Ergodic Proofs of VDW Theorem

1 Introduction

Van Der Waerden [5] proved the following combinatorial theorem in a combinatorial way

Theorem 1.1 For all $c \in \mathbf{N}, k \in \mathbf{N}$, any c-coloring of \mathbf{Z} will have a monochromatic arithmetic progression of length k.

Furstenberg [1] later proved it using topological methods. We give a detailed treatment of this proof using as much intuition and as little topology as needed. We follow the approach of [3] who in turn followed the approach of [2].

2 Definitions from Topology

Def 2.1 X is a metric space if there exists a function $d: X \times X \rightarrow \mathrm{R}^{\geq 0}$ (called a metric) with the following properties.

1. $d(x, y)=0$ iff $x=y$
2. $d(x, y)=d(y, x)$,
3. $d(x, y) \leq d(x, z)+d(z, y)$ (this is called the triangle inequality).

Def 2.2 Let X, Y be metric spaces with metrics d_{X} and d_{Y}.

1. If $x \in X$ and $\epsilon>0$ then $B(x, \epsilon)=\left\{y \mid d_{X}(x, y)<\epsilon\right\}$. Sets of this form are called balls.
2. Let $A \subseteq X$ and $x \in X . x$ is a limit point of A if

$$
(\forall \epsilon>0)(\exists y \in A)[d(x, y)<\epsilon] .
$$

3. If $x_{1}, x_{2}, \ldots \in X$ then $\lim _{i} x_{i}=x$ means $(\forall \epsilon>0)(\exists i)(\forall j)\left[j \geq i \Rightarrow x_{j} \in B(x, \epsilon)\right]$.
4. Let $T: X \rightarrow Y$.
(a) T is continuous if for all $x, x_{1}, x_{2}, \ldots \in X$

$$
\lim _{i} x_{i}=x \Rightarrow \lim _{i} T\left(x_{i}\right)=T(x) .
$$

(b) T is uniformly continuous if

$$
(\forall \epsilon)(\exists \delta)(\forall x, y \in X)\left[d_{X}(x, y)<\delta \Rightarrow d_{Y}(T(x), T(y))<\epsilon\right]
$$

5. T is bi-continuous if T is a bijection, T is continuous, and T^{-}is continuous.
6. T is bi-unif-continuous if T is a bijection, T is uniformly continuous, and T^{-}is uniformly continuous.
7. If $A \subseteq X$ then
(a) A^{\prime} is the set of all limit points of A.
(b) $\operatorname{cl}(A)=A \cup A^{\prime}$. (This is called the closure of A).
8. A set $A \subseteq X$ is closed under limit points if every limit point of A is in A.

Fact 2.3 If X is a metric space and $A \subseteq X$ then $\operatorname{cl}(A)$ is closed under limit points. That is, if x is a limit point of $\operatorname{cl}(A)$ then $x \in \operatorname{cl}(A)$. Hence $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl}(A)$.

Note 2.4 The intention in defining the closure of a set A is to obtain the smallest set that contains A that is also closed under limit points. In a general topological space the closure of a set A is the intersection of all closed sets that contain A. Alternatively one can define the closure to be $A \cup A^{\prime} \cup A^{\prime \prime} \cup \cdots$. That \cdots is not quite what is seems- it may need to go into transfinite ordinals (you do not need to know what transfinite ordinals are for this paper). Fortunately we are looking at metric spaces where $\operatorname{cl}(A)=A \cup A^{\prime}$ suffices. More precisely, our definition agrees with the standard one in a metric space.

Example 2.5

1. $[0,1]$ with $d(x, y)=|x-y|$ (the usual definition of distance).
(a) If $A=\left(\frac{1}{2}, \frac{3}{4}\right)$ then $\operatorname{cl}(A)=\left[\frac{1}{2}, \frac{3}{4}\right]$.
(b) If $A=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$ then $\operatorname{cl}(A)=A \cup\{0\}$.
(c) $\operatorname{cl}(\mathrm{Q})=\mathrm{R}$.
(d) Fix $c \in N$. Let BISEQ be the set of all c-colorings of Z. (It is called BISEQ since it is a bi-sequence of colors. A bi-sequence is a sequence in two directions.) We represent elements of BISEQ by $f: \mathbf{Z} \rightarrow[c]$.
2. Let $d:$ BISEQ \times BISEQ $\rightarrow \mathrm{R}^{\geq 0}$ be defined as follows.
$d(f, g)= \begin{cases}0 & \text { if } f=g ; \\ \frac{1}{1+i} & \text { if } f \neq g \text { and } i \text { is least number s.t. } f(i) \neq g(i) \text { or } f(-i) \neq g(-i) ; ~\end{cases}$
One can easily verify that $d(f, g)$ is a metric. We will use this in the future alot so the reader is urged to verify it.
3. The function T is defined by $T(f)=g$ where $g(i)=f(i+1)$. One can easily verify that T is bi-unif-continuous. We will use this in the future alot so the reader is urged to verify it.

Notation 2.6 Let $T: X \rightarrow X$ be a bijection. Let $n \in \mathbf{N}$.

1. $T^{(n)}(x)=T(T(\cdots T(x) \cdots))$ means that you apply T to $x n$ times.
2. $T^{(-n)}(x)=T^{-}\left(T^{-}\left(\cdots T^{-}(x) \cdots\right)\right)$ means that you apply T^{-}to $x n$ times.

Def 2.7 If X is a metric space and $T: X \rightarrow X$ then

$$
\begin{aligned}
\operatorname{orbit}(x) & =\left\{T^{(i)}(x) \mid i \in \mathbf{N}\right\} \\
\operatorname{dorbit}(x) & =\left\{T^{(i)}(x) \mid i \in \mathbf{Z}\right\} \text { (dorbit stands for for double-orbit) }
\end{aligned}
$$

Def 2.8 Let X be a metric space, $T: X \rightarrow X$ be a bijection, and $x \in X$.
1.

$$
\operatorname{CLDOT}(x)=\operatorname{cl}\left(\left\{\ldots, T^{(-3)}(x), T^{(-2)}(x), \ldots, T^{(2)}(x), T^{(3)}(x), \ldots\right)\right.
$$

CLDOT (x) stands for Closure of Double-Orbit of x.
2. x is homogeneous if

$$
(\forall y \in \operatorname{CLDOT}(x))[\operatorname{CLDOT}(x)=\operatorname{CLDOT}(y)] .
$$

3. X is limit point compact ${ }^{1}$ if every infinite subset of X has a limit point in X.

Example 2.9 Let BISEQ and T be as in Example 2.5.2. Even though BISEQ is formally the functions from Z to $[c]$ we will use colors as the co-domain.

[^0]1. Let $f \in$ BISEQ be defined by

$$
f(x)= \begin{cases}\text { RED } & \text { if }|x| \text { is a square } ; \\ \text { BLUE } & \text { otherwise }\end{cases}
$$

The set $\left\{T^{(i)}(f) \mid i \in \mathbf{Z}\right\}$ has one limit point. It is the function

$$
(\forall x \in \mathrm{Z})[g(x)=\text { BLUE }] .
$$

This is because their are arbitrarily long runs of non-squares. For any M there is an $i \in \mathrm{Z}$ such that $T^{(i)}(f)$ and g agree on $\{-M, \ldots, M\}$. Note that

$$
d\left(T^{(i)}(f), g\right) \leq \frac{1}{M+1}
$$

Hence

$$
\operatorname{CLDOT}(f)=\left\{T^{(i)}(f) \mid i \in \mathrm{Z}\right\} \cup\{g\} .
$$

2. Let $f \in$ BISEQ be defined by

$$
f(x)= \begin{cases}\text { RED } & \text { if } x \geq 0 \text { and } x \text { is a square or } x \leq 0 \text { and } x \text { is not a square; } \\ \text { BLUE } & \text { otherwise } .\end{cases}
$$

The set $\left\{T^{(i)}(f) \mid i \in Z\right\}$ has two limit points. They are

$$
(\forall x \in \mathbf{Z})[g(x)=\text { BLUE }]
$$

and

$$
(\forall x \in \mathbf{Z})[h(x)=\mathrm{RED}] .
$$

This is because their are arbitrarily long runs of REDs and arbitrarily long runs of BLUEs.

$$
\operatorname{CLDOT}(f)=\left\{T^{(i)}(f) \mid i \in \mathrm{Z}\right\} \cup\{g, h\} .
$$

3. We now construct an example of an f such that the number of limit points of $\left\{T^{(i)}(f) \mid i \in \mathbf{Z}\right\}$ is infinite. Let $f_{j} \in$ BISEQ be defined by

$$
f_{j}(x)= \begin{cases}\text { RED } & \text { if } x \geq 0 \text { and } x \text { is a } j \text { th power; } \\ \text { BLUE } & \text { otherwise }\end{cases}
$$

Let $I_{k}=\left\{2^{k}, \ldots, 2^{k+1}-1\right\}$. Let $a_{1}, a_{2}, a_{3}, \ldots$ be a list of natural numbers so that every single natural number occurs infinitely often. Let $f \in$ BISEQ be defined as follows.

$$
f(x)= \begin{cases}f_{j}(x) & \text { if } x \geq 1, x \in I_{k} \text { and } j=a_{k} \\ \text { BLUE } & \text { if } x \leq 0\end{cases}
$$

For every j there are arbitrarily long segments of f that agree with some translation of f_{j}. Hence every point f_{j} is a limit point of $\left\{T^{(i)} f \mid i \in \mathrm{Z}\right\}$.

Example 2.10 We show that BISEQ is limit point compact. Let $A \subseteq$ BISEQ be infinite. Let $f_{1}, f_{2}, f_{3}, \ldots \in A$. We construct $f \in$ BISEQ to be a limit point of f_{1}, f_{2}, \ldots. Let $a_{1}, a_{2}, a_{3}, \ldots$ be an enumeration of the integers.

$$
\begin{aligned}
I_{0} & =\mathrm{N} \\
f\left(a_{1}\right) & =\text { least color in }[c] \text { that occurs infinitely often in }\left\{f_{i}\left(a_{1}\right) \mid i \in I_{0}\right\} \\
I_{1} & =\left\{i \mid f_{i}\left(a_{1}\right)=f\left(a_{1}\right)\right\}
\end{aligned}
$$

Assume that $f\left(a_{1}\right), I_{1}, f\left(a_{2}\right), I_{2}, \ldots, f\left(a_{n-1}\right), I_{n-1}$ are all defined and that I_{n-1} is infinite.

$$
\begin{aligned}
f\left(a_{n}\right) & =\text { least color in }[c] \text { that occurs infinitely often in }\left\{f_{i}\left(a_{n}\right) \mid i \in I_{n-1}\right\} \\
I_{n} & =\left\{i \mid(\forall j)\left[1 \leq j \leq n \Rightarrow f_{i}\left(a_{j}\right)=f\left(a_{j}\right)\right]\right\}
\end{aligned}
$$

Note that I_{n} is infinite.

Note 2.11 The argument above that BISEQ is limit point compact is a common technique that is often called a compactness argument.

Lemma 2.12 If X is limit point compact, $Y \subseteq X$, and Y is closed under limit points then Y is limit point compact.

Proof: Let $A \subseteq Y$ be an infinite set. Since X is limit point compact A has a limit point $x \in X$. Since Y is closed under limit points, $x \in Y$. Hence every infinite subset of Y has a limit point in Y, so Y is limit point compact.

Def 2.13 Let X be a metric space and $T: X \rightarrow X$ be continuous. Let $x \in X$.

1. The point x is recurrent for T if

$$
(\forall \epsilon)(\exists n)\left[d\left(T^{(n)}(x), x\right)<\epsilon\right] .
$$

Intuition: If x is recurrent for T then the orbit of x comes close to x infinitely often. Note that this may be very irregular.
2. Let $\epsilon>0, r \in \mathbf{N}$, and $w \in X . w$ is (ϵ, r)-recurrent for T if

$$
(\exists n \in \mathrm{~N})\left[d\left(T^{(n)}(w), w\right)<\epsilon \wedge d\left(T^{(2 n)}(w), w\right)<\epsilon \wedge \cdots \wedge d\left(T^{(r n)}(w), w\right)<\epsilon .\right]
$$

Intuition: If w is (ϵ, r)-recurrent for T then the orbit of w comes within ϵ of $w r$ times on a regular basis.

Example 2.14

1. If $T(x)=x$ then all points are recurrent (this is trivial).
2. Let $T: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $T(x)=-x$. Then, for all $x \in \mathrm{R}, T(T(x))=x$ so all points are recurrent.
3. Let $\alpha \in[0,1]$. Let $T:[0,1] \rightarrow[0,1]$ be defined by $T(x)=x+\alpha(\bmod 1)$.
(a) If $\alpha=0$ or $\alpha=1$ then all points are trivially recurrent.
(b) If $\alpha \in \mathrm{Q}, \alpha=\frac{p}{q}$ then it is easy to show that all points are recurrent for the trivial reason that $T^{(q)}(x)=x+q\left(\frac{p}{q}\right) \quad(\bmod 1)=x$.
(c) If $\alpha \notin \mathbf{Q}$ then T is recurrent. This requires a real proof.

3 A Theorem in Topology

Def 3.1 Let X be a metric space and $T: X \rightarrow X$ be a bijection. (X, T) is homogeneous if, for every $x \in X$,

$$
X=\operatorname{CLDOT}(x)
$$

Example 3.2

Let $X=[0,1], d(x, y)=|x-y|$, and $T(x)=x+\alpha \quad(\bmod 1)$.

1. If $\alpha \in \mathrm{Q}$ then (X, T) is not homogeneous.
2. If $\alpha \notin \mathrm{Q}$ then (X, T) is homogeneous.
3. Let $f, g \in$ BISEQ, so $f: Z \rightarrow\{1,2\}$ be defined by

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { if } x \equiv 1 & (\bmod 2) ; \\
2 & \text { if } x \equiv 0 & (\bmod 2)
\end{array}\right.
$$

and

$$
g(x)=3-f(x) .
$$

Let $T:$ BISEQ \rightarrow BISEQ be defined by

$$
T(h)(x)=h(x+1) .
$$

Let $X=\operatorname{CLDOT}(f)$. Note that

$$
X=\{f, g\}=\operatorname{CLDOT}(f)=\operatorname{CLDOT}(g)
$$

Hence (X, T) is homogeneous.
4. All of the examples in Example 2.9 are not homogeneous.

The ultimate goal of this section is to show the following.
Theorem 3.3 Let X be a metric space and $T: X \rightarrow X$ be bi-unif-continuous. Assume (X, T) is homogeneous. Then for every $r \in \mathbf{N}$, for every $\epsilon>0, T$ has an (ϵ, r)-recurrent point.

Important Convention for the Rest of this Section:

1. X is a metric space.
2. T is bi-unif-continuous.
3. (X, T) is homogeneous.

We show the following by a multiple induction.

1. $A_{r}:(\forall \epsilon>0)(\exists x, y \in X, n \in \mathrm{~N})$
$d\left(T^{(n)}(x), y\right)<\epsilon \wedge d\left(T^{(2 n)}(x), y\right)<\epsilon \wedge \cdots \wedge d\left(T^{(r n)}(x), y\right)<\epsilon$.
Intuition: There exists two points x, y such that the orbit of x comes very close to y on a regular basis r times.
2. $B_{r}:(\forall \epsilon>0)(\forall z \in X)(\exists x \in X, n \in \mathrm{~N})$
$d\left(T^{(n)}(x), z\right)<\epsilon \wedge d\left(T^{(2 n)}(x), z\right)<\epsilon \wedge \cdots \wedge d\left(T^{(r n)}(x), z\right)<\epsilon$.
Intuition: For any z there is an x such that the orbit of x comes very close to z on a regular basis r times.
3. $C_{r}:(\forall \epsilon>0)(\forall z \in X)(\exists x \in X)(\exists n \in \mathrm{~N})\left(\exists \epsilon^{\prime}>0\right)$
$\left.T^{(n)}\left(B\left(x, \epsilon^{\prime}\right)\right) \subseteq B(z, \epsilon) \wedge T^{(2 n)}\left(B\left(x, \epsilon^{\prime}\right)\right) \subseteq B(z, \epsilon) \wedge \cdots \wedge T^{(r n)}\left(B\left(x, \epsilon^{\prime}\right)\right)\right) \subseteq$ $B(z, \epsilon)$.
Intuition: For any z there is an x such that the orbit of a small ball around x comes very close to z on a regular basis r times.
4. $D_{r}:(\forall \epsilon>0)(\exists w \in X, n \in \mathrm{~N})$
$d\left(T^{(n)}(w), w\right)<\epsilon \wedge d\left(T^{(2 n)}(w), w\right)<\epsilon \wedge \cdots \wedge d\left(T^{(r n)}(w), w\right)<\epsilon$.
Intuition: There is a point w such that the orbit of w comes close to w on a regular basis r times. In other words, for all ϵ, there is a w that is $(\epsilon, r)-$ recurrent.

Lemma 3.4 $(\forall \epsilon>0)(\exists M \in \mathrm{~N})(\forall x, y \in X)$

$$
\min \left\{d\left(x, T^{(-M)}(y)\right), d\left(x, T^{(-M+1)}(y)\right), \ldots, d\left(x, T^{(M)}(y)\right)\right\}<\epsilon
$$

Proof:

Intuition: Since (X, T) is homogeneous, if $x, y \in X$ then x is close to some point in the double-orbit of y (using T).

Assume, by way of contradiction, that $(\exists \epsilon>0)(\forall M \in \mathrm{~N})\left(\exists x_{M}, y_{M} \in X\right)$

$$
\min \left\{d\left(x_{M}, T^{(-M)}\left(y_{M}\right)\right), d\left(x_{M}, T^{(-M+1)}\left(y_{M}\right)\right), \ldots, d\left(x_{M}, T^{(M)}\left(y_{M}\right)\right)\right\} \geq \epsilon
$$

Let $x=\lim _{M \rightarrow \infty} x_{M}$ and $y=\lim _{M \rightarrow \infty} y_{M}$. Since (X, T) is homogeneous (so it is the closure of a set) and Fact 2.3, $x, y \in X$. Since (X, T) is homogeneous

$$
X=\left\{T^{(i)}(y) \mid i \in \mathbf{Z}\right\} \cup\left\{T^{(i)}(y) \mid i \in \mathbf{Z}\right\}^{\prime}
$$

Since $x \in X$

$$
\left(\exists^{\infty} i \in \mathrm{Z}\right)\left[d\left(x, T^{(i)}(y)\right)<\epsilon / 4\right] .
$$

We don't need the \exists^{∞}, all we need is to have one such I. Let $I \in \mathrm{Z}$ be such that

$$
d\left(x, T^{(I)}(y)\right)<\epsilon / 4
$$

Since $T^{(I)}$ is continuous, $\lim _{M} y_{M}=y$, and $\lim _{M} x_{M}=x$ there exists $M>|I|$ such that

$$
d\left(T^{(I)}(y), T^{(I)}\left(y_{M}\right)\right)<\epsilon / 4 \wedge d\left(x_{M}, x\right)<\epsilon / 4
$$

Hence
$d\left(x_{M}, T^{(I)}\left(y_{M}\right)\right) \leq d\left(x_{M}, x\right)+d\left(x, T^{(I)}(y)\right)+d\left(T^{(I)}(y), T^{(I)}\left(y_{M}\right)\right) \leq \epsilon / 4+\epsilon / 4+\epsilon / 4<\epsilon$.
Hence $d\left(x_{M}, T^{(I)}\left(y_{M}\right)\right)<\epsilon$. This violates the definition of x_{M}, y_{M}.

Note 3.5 The above lemma only used that T is continuous, not that T is bi-unifcontinuous.

$3.1 \quad A_{r} \Rightarrow B_{r}$

Lemma 3.6 $A_{r}:(\forall \epsilon>0)(\exists x, y \in X, n \in \mathbf{N})$

$$
\begin{aligned}
& d\left(T^{(n)}(x), y\right)<\epsilon \wedge d\left(T^{(2 n)}(x), y\right)<\epsilon \wedge \cdots \wedge d\left(T^{(r n)}(x), y\right)<\epsilon \\
& \Rightarrow \\
& B_{r}:(\forall \epsilon>0)(\forall z \in X)(\exists x \in X, n \in \mathrm{~N}) \\
& d\left(T^{(n)}(x), z\right)<\epsilon \wedge d\left(T^{(2 n)}(x), z\right)<\epsilon \wedge \cdots \wedge d\left(T^{(r n)}(x), z\right)<\epsilon .
\end{aligned}
$$

Proof:

Intuition: By A_{r} there is an x, y such that the orbit of x will get close to y regularly. Let $z \in X$. Since (X, T) is homogeneous the orbit of y comes close to z. Hence z is close to $T^{(s)}(y)$ and y is close to $T^{(i n)}(x)$, so z is close to $T^{(i n+s)}(x)=T^{(i n)}\left(T^{(s)}(x)\right)$. So z is close to $T^{(s)}(x)$ on a regular basis.
Note: The proof merely pins down the intuition. If you understand the intuition you may want to skip the proof.

Let $\epsilon>0$.

1. Let M be from Lemma 3.4 with parameter $\epsilon / 3$.
2. Since T is bi-unif-continuous we have that for $s \in \mathbf{Z},|s| \leq M, T^{(s)}$ is unif-cont. Hence there exists ϵ^{\prime} such that

$$
(\forall a, b \in X)\left[d(a, b)<\epsilon^{\prime} \Rightarrow(\forall s \in \mathbf{Z},|s| \leq M)\left[d\left(T^{(s)}(a), T^{(s)}(b)\right)<\epsilon / 3\right] .\right.
$$

3. Let $x, y \in X, n \in \mathrm{~N}$ come from A_{r} with ϵ^{\prime} as parameter. Note that

$$
d\left(T^{(i n)}(x), y\right)<\epsilon^{\prime} \text { for } 1 \leq i \leq r .
$$

Let $z \in X$. Let y be from item 3 above. By the choice of M there exists s, $|s| \leq M$, such that

$$
d\left(T^{(s)}(y), z\right)<\epsilon / 3 .
$$

Since x, y, n satisfy A_{r} with ϵ^{\prime} we have

$$
d\left(T^{(i n)}(x), y\right)<\epsilon^{\prime} \text { for } 1 \leq i \leq r
$$

By the definition of ϵ^{\prime} we have

$$
d\left(T^{(i n+s)}(x), T^{(s)}(y)\right)<\epsilon / 3 \text { for } 1 \leq i \leq r .
$$

Note that

$$
d\left(T^{(i n)}\left(T^{(s)}(x), z\right)\right) \leq d\left(T^{(i n)}\left(T^{(s)}(x)\right), T^{(s)}(y)\right)+d\left(T^{(s)}(y), z\right) \leq \epsilon / 3+\epsilon / 3<\epsilon
$$

$3.2 \quad B_{r} \Rightarrow C_{r}$

Lemma 3.7 $B_{r}:(\forall \epsilon>0)(\forall z \in X)(\exists x \in X, n \in \mathrm{~N})$

$$
\begin{aligned}
& d\left(T^{(n)}(x), z\right)<\epsilon \wedge d\left(T^{(2 n)}(x), z\right)<\epsilon \wedge \cdots \wedge d\left(T^{(r n)}(x), z\right)<\epsilon \\
& \Rightarrow \\
& C_{r}:(\forall \epsilon>0)(\forall z \in X)\left(\exists x \in X, n \in \mathrm{~N}, \epsilon^{\prime}>0\right) \\
& T^{(n)} B\left(x, \epsilon^{\prime}\right) \subseteq B(z, \epsilon) \wedge T^{(2 n)}\left(B (x , \epsilon ^ { \prime }) \subseteq B (z , \epsilon) \wedge \cdots \wedge T ^ { (r n) } \left(B\left(x, \epsilon^{\prime}\right) \subseteq B(z, \epsilon) .\right.\right.
\end{aligned}
$$

Proof:
Intuition: Since the orbit of x is close to z on a regular basis, balls around the orbits of x should also be close to z on the same regular basis.

Let $\epsilon>0$ and $z \in X$ be given. Use B_{r} with $\epsilon / 3$ to obtain the following:
$(\exists x \in X, n \in \mathbf{N})\left[d\left(T^{(n)}(x), z\right)<\epsilon / 3 \wedge d\left(T^{(2 n)}(x), z\right)<\epsilon / 3 \wedge \cdots \wedge d\left(T^{(r n)}(x), z\right)<\epsilon / 3\right]$.
By uniform continuity of $T^{(i n)}$ for $1 \leq i \leq r$ we obtain ϵ^{\prime} such that

$$
(\forall a, b \in X)\left[d(a, b)<\epsilon^{\prime} \Rightarrow(\forall i \leq r)\left[d\left(T^{(i n)}(a), T^{(i n)}(b)\right)<\epsilon^{2}\right]\right.
$$

We use these values of x and ϵ^{\prime}.
Let $w \in T^{(i n)}\left(B\left(x, \epsilon^{\prime}\right)\right)$. We show that $w \in B(z, \epsilon)$ by showing $d(w, z)<\epsilon$.
Since $w \in T^{(i n)}\left(B\left(x, \epsilon^{\prime}\right)\right)$ we have $w=T^{(i n)}\left(w^{\prime}\right)$ for $w^{\prime} \in B\left(x, \epsilon^{\prime}\right)$. Since

$$
d\left(x, w^{\prime}\right)<\epsilon^{\prime}
$$

we have, by the definition of ϵ^{\prime},

$$
\begin{gathered}
\qquad d\left(T^{(i n)}(x), T^{(i n)}\left(w^{\prime}\right)\right)<\epsilon / 3 . \\
d(z, w)=d\left(z, T^{(i n)}\left(w^{\prime}\right)\right) \leq d\left(z, T^{(i n)}(x)\right)+d\left(T^{(i n)}(x), T^{(i n)}\left(w^{\prime}\right)\right) \leq \epsilon / 3+\epsilon / 3<\epsilon . \\
\text { Hence } w \in B(z \epsilon) .
\end{gathered}
$$

Note 3.8 The above proof used only that T is unif-continuous, not bi-unif-continuous. In fact, the proof does not use that T is a bijection.

$3.3 \quad C_{r} \Rightarrow D_{r}$

Lemma $3.9 C_{r}:(\forall \epsilon>0)(\forall z \in X)\left(\exists x \in X, n \in \mathrm{~N}, \epsilon^{\prime}>0\right)$

$$
\begin{aligned}
& T^{(n)} B\left(x, \epsilon^{\prime}\right) \subseteq B(z, \epsilon) \wedge T^{(2 n)}\left(B (x , \epsilon ^ { \prime }) \subseteq B (z , \epsilon) \wedge \cdots \wedge T ^ { (r n) } \left(B\left(x, \epsilon^{\prime}\right) \subseteq B(z, \epsilon)\right.\right. \\
& \Rightarrow \\
& D_{r}:(\forall \epsilon>0)(\exists w \in X, n \in \mathrm{~N}) \\
& d\left(T^{(n)}(w), w\right)<\epsilon \wedge d\left(T^{(2 n)}(w), w\right)<\epsilon \wedge \cdots \wedge d\left(T^{(r n)}(w), y\right)<\epsilon
\end{aligned}
$$

Proof:

Intuition: We use the premise iteratively. Start with a point z_{0}. Some z_{1} has a ball around its orbit close to z_{0}. Some z_{2} has a ball around its orbit close to z_{1}. Etc. Finally there will be two z_{i} 's that are close: in fact the a ball around the orbit of one is close to the other. This will show the conclusion.

Let $z_{0} \in X$. Apply C_{r} with $\epsilon_{0}=\epsilon / 2$ and z_{0} to obtain $z_{1}, \epsilon_{1}, n_{1}$ such that

$$
T^{\left(i n_{1}\right)}\left(B\left(z_{1}, \epsilon_{1}\right)\right) \subseteq B\left(z_{0}, \epsilon_{0}\right) \text { for } 1 \leq i \leq r .
$$

Apply C_{r} with ϵ_{1} and z_{1} to obtain $z_{2}, \epsilon_{2}, n_{2}$ such that

$$
T^{\left(i n_{2}\right)}\left(B\left(z_{2}, \epsilon_{2}\right)\right) \subseteq B\left(z_{1}, \epsilon_{1}\right) \text { for } 1 \leq i \leq r
$$

Apply C_{r} with ϵ_{2} and z_{2} to obtain $z_{3}, \epsilon_{3}, n_{3}$ such that

$$
T^{\left(i n_{3}\right)}\left(B\left(z_{3}, \epsilon_{3}\right)\right) \subseteq B\left(z_{2}, \epsilon_{2}\right) \text { for } 1 \leq i \leq r .
$$

Keep doing this to obtain $z_{0}, z_{1}, z_{2}, \ldots$.
One can easily show that, for all $t<s$, for all $i 1 \leq i \leq r$,

$$
T^{\left(i\left(n_{s}+n_{s+1}+\cdots+n_{s+t}\right)\right)}\left(B\left(z_{s}, \epsilon_{s}\right)\right) \subseteq B\left(z_{t}, \epsilon_{t}\right)
$$

Since X is closed z_{0}, z_{1}, \ldots has a limit point. Hence

$$
d\left(z_{s}, z_{t}\right)<\epsilon_{0} .
$$

Using these s, t and letting $n_{s}+\cdots+n_{s+t}=n$ we obtain

$$
T^{(i n)}\left(B\left(z_{s}, \epsilon_{s}\right)\right) \subseteq B\left(z_{t}, \epsilon_{t}\right)
$$

Hence

$$
d\left(T^{(i n)}\left(z_{s}\right), z_{t}\right)<\epsilon_{t} .
$$

Let $w=z_{s}$. Hence, for $1 \leq i \leq r$

$$
d\left(T^{(i n)}(w), w\right) \leq d\left(T^{(i n)}\left(z_{s}\right), z_{s}\right) \leq d\left(T^{(i n)}\left(z_{s}\right), z_{t}\right)+d\left(z_{t}, z_{s}\right)<\epsilon_{t}+\epsilon_{0}<\epsilon .
$$

$3.4 \quad D_{r} \Rightarrow A_{r+1}$

Lemma 3.10 $D_{r}:(\forall \epsilon>0)(\exists w \in X, n \in \mathrm{~N})$

$$
\begin{aligned}
& d\left(T^{(n)}(w), w\right)<\epsilon \wedge d\left(T^{(2 n)}(w), w\right)<\epsilon \wedge \cdots \wedge d\left(T^{(r n)}(w), y\right)<\epsilon . \\
& \Rightarrow \\
& A_{r+1}:(\forall \epsilon>0)(\exists x, y \in X, n \in \mathrm{~N}) \\
& d\left(T^{(n)}(x), y\right)<\epsilon \wedge d\left(T^{(2 n)}(x), y\right)<\epsilon \wedge, \ldots, d\left(T^{((r+1) n)}(x), y\right)<\epsilon .
\end{aligned}
$$

Proof:

By D_{r} and $(\forall x)[d(x, x)=0]$ we have that there exists a $w \in X$ and $n \in \mathrm{~N}$ such that the following hold.

$$
\begin{aligned}
d(w, w) & <\epsilon \\
d\left(T^{(n)}(w), w\right) & <\epsilon \\
d\left(T^{(2 n)}(w), w\right) & <\epsilon \\
& \vdots \\
d\left(T^{(r n)}(w), w\right) & <\epsilon
\end{aligned}
$$

We rewrite the above equations.

$$
\begin{aligned}
d\left(T^{(n)}\left(T^{(-n)}(w)\right), w\right) & <\epsilon \\
d\left(T^{(2 n)}\left(T^{(-n)}(w)\right), w\right) & <\epsilon \\
d\left(T^{(3 n)}\left(T^{(-n)}(w)\right), w\right) & <\epsilon \\
& \vdots \\
d\left(T^{(r n)}\left(T^{(-n)}(w)\right), w\right) & <\epsilon \\
\left.T^{(r+1) n)}\left(T^{(-n)}(w)\right), w\right) & <\epsilon
\end{aligned}
$$

Let $x=T^{(-n)}(w)$ and $y=w$ to obtain

$$
\begin{aligned}
d\left(T^{(n)}(x), y\right) & <\epsilon \\
d\left(T^{(2 n)}(x), y\right) & <\epsilon \\
d\left(T^{(3 n)}(x), y\right) & <\epsilon \\
& \vdots \\
d\left(T^{(r n)}(x), y\right) & <\epsilon \\
\left.T^{(r+1) n)}(x), y\right) & <\epsilon
\end{aligned}
$$

Theorem 3.11 Assume that

1. X is a metric space,
2. T is bi-unif-continuous.
3. (X, T) is homogeneous.

For every $r \in \mathbf{N}, \epsilon>0$, there exists $w \in X, n \in \mathbf{N}$ such that w is (ϵ, r)-recurrent.

Proof:

Recall that A_{1} states

$$
(\forall \epsilon)(\exists x, y \in X)(\exists n)\left[d\left(T^{(n)}(x), y\right)<\epsilon\right] .
$$

Let $x \in X$ be arbitrary and $y=T(y)$. Note that

$$
d\left(T^{(1)}(x), y\right)=d(T(x), T(x))=0<\epsilon
$$

Hence A_{1} is satisfied.
By Lemmas 3.6, 3.7, 3.9, and 3.10 we have $(\forall r \in \mathbb{N})\left[D_{r}\right]$. This is the conclusion we seek.

4 Another Theorem in Topology

Recall the following well known theorem, called Zorn's Lemma.
Lemma 4.1 Let (X, \preceq) be a partial order. If every chain has an upper bound then there exists a maximal element.

Proof: See Appendix TO BE WRITTEN
Lemma 4.2 Let X be a metric space, $T: X \rightarrow X$ be bi-continuous, and $x \in X$. If $y \in \operatorname{CLDOT}(x)$ then $\operatorname{CLDOT}(y) \subseteq \operatorname{CLDOT}(x)$.

Proof: Let $y \in \operatorname{CLDOT}(x)$. Then there exists $i_{1}, i_{2}, i_{3}, \ldots \in \mathrm{Z}$ such that

$$
T^{\left(i_{1}\right)}(x), T^{\left(i_{2}\right)}(x), T^{\left(i_{3}\right)}(x), \ldots \rightarrow y
$$

Let $j \in Z$. Since $T^{(j)}$ is continues

$$
T^{\left(i_{1}+j\right)}(x), T^{\left(i_{2}+j\right)}(x), T^{\left(i_{3}+j\right)}(x), \ldots \rightarrow T^{(j)} y
$$

Hence, for all $j \in \mathbf{Z}$,

$$
T^{(j)}(y) \in \operatorname{cl}\left\{T^{\left(i_{k}+j\right)}(x) \mid k \in \mathrm{~N}\right\} \subseteq \operatorname{cl}\left\{T^{(i)}(x) \mid i \in \mathrm{Z}\right\}=\operatorname{CLDOT}(x) .
$$

Therefore

$$
\left\{T^{(j)}(y) \mid j \in \mathrm{Z}\right\} \subseteq \operatorname{CLDOT}(x) .
$$

By taking cl of both sides we obtain

$$
\operatorname{CLDOT}(y) \subseteq \operatorname{CLDOT}(x) .
$$

Theorem 4.3 Let X be a limit point compact metric space. Let $T: X \rightarrow X$ be a bijection. Then there exists a homogeneous point $x \in X$.

Proof:

We define the following order on X.

$$
x \preceq y \operatorname{iff} \operatorname{CLDOT}(x) \supseteq \operatorname{CLDOT}(y) .
$$

This is clearly a partial ordering. We show that this ordering satisfies the premise of Zorn's lemma.

Let C be a chain. If C is finite then clearly it has an upper bound. Hence we assume that C is infinite. Since X is limit point compact there exists x, a limit point of C.
Claim 1: For every $y, z \in C$ such that $y \preceq z, z \in \operatorname{CLDOT}(y)$.
Proof: Since $y \preceq z$ we have $\operatorname{CLDOT}(z) \subseteq \operatorname{CLDOT}(y)$. Note that

$$
z \in \operatorname{CLDOT}(z) \subseteq \operatorname{CLDOT}(y)
$$

End of Proof of Claim 1

Claim 2: For every $y \in C x \in \operatorname{CLDOT}(y)$.
Proof: Let $y_{1}, y_{2}, y_{3}, \ldots$ be such that

1. $y=y_{1}$,
2. $y_{1}, y_{2}, y_{3}, \ldots \in C$,
3. $y_{1} \preceq y_{2} \preceq y_{3} \preceq \cdots$, and
4. $\lim _{i} y_{i}=x$.

Since $y \prec y_{2} \prec y_{3} \prec \cdots$ we have $(\forall i)\left[\operatorname{CLDOT}(y) \supseteq \operatorname{CLDOT}\left(y_{i}\right)\right]$. Hence $(\forall i)\left[y_{i} \in\right.$ $\operatorname{CLDOT}(y)]$. Since $\lim _{i} y_{i}=x,(\forall i)\left[y_{i} \in \operatorname{CLDOT}(y)\right]$, and $\operatorname{CLDOT}(y)$ is closed under limit points, $x \in \operatorname{CLDOT}(y)$.
End of Proof of Claim 2
By Zorn's lemma there exists a maximal element under the ordering \preceq. Let this element be x.
Claim 3: x is homogeneous.
Proof: Let $y \in \operatorname{CLDOT}(x)$. We show $\operatorname{CLDOT}(y)=\operatorname{CLDOT}(x)$.
Since $y \in \operatorname{CLDOT}(x), \operatorname{CLDOT}(y) \subseteq \operatorname{CLDOT}(x)$ by Lemma 4.2.
Since x is maximal $\operatorname{CLDOT}(x) \subseteq \operatorname{CLDOT}(y)$.
Hence $\operatorname{CLDOT}(x)=\operatorname{CLDOT}(y)$.

End of Proof of Claim 3

5 VDW

Theorem 5.1 For all c, for all k, for every c-coloring of Z there exists a monochromatic arithmetic sequence of length k.

Proof:

Let BISEQ and T be as in Example 2.5.2.
Let $f \in \operatorname{BISEQ}$. Let $Y=\operatorname{CLDOT}(f)$. Since BISEQ is limit point compact and Y is closed under limit points, by Lemma $2.12 Y$ is limit point compact. By Theorem 4.3 there exists $g \in X$ such that $\operatorname{CLDOT}(g)$ is homogeneous. Let $X=\operatorname{CLDOT}(g)$. The premise of Theorem 3.11 is satisfied with X and T. Hence we take the following special case.

There exists $h \in X, n \in \mathrm{~N}$ such that h is $\left(\frac{1}{4}, k\right)$-recurrent. Hence there exists n such that

$$
d\left(h, T^{(n)}(h)\right), d\left(h, T^{(2 n)}(h)\right), \ldots, d\left(h, T^{(r n)}(h)\right)<\frac{1}{4} .
$$

Since for all $i, 1 \leq i \leq r, d\left(h, T^{(i n)}(h)\right)<\frac{1}{4}<\frac{1}{2}$ we have that

$$
h(0)=h(n)=h(2 n)=\cdots=h(k n) .
$$

Hence h has an AP of length k. We need to show that f has an AP of length k. Let $\epsilon=\frac{1}{2(k n+1)}$. Since $h \in \operatorname{CLDOT}(g)$ there exists $j \in \mathrm{Z}$ such that

$$
d\left(h, T^{(j)}(g)\right)<\epsilon .
$$

Let ϵ^{\prime} be such that

$$
(\forall a, b \in X)\left[d(a, b)<\epsilon^{\prime} \Rightarrow d\left(T^{(j)}(a), T^{(j)}(b)\right)<\epsilon\right] .
$$

Since $g \in \operatorname{CLDOT}(f)$ there exists $i \in \mathbf{Z}$ such that $d\left(g, T^{(i)}(f)\right)<\epsilon^{\prime}$. By the definition of ϵ^{\prime} we have

$$
d\left(T^{(j)}(g), T^{(i+j)}(f)\right)<\epsilon .
$$

Hence we have

$$
d\left(h, T^{(i+j)}(f)\right) \leq d\left(h, T^{(j)}(g)\right)+d\left(T^{(j)}(g), T^{(i+j)} f\right)<2 \epsilon \leq \frac{1}{k n+1} .
$$

Hence we have that h and $T^{(i+j)}(f)$ agree on $\{0, \ldots, k n\}$. In particular $h(0)=f(i+j)$. $h(n)=f(i+j+n)$. $h(2 n)=f(i+j+2 n)$.
$h(k n)=f(i+j+k n)$.
Since

$$
h(0)=h(n)=\cdots=h(k n)
$$

we have

$$
f(i+j)=f(i+j+n)=f(i+j+2 n)=\cdots=f(i+j+k n) .
$$

Thus f has a monochromatic arithmetic progression of length k.

References

[1] H. Furstenberg. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, 1981.
[2] H. Furstenberg and B. Weiss. Topological dynamics and combinatorial number theory. Journal of Anal. Math., 34:61-85, 1978.
[3] R. Graham, A. Rothchild, and J. Spencer. Ramsey Theory. Wiley, 1990.
[4] J. Munkres. Topology: A first course. Prentice-Hall, 1975.
[5] B. van der Waerden. Beweis einer Baudetschen vermutung. Nieuw Arch. Wisk., 15:212-216, 1927.

[^0]: ${ }^{1}$ Munkres [4] is the first one to name this concept "limit point compact"; however, the concept has been around for a long time under a variety of names. Originally, what we call "limit point compact" was just called "compact". Since then the concept we call limit point compact has gone by a number of names: Bolzano-Weierstrass property, Frechet Space are two of them. This short history lesson is from Munkres [4] page 178.

