
Ergodic Proofs of VDW Theorem-Handout

1 Definitions from Topology

Def 1.1

1. X is a metric space if there exists a function d (called a metric) with the
following properties. (1) d(x, y) = 0 iff x = y, (2) d(x, y) = d(y, x), (3) d(x, y) ≤
d(x, z) + d(z, y) (this is called the triangle inequality).

2. X,Y metric space. If x ∈ X and ε ∈ R+ then B(x, ε) = {y | d(x, y) < ε}. Sets
of this form are called balls.

3. Any union of balls is an open set.

4. If A is the complement of an open set then A is closed.

5. Let A ⊆ X and x ∈ X. x is a limit point of X if (∀ε > 0)(∃y)[y ∈ B(x, ε) ∩A].

6. If x1, x2, . . . ∈ X then limi xi = x means (∀ε > 0)(∃i)(∀j)[j ≥ i ⇒ xj ∈ B(x, ε)].

7. T : X → X. T is continuous if for all x, x1, x2, . . . ∈ X limi xi = x ⇒
limi f(xi) = f(x).

8. T : X → X is unif-continous if (∀ε)(∃δ)(∀a, b ∈ X)[d(a, b) < δ ⇒ d(T (a), T (b)) <
ε].

9. T : X → X is bi-unif-continous if T is a bijection, T is uniformily continous,
and T−1 is uniformily continous.

10. If A ⊆ X then the closure of X, denoted cl(A), is the intersection of all closed
sets containing X.

11. X is Barg if every infinite subset of X has a limit point.

Fact 1.2

1. cl(A) is the smallest closed set containing A.

2. If a set is closed then it contains all of its limit points.

3. In a metric space cl(A) is the union of A and the limit points of A.

4. If X is Barg and X1 ⊇ X2 ⊇ X3 ⊇ · · · are nonempty closed sets then ∩iXi 6= ∅.
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Def 1.3 Let X be a metric space and T : X → X be continous. Let x ∈ X. The
point x is Recurrent for T if

(∀ε)(∃n)[d(T (n)(x), x) < ε].

We prove a theorem about Recurrent points and then apply it to get VDW theo-
rem.

Def 1.4 A metric space S is minimal if, for every x ∈ S,

S = cl({. . . , T−3(x), T−2(x), T−1(x), T 0(x), T 1(x), T 2(x), T 3(c), . . .})

We show the following by a multiple induction.

1. Ar: (∀ε > 0)(∃x, y ∈ S, n ∈ N)

d(T (n)(x), y) < ε, d(T (2n)(x), y) < ε, . . . , d(T (rn)(x), y) < ε.

2. Br: (∀ε > 0)(∀z ∈ S)(∃x ∈ S, n ∈ N)

d(T (n)(x), z) < ε, d(T (2n)(x), z) < ε, . . . , d(T (rn)(x), z) < ε.

3. Cr: (∀ε > 0)(∀z ∈ S)(∃x ∈ S, n ∈ N, ε′ > 0)

T (n)(B(x, ε′) ⊆ B(z, ε), T (2n)(B(x, ε′) ⊆ B(z, ε), . . . , T (rn)(B(x, ε′) ⊆ B(z, ε).

4. (∀ε > 0)(∃w ∈ S, n ∈ N)

d(T (n)(w), w) < ε, d(T (2n)(w), w) < ε, . . . , d(T (rn)(w), y) < ε.

Def 1.5 Let X be a metric space, T : X → X be a bijection, and x ∈ X.

1.

CLT(x) = cl({. . . , T (−3)(x), T (−2)(x), T (−1)(x), T (0)(x), T (1)(x), T (2)(x), T (3)(x), . . .)

2. x is homogenous if

(∀y ∈ CLT(x))[CLT(x) = CLT(y)].

3. X is barg if every infinite subset of X has a limit point in X.

Lemma 1.6 Let (X,�) be a partial order. If every chain has an upper bound then
there exists a maximal element

Lemma 1.7 Let X be a metric space, T : X → X be bi-continous, and x ∈ X. If
y ∈ CLT(x) then CLT(y) ⊆ CLT(x).

Theorem 1.8 Let X be a barg metric space. Let T : X → X be a bijection then
there exists a homogenous point x ∈ X.

Theorem 1.9 For all c, for all k, for every c-coloring of Z there exists a monochro-
matic arithmetic sequence of length k.
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