w) < ε.

Intuition: There is a point w such that the orbit of w comes close to w on
a regular basis r times. In other words, for all ε, there is a w that is (ε, r)-
recurrent.

7



Lemma 3.4 (∀ε > 0)(∃M ∈ N)(∀x, y ∈ X)

min{d(x, T (−M)(y)), d(x, T (−M+1)(y)), . . . , d(x, T (M)(y))} < ε

Proof:
Intuition: Since (X, T ) is homogeneous, if x, y ∈ X then x is close to some point in
the double-orbit of y (using T ).

Assume, by way of contradiction, that (∃ε > 0)(∀M ∈ N)(∃xM , yM ∈ X)

min{d(xM , T (−M)(yM)), d(xM , T (−M+1)(yM)), . . . , d(xM , T (M)(yM))} ≥ ε

Let x = limM→∞ xM and y = limM→∞ yM . Since (X, T ) is homogeneous (so it is
the closure of a set) and Fact 2.3, x, y ∈ X. Since (X, T ) is homogeneous

X = {T (i)(y) | i ∈ Z} ∪ {T (i)(y) | i ∈ Z}′.

Since x ∈ X

(∃∞i ∈ Z)[d(x, T (i)(y)) < ε/4].

We don’t need the ∃∞, all we need is to have one such I. Let I ∈ Z be such that

d(x, T (I)(y)) < ε/4

Since T (I) is continuous, limM yM = y, and limM xM = x there exists M > |I|
such that

d(T (I)(y), T (I)(yM)) < ε/4 ∧ d(xM , x) < ε/4.

Hence

d(xM , T (I)(yM)) ≤ d(xM , x)+d(x, T (I)(y))+d(T (I)(y), T (I)(yM)) ≤ ε/4+ε/4+ε/4 < ε.

Hence d(xM , T (I)(yM)) < ε. This violates the definition of xM , yM .

Note 3.5 The above lemma only used that T is continuous, not that T is bi-unif-
continuous.
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3.1 Ar ⇒ Br

Lemma 3.6 Ar: (∀ε > 0)(∃x, y ∈ X, n ∈ N)
d(T (n)(x), y) < ε ∧ d(T (2n)(x), y) < ε∧ · · · ∧ d(T (rn)(x), y) < ε
⇒
Br: (∀ε > 0)(∀z ∈ X)(∃x ∈ X, n ∈ N)
d(T (n)(x), z) < ε∧ d(T (2n)(x), z) < ε∧ · · · ∧ d(T (rn)(x), z) < ε.

Proof:
Intuition: By Ar there is an x, y such that the orbit of x will get close to y regularly.
Let z ∈ X. Since (X, T ) is homogeneous the orbit of y comes close to z. Hence z is
close to T (s)(y) and y is close to T (in)(x), so z is close to T (in+s)(x) = T (in)(T (s)(x)).
So z is close to T (s)(x) on a regular basis.
Note: The proof merely pins down the intuition. If you understand the intuition you
may want to skip the proof.

Let ε > 0.

1. Let M be from Lemma 3.4 with parameter ε/3.

2. Since T is bi-unif-continuous we have that for s ∈ Z, |s| ≤ M , T (s) is unif-cont.
Hence there exists ε′ such that

(∀a, b ∈ X)[d(a, b) < ε′ ⇒ (∀s ∈ Z, |s| ≤ M)[d(T (s)(a), T (s)(b)) < ε/3].

3. Let x, y ∈ X, n ∈ N come from Ar with ε′ as parameter. Note that

d(T (in)(x), y) < ε′ for 1 ≤ i ≤ r.

Let z ∈ X. Let y be from item 3 above. By the choice of M there exists s,
|s| ≤ M , such that

d(T (s)(y), z) < ε/3.

Since x, y, n satisfy Ar with ε′ we have

d(T (in)(x), y) < ε′ for 1 ≤ i ≤ r.

By the definition of ε′ we have

d(T (in+s)(x), T (s)(y)) < ε/3 for 1 ≤ i ≤ r.

Note that

d(T (in)(T (s)(x), z)) ≤ d(T (in)(T (s)(x)), T (s)(y)) + d(T (s)(y), z) ≤ ε/3 + ε/3 < ε.
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3.2 Br ⇒ Cr

Lemma 3.7 Br: (∀ε > 0)(∀z ∈ X)(∃x ∈ X, n ∈ N)
d(T (n)(x), z) < ε ∧ d(T (2n)(x), z) < ε ∧ · · · ∧ d(T (rn)(x), z) < ε
⇒
Cr: (∀ε > 0)(∀z ∈ X)(∃x ∈ X, n ∈ N, ε′ > 0)
T (n)B(x, ε′) ⊆ B(z, ε) ∧ T (2n)(B(x, ε′) ⊆ B(z, ε) ∧ · · · ∧ T (rn)(B(x, ε′) ⊆ B(z, ε).

Proof:
Intuition: Since the orbit of x is close to z on a regular basis, balls around the orbits
of x should also be close to z on the same regular basis.

Let ε > 0 and z ∈ X be given. Use Br with ε/3 to obtain the following:

(∃x ∈ X,n ∈ N)[d(T (n)(x), z) < ε/3∧d(T (2n)(x), z) < ε/3∧· · ·∧d(T (rn)(x), z) < ε/3].

By uniform continuity of T (in) for 1 ≤ i ≤ r we obtain ε′ such that

(∀a, b ∈ X)[d(a, b) < ε′ ⇒ (∀i ≤ r)[d(T (in)(a), T (in)(b)) < ε2]

We use these values of x and ε′.
Let w ∈ T (in)(B(x, ε′)). We show that w ∈ B(z, ε) by showing d(w, z) < ε.
Since w ∈ T (in)(B(x, ε′)) we have w = T (in)(w′) for w′ ∈ B(x, ε′). Since

d(x, w′) < ε′

we have, by the definition of ε′,

d(T (in)(x), T (in)(w′)) < ε/3.

d(z, w) = d(z, T (in)(w′)) ≤ d(z, T (in)(x)) + d(T (in)(x), T (in)(w′)) ≤ ε/3 + ε/3 < ε.

Hence w ∈ B(zε).

Note 3.8 The above proof used only that T is unif-continuous, not bi-unif-continuous.
In fact, the proof does not use that T is a bijection.

10



3.3 Cr ⇒ Dr

Lemma 3.9 Cr: (∀ε > 0)(∀z ∈ X)(∃x ∈ X, n ∈ N, ε′ > 0)
T (n)B(x, ε′) ⊆ B(z, ε) ∧ T (2n)(B(x, ε′) ⊆ B(z, ε) ∧ · · · ∧ T (rn)(B(x, ε′) ⊆ B(z, ε)
⇒
Dr: (∀ε > 0)(∃w ∈ X, n ∈ N)
d(T (n)(w), w) < ε ∧ d(T (2n)(w), w) < ε ∧ · · · ∧ d(T (rn)(w), y) < ε.

Proof:
Intuition: We use the premise iteratively. Start with a point z0. Some z1 has a ball
around its orbit close to z0. Some z2 has a ball around its orbit close to z1. Etc.
Finally there will be two zi’s that are close: in fact the a ball around the orbit of one
is close to the other. This will show the conclusion.

Let z0 ∈ X. Apply Cr with ε0 = ε/2 and z0 to obtain z1, ε1, n1 such that

T (in1)(B(z1, ε1)) ⊆ B(z0, ε0) for 1 ≤ i ≤ r.

Apply Cr with ε1 and z1 to obtain z2, ε2, n2 such that

T (in2)(B(z2, ε2)) ⊆ B(z1, ε1) for 1 ≤ i ≤ r.

Apply Cr with ε2 and z2 to obtain z3, ε3, n3 such that

T (in3)(B(z3, ε3)) ⊆ B(z2, ε2) for 1 ≤ i ≤ r.

Keep doing this to obtain z0, z1, z2, . . ..
One can easily show that, for all t < s, for all i 1 ≤ i ≤ r,

T (i(ns+ns+1+···+ns+t))(B(zs, εs)) ⊆ B(zt, εt)

Since X is closed z0, z1, . . . has a limit point. Hence

d(zs, zt) < ε0.

Using these s, t and letting ns + · · ·+ ns+t = n we obtain

T (in)(B(zs, εs)) ⊆ B(zt, εt)

Hence
d(T (in)(zs), zt) < εt.

Let w = zs. Hence, for 1 ≤ i ≤ r

d(T (in)(w), w) ≤ d(T (in)(zs), zs) ≤ d(T (in)(zs), zt) + d(zt, zs) < εt + ε0 < ε.
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3.4 Dr ⇒ Ar+1

Lemma 3.10 Dr: (∀ε > 0)(∃w ∈ X, n ∈ N)
d(T (n)(w), w) < ε ∧ d(T (2n)(w), w) < ε ∧ · · · ∧ d(T (rn)(w), y) < ε.
⇒
Ar+1: (∀ε > 0)(∃x, y ∈ X, n ∈ N)
d(T (n)(x), y) < ε ∧ d(T (2n)(x), y) < ε∧ , . . . , d(T ((r+1)n)(x), y) < ε.

Proof:
By Dr and (∀x)[d(x, x) = 0] we have that there exists a w ∈ X and n ∈ N such

that the following hold.
d(w, w) < ε

d(T (n)(w), w) < ε
d(T (2n)(w), w) < ε

...
d(T (rn)(w), w) < ε

We rewrite the above equations.

d(T (n)(T (−n)(w)), w) < ε
d(T (2n)(T (−n)(w)), w) < ε
d(T (3n)(T (−n)(w)), w) < ε

...
d(T (rn)(T (−n)(w)), w) < ε

d(T ((r+1)n)(T (−n)(w)), w) < ε

Let x = T (−n)(w) and y = w to obtain

d(T (n)(x), y) < ε
d(T (2n)(x), y) < ε
d(T (3n)(x), y) < ε

...
d(T (rn)(x), y) < ε

d(T ((r+1)n)(x), y) < ε

Theorem 3.11 Assume that

1. X is a metric space,

2. T is bi-unif-continuous.

3. (X, T ) is homogeneous.
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For every r ∈ N, ε > 0, there exists w ∈ X, n ∈ N such that w is (ε, r)-recurrent.

Proof:
Recall that A1 states

(∀ε)(∃x, y ∈ X)(∃n)[d(T (n)(x), y) < ε].

Let x ∈ X be arbitrary and y = T (y). Note that

d(T (1)(x), y) = d(T (x), T (x)) = 0 < ε.

Hence A1 is satisfied.
By Lemmas 3.6, 3.7, 3.9, and 3.10 we have (∀r ∈ N)[Dr]. This is the conclusion

we seek.

4 Another Theorem in Topology

Recall the following well known theorem, called Zorn’s Lemma.

Lemma 4.1 Let (X,�) be a partial order. If every chain has an upper bound then
there exists a maximal element.

Proof: See Appendix TO BE WRITTEN

Lemma 4.2 Let X be a metric space, T : X → X be bi-continuous, and x ∈ X. If
y ∈ CLDOT(x) then CLDOT(y) ⊆ CLDOT(x).

Proof: Let y ∈ CLDOT(x). Then there exists i1, i2, i3, . . . ∈ Z such that

T (i1)(x), T (i2)(x), T (i3)(x), . . . → y.

Let j ∈ Z. Since T (j) is continues

T (i1+j)(x), T (i2+j)(x), T (i3+j)(x), . . . → T (j)y.

Hence, for all j ∈ Z,

T (j)(y) ∈ cl{T (ik+j)(x) | k ∈ N} ⊆ cl{T (i)(x) | i ∈ Z} = CLDOT(x).

Therefore

{T (j)(y) | j ∈ Z} ⊆ CLDOT(x).

By taking cl of both sides we obtain

CLDOT(y) ⊆ CLDOT(x).
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Theorem 4.3 Let X be a limit point compact metric space. Let T : X → X be a
bijection. Then there exists a homogeneous point x ∈ X.

Proof:
We define the following order on X.

x � y iff CLDOT(x) ⊇ CLDOT(y).

This is clearly a partial ordering. We show that this ordering satisfies the premise
of Zorn’s lemma.

Let C be a chain. If C is finite then clearly it has an upper bound. Hence we
assume that C is infinite. Since X is limit point compact there exists x, a limit point
of C.
Claim 1: For every y, z ∈ C such that y � z, z ∈ CLDOT(y).
Proof: Since y � z we have CLDOT(z) ⊆ CLDOT(y). Note that

z ∈ CLDOT(z) ⊆ CLDOT(y).

End of Proof of Claim 1
Claim 2: For every y ∈ C x ∈ CLDOT(y).
Proof: Let y1, y2, y3, . . . be such that

1. y = y1,

2. y1, y2, y3, . . . ∈ C,

3. y1 � y2 � y3 � · · ·, and

4. limi yi = x.

Since y ≺ y2 ≺ y3 ≺ · · · we have (∀i)[CLDOT(y) ⊇ CLDOT(yi)]. Hence (∀i)[yi ∈
CLDOT(y)]. Since limi yi = x, (∀i)[yi ∈ CLDOT(y)], and CLDOT(y) is closed under
limit points, x ∈ CLDOT(y).
End of Proof of Claim 2

By Zorn’s lemma there exists a maximal element under the ordering �. Let this
element be x.
Claim 3: x is homogeneous.
Proof: Let y ∈ CLDOT(x). We show CLDOT(y) = CLDOT(x).

Since y ∈ CLDOT(x), CLDOT(y) ⊆ CLDOT(x) by Lemma 4.2.
Since x is maximal CLDOT(x) ⊆ CLDOT(y).
Hence CLDOT(x) = CLDOT(y).

End of Proof of Claim 3
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5 VDW

Theorem 5.1 For all c, for all k, for every c-coloring of Z there exists a monochro-
matic arithmetic sequence of length k.

Proof:
Let BISEQ and T be as in Example 2.5.2.
Let f ∈ BISEQ. Let Y = CLDOT(f). Since BISEQ is limit point compact and Y

is closed under limit points, by Lemma 2.12 Y is limit point compact. By Theorem 4.3
there exists g ∈ X such that CLDOT(g) is homogeneous. Let X = CLDOT(g). The
premise of Theorem 3.11 is satisfied with X and T . Hence we take the following
special case.

There exists h ∈ X, n ∈ N such that h is (1
4
, k)-recurrent. Hence there exists n

such that

d(h, T (n)(h)), d(h, T (2n)(h)), . . . , d(h, T (rn)(h)) <
1

4
.

Since for all i, 1 ≤ i ≤ r, d(h, T (in)(h)) < 1
4

< 1
2

we have that

h(0) = h(n) = h(2n) = · · · = h(kn).

Hence h has an AP of length k. We need to show that f has an AP of length k.
Let ε = 1

2(kn+1)
. Since h ∈ CLDOT(g) there exists j ∈ Z such that

d(h, T (j)(g)) < ε.

Let ε′ be such that

(∀a, b ∈ X)[d(a, b) < ε′ ⇒ d(T (j)(a), T (j)(b)) < ε].

Since g ∈ CLDOT(f) there exists i ∈ Z such that d(g, T (i)(f)) < ε′. By the
definition of ε′ we have

d(T (j)(g), T (i+j)(f)) < ε.

Hence we have

d(h, T (i+j)(f)) ≤ d(h, T (j)(g)) + d(T (j)(g), T (i+j)f) < 2ε ≤ 1

kn + 1
.

Hence we have that h and T (i+j)(f) agree on {0, . . . , kn}. In particular
h(0) = f(i + j).
h(n) = f(i + j + n).
h(2n) = f(i + j + 2n).

...
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h(kn) = f(i + j + kn).
Since

h(0) = h(n) = · · · = h(kn)

we have

f(i + j) = f(i + j + n) = f(i + j + 2n) = · · · = f(i + j + kn).

Thus f has a monochromatic arithmetic progression of length k.
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