
Hardness vs. Randomness
Result by Nisan and Widgerson

Writeup by Gasarch
This is a write up of results of Nisan and Wigderson [1] along the lines of

“if hard problems exist then randomized algorithms can be derandomized.”
We DEFINE many terms, STATE how they relate, and then PROVE that

that is how they relate. We parameterize everything and then later set the
parameters to obtain the main result.

1 Intuition

We want to show that
If there exists f “hard” then P = BPP.
To do this we will need to be able to generate psuedo-random sequences.

That is, given a short string of truly random bits we want a long string of
psuedo-random bits.

Consider the following thought experiment. Let f : {0, 1}m → {0, 1} be a

hard function. Let B1, . . . , BM where be all M =
(

m
m/2

)
m/2-sized subsets of

{1, . . . ,m}. Let
Bi = {ui

1 < · · · < ui
m/2}

Now let g : {0, 1}2m → {0, 1}M be
g(x1x2 · · ·x2m) =
f(xu1

1
xu1

2
· · ·xu1

m/2
) · f(xu2

1
xu2

2
· · ·xu2

m/2
) · · · · f(xuM

1
xuM

2
· · ·xuM

m/2
).

If f is hard then is g psuedorandom?
Arguments for: Any one bit of g(x1 · · ·x28) is hard.
Arguments against: The Bi blocks overlap alot so that, say the 17th bit

and the 24th bit of g(x1 · · ·x28) may be highly correlated.
The problem is that we picked ALL of the 14-element subsets of {1, . . . , 28}.

We want to pick a large number of subsets but with very little intersection.
The next lemma allows us to do this.

Lemma 1.1 For every c ≥ 2, for every function L : N → N (think log n) for
almost all n, there exists sets B1, . . . , Bn such that

1. B1, . . . , Bn ⊆ {1, . . . , c2L(n)}.

2. For every i, |Bi| = cL(n).

1

3. For every i 6= j, |Bi ∩Bj| < L(n).

Moreover, there is an algorithm that will, given n (in unary) produce the sets
B1, . . . , Bn in time poly in n and 2L(n). The polynomial depends on c and is
denoted pc(n, 2L(n)). If L(n) = log n then we just denote it pc(n).

Proof:
We give an algorithm and then prove that it works. The prove that it

works is nonconstructive (probabilitistic) but the algorithm is not. We use L
for L(n) throughout.

First, list all
(

c2L
cL

)
< 2c2L subsets of {1, . . . , c2L} of size cL. We list these

as D1, . . . , Dm where m =
(

c2L
cL

)
1. B1 = D1.

2. For 2 ≤ i ≤ n find the least j ≤ m such that Dj is not already picked
and, for all i′ < i, |Dj ∩Bi′| ≤ L.

It is clear that the B1, . . . , Bn satisfy the condition. We need to show
that step 2 of the algorithm can always be carried out. A simple probabilistic
argument shows that this can always be done.

2 Conventions

Throughout the paper we use certain function symbols (e.g. L(n), f(n)) for
the same thing over and over again. The last section of this paper is a guide
to such useage and the reader is advised to flip to it when needed.

Convention 2.1

1. Circuits are fanin-2 circuits.

2. All upper bounds like “t(n)” and “s(n)” actually mean “O(t(n))” and
“O(s(n))”.

3. We will refer to a circuit family {Cn}∞n=1 by just Cn.

4. If f (or G) is a function with domain {0, 1}∗ then fm (or Gm) is that
function restricted to {0, 1}m. The most common cases are m = n,
m = L(n), m = cL(n), and m = c2L(n) where c ≥ 2 and L : N → N.

2

5. Note that GcL(n), fn, and Cn are all restrictions of some object to a
certain length. There is one crucial difference— Cn will be nonuniform
but GcL(n) and fn will both be uniform.

6. We will sometimes use an expressions like {GL(n)(z) : z ∈ {0, 1}L(n)}.
We will mean this to be a multiset not a set. The function GL(n) need
not be 1-1, hence some elements will appear twice. We count them twice.
This will matter in calculating probabilities.

Def 2.2 Let t(n), r(n) : N → N and err(n) : N → Q ∩ (0, 1/2). (Think of
t(n), r(n) as poly and err(n) = 1/4.) Let BPP(t(n), r(n), err(n)) (Bounded
Probabilistic time, parameterized) be the set of all A ⊆ {0, 1}∗ such that
there exists TM M that runs in time t(n) on inputs of the form (x, y) where
|x| = n and |y| = r(n) such that the following occurs. Let x ∈ {0, 1}n.

1. if x ∈ A then, for at least 1− err(n) of y ∈ {0, 1}r(n), M(x, y) = 1.

2. if x /∈ A then, for at least 1− err(n) of y ∈ {0, 1}r(n), M(x, y) = 0.

Def 2.3 BPP =
⋃∞

k=1 BPP(nk, nk, 1
4
).

Proposition 2.4 Let t(n), r(n) : N → N and err(n) : N → Q ∩ (0, 1/2).
(Think of t(n), r(n) as poly and err(n) = 1/4.) BPP(t(n), r(n), err(n)) ⊆
DTIME(2r(n)t(n)).

Proof: Assume A ∈ BPP(t(n), r(n), err(n)) via TM M . Here is an algo-
rithm for A that runs in time DTIME(2r(n)t(n)).

1. Input(x).

2. For every y ∈ {0, 1}r(n) run M(x, y) (This takes 2r(n)t(n) steps.) Keep
count of how many y’s make M(x, y) = 0 and how many y’s make
M(x, y) = 1.

3. If the number of 0’s is in the majority then output 0. If the number of
1’s is in the majority then output 1. (One of the two must be in the
majority since one of them is at least 1− err(n) > 1

2
of the votes. Recall

that err(n) < 1
2
.)

3

In order to get BPP ⊆ P we will need to find a set S ⊆ {0, 1}r(n) such that

1. S behaves ‘just like’ {0, 1}r(n) in that sampling from it gives approxi-
mately the same results as sampling from {0, 1}r(n).

2. S is small.

3. S can be found in polynomial time.

If we could find such an S we would use it instead of {0, 1}r(n) in the proof
of the above proposition to get BPP ⊆ DTIME(|S|p(n)).

Def 2.5 Let L : N → N (think log n), s : N → N (think 2εn), and
diff : N → Q∩(0, 1/2) (think 1

poly(n)
). Assume that, for all n, G maps {0, 1}L(n)

into {0, 1}n. G is (L(n), s(n), diff(n))-pseudorandom if

1. (Informally) For all n the set {GL(n)(z) : z ∈ {0, 1}L(n)} “looks like”
{0, 1}n.

2. (Formally) For almost all n, for every s(n)-sized circuit Cn,

|Pr(Cn(y) = 1 : y ∈ {0, 1}n)−Pr(Cn(Gn(z)) = 1 : z ∈ {0, 1}L(n)| < diff(n).

(No s(n)-sized circuit can tell the two sets apart, up to diff(n). When
assuming this is not true we freely use 0 intead of 1 and/or do not use
the absolute value signs.)

Note 2.6 If we say that G ∈ DTIME(t(n)) we mean that it runs in time t(n)
where n is the length of the output.

Def 2.7 Let L : N → N (think log n), s : N → N (think 2εn), and
eps : N → Q∩(0, 1/2) (think 1

poly(n)
). Assume that, for all n, G maps {0, 1}L(n)

into {0, 1}n. G is (L(n), s(n), eps(n))-next bit predictable if, for infinitely many
n, there exists i ∈ {2, . . . , n} and a circuit Cn : {0, 1}i−1 → {0, 1} such that

1. Cn is a deterministic circuit of size s(n).

4

2. For at least 1
2
+eps(n) of strings y ∈ {GL(n)(z)[1 : i−1] | z ∈ {0, 1}L(n)},

C(y) = GL(n)(z)[i]. ({GL(n)(z)[1 : i− 1] | z ∈ {0, 1}L(n)} is a multiset.)

Note 2.8 Since we define this with ‘for infinitely many n’, the negation is ‘for
almost all n’

Note 2.9 The probability is not over IMG(GcL(n))[1 : i]. The probability
is over the strings z ∈ {0, 1}L(n) that generate strings of length n, namely
GcL(n)(z), but we then only look at the first i bits. Think of it as a strange
distribution on IMG(GL(n))[1 : i].

Example 2.10 Let c = 1, n = 8, cL(n) = 3. G : {0, 1}3 → {0, 1}8, and
G(000) = 01010101
G(001) = 10111000
G(010) = 01011101
G(011) = 11100101
G(100) = 00000011
G(101) = 01011100
G(110) = 11101011
G(111) = 11110111
Say i = 5, so a next-bit-predictor would be given 4 bits and try to predict

the fifth one. Lets look at the following next-bit-predictor C.
C(0000) = 0 (GOOD- 1 elt in im(G) begins 0000, and has next bit 0)
C(0001) = 1 (IRRELEVANT- no elt of im(G) begins 0001)
C(0010) = 0 (IRRELEVANT- no elt of im(G) begins 0010)
C(0011) = 1 (IRRELEVANT- no elt of im(G) begins 0011)
C(0100) = 0 (IRRELEVANT- no elt of im(G) begins 0100)
C(0101) = 1 (GOOD- 3 elts in im(G) begin 0101, and 2 have next bit 1)
C(0110) = 0 (IRRELEVANT- no elt of im(G) begins 0110)
C(0111) = 1 (IRRELEVANT- no elt of im(G) begins 0111)
C(1000) = 0 (IRRELEVANT- no elt of im(G) begins 1000)
C(1001) = 1 (IRRELEVANT- no elt of im(G) begins 1001)
C(1010) = 1 (IRRELEVANT- no element of im(G) begins 1010)
C(1011) = 0 (BAD- 1 element of im(G) begins 1011 and has next bit 1)
C(1100) = 0 (IRRELEVANT- no elt of the im(G) begins 1100)
C(1101) = 0 (IRRELEVANT- no elt of the im(G) begins 1101)

5

C(1110) = 0 (2 elts of im(G) begin 1110, 1 has next bit 0, 1 has next-bit
1)

C(1111) = 0 (GOOD- one elt of im(G) begins 1111 and next-bit is 0)

How well is C doing as a next-bit-predictor? We estimate this by looking
at the multiset of prefixes of length 4 of images in G. For each one we also
include in parenthesis what the next bit was.

{0101(0), 1011(1), 0101(1), 1110(0), 0000(0), 0101(1), 1110(1), 1111(0)}
Since C(0101) = 1, C is correct on 2 of the elements, but wrong on 1.
Since C(1011) = 0, C is wrong on 1 of the elements.
Since C(1110) = 0, C is correct on 1 of the elements, but wrong on 1.
Since C(0000) = 0, C is correct on 1 of the elements.
Since C(1111) = 0, C is correct on 1 of the elements.
So C is correct on 5 strings: {0101, 0101, 1110, 0000, 1111}. and wrong on

3 strings {0101, 1011, 1110}.

It is easy to have a circuit that is correct for 1
2

of the elements of the
domain. Let C0 be the circuit that always outputs 0. Let C1 be the circuit
that always outputs 1. We are tempted to say “One of these is correct at
least half of the elements of IMG(GL(n))[1 : i − 1].” This is correct, but not
useful— we are not using the uniform distribution on IMG(GL(n))[1 : i − 1].
We are using a weird distribution. We could say “One of these is correct at
least ‘half’ of the time based on the weird distribution.” This is correct, but
not quite as rigorous as we’d like. We do the following thought experiment:
Map every z ∈ {0, 1}L(n) to GL(n)(z)[i]. There exists a ∈ {0, 1} such that at
least half of the x’s map to a. The circuit Ca works ‘half’ the time via our
distribution. Asking for a circuit to be correct 1

2
+ eps(n) of the time does not

seem that hard to satisfy. It is just a little bit better than taking C0 or C1.

Def 2.11 Let f : {0, 1}∗ → {0, 1}. Let fn be the restriction of f to {0, 1}n.
f is (S(n), eps(n))–HARD if there does not exist an s(n)-sized circuit Cn that
computes, for almost all n, fn correctly on 1

2
+ eps(n) of the strings in {0, 1}n.

3 BOLDFACE DEFS and OUR PLAN

Def 3.1

6

1. HARDS(n),eps(n),T (n): there exists f such that f

f is (S(n), eps(n))-HARD ∧ f ∈ DTIME(T (n)).

2. NNBPL(n),s(n),eps(n),t(n): there exists G such that

G is Not (L(n), s(n), eps(n))-Next Bit Predictable ∧G ∈ DTIME(t(n).

3. PSRANDL(n),s(n),diff(n),t(n): there exists G such that

G is (L(n), s(n), diff(n))-PSeudoRANDom ∧G ∈ DTIME(t(n)).

4. CONTAINSt(n),r(n),err(n),u(n):

BPP(t(n), r(n), err(n))⊆DTIME(u(n)).

We want to prove HARD ⇒ CONTAINS with appropriate parameters.
The plan is to prove

HARD ⇒ NNBP,
NNBP ⇒ PSRAND, and
PSRAND ⇒ CONTAINS

4 Helpful Easy Lemmas

Lemma 4.1 If h is a Boolean function on m variables then there is a circuit
for h of size m2m

Proof: We first build an unbounded fan-in circuit and then from that
construct a fan-in 2 circuit.

For every row of the truth table that says YES we construct the appropriate
AND gate with m inputs. Have all of the outputs of that go to an OR gate
with at most 2m inputs.

There are 2m AND gates. Each one has m inputs. Each one can be
rewritten as ≤ (m − 1) fanin 2 AND gates. Hence we can replace the AND
gate with (m− 1)2m fanin 2 AND gates.

7

There is 1 2m-input OR gate. This can be rewritten as ≤ 2m − 1 fanin 2
OR gates.

Hence the total number of fan-in 2 gates is (m−1)2m +2m−1 = m2m.

Example 4.2 If the number of variables is m = c log n then the circuit is of
size (c log n)2c log n = cnc log n. Later on in the paper the cases of c = 1 and
c ≥ 2 will be very important.

Lemma 4.3 Let c, d ∈ N and 0 < α < 1. Let R be a c × d array of 0’s and
1’s. If at least αcd of the entries in R are 1’s then there exists a column where
at least αd of the entries in the column are 1.

Proof: Assume, by way of contradiction, that for every column < αc or
the entries are 1. Then the entire array would have < αcd of its entries being
1. This contradicts the premise.

The following Lemma will not be used until Proposition 6.1; hence you can
put off reading it for now.

Lemma 4.4 Let i ∈ {2, . . . , n}, D : {0, 1}n → {0, 1}, f : {0, 1}i−1 → 2{0,1},
Hn : X → {0, 1}i−1 (X any set), and α(n) : N → (0, 1). Assume

Prx∈X,w1=Hn(x),w2∈{0,1}n−i+1(D(w1w2) ∈ f(x)) ≥ α(n)).

(where x ∈ X uniformly and w2 ∈ {0, 1}n−i+1 uniformly). Then there exists
wo ∈ {0, 1}n−i+1 such that

Prw1=Hn(x),x∈X(D(w1bwo) ∈ f(x)) ≥ α(n).

Proof: Let R be the 2i−1 × 2n−i+1 rectangle indexed by w1 ∈ {0, 1}i−1 and
w2 ∈ {0, 1}n−i+1 defined via

R(w1, w2) =
{

1 if D(w1w2) ∈ f(x);
0 if D(w1w2) /∈ f(x).

By the premise at least α(n) of the entries of R are 1. By Lemma 4.3 there
exists a column, indexed by wo, such that at least α(n) 0f the entries in that
column are 1. This wo suffices.

8

5 HARD ⇒ NNBP

Proposition 5.1 Assume that there exists f ∈ DTIME(T (n)) such that, for
almost all n, fn is (S(n), eps(n))–hard. Let c ≥ 2 and let sc(n) be such that
sc(n) << S(cL(n))− nL(n)2L(n). Then there exists G such that the following
hold.

1. G ∈ DTIME(pc(n, 2L(n)) + nT (cL(n))) (pc is from Lemma 1.1).

2. G restricted to {0, 1}c2L(n) maps to {0, 1}n.

3. G is not (c2L(n), s(n), eps(n))-next bit predictable,

This can be restated as

HARDS(n),eps(n),T (n) ⇒ (∀c ≥ 2)[NNBPc2L(n),sc(n),eps(n),nT (cL(n))+pc(n,2L(n))].

Proof: We will keep the sc(n) term and later note when the condition on
it is needed.

We use fcL(n). Let B1, . . . , Bn be from Lemma 1.1 with our value of c.
Every time we run the algorithm we will need to compute these, so that adds
pc(n, 2L(n)) to the run time.

We define G by, for each n, defining Gc2L(n), the restriction of G to {0, 1}c2L(n).
Let Gc2L(n)(z1z2 · · · zc2L(n)) = b1b2 · · · bn where

bi is obtained by taking Bi = {u1 < · · · < ucL(n)} and letting

bi = fcL(n)(zu1 · · · zucL(n)
).

Clearly G can be computed in pc(n, 2L(n)) + nT (cL(n)) steps, pc(n, 2L(n))
to generate the Bi’s, and then, n times, we compute fcL(n) on cL(n) variables,
which takes T (cL(n)) steps.

Assume, by way of contradiction, that G is (c2L(n), sc(n), eps(n))-next-bit-
predictable. Let Cn be a deterministic sc(n)-sized circuit, and 2 ≤ i ≤ n be
such that

for over 1
2

+ eps(n) of the z′ ∈ {0, 1}c2L(n),

Cn(Gc2L(n)(z
′)[1 : i− 1]) = bi where Gc2L(n)(z) = b1 · · · bn.

We rewrite this (for later use) as
for over 1

2
+ eps(n) of the (z, w) ∈ {0, 1}cL(n) × {0, 1}c2L(n)−cL(n),

9

Cn(Gc2L(n)(zw)[1 : i− 1]) = bi where Gc2L(n)(zw) = b1 · · · bn.

Let bi depend on (renamed) variables {z1, . . . , zcL(n)}, so bi = fcL(n)(z1z2 · · · zcL(n)).
We will use Cn to build a deterministic circuit

D(z1 · · · zcL(n) · wcL(n)+1 · · ·wc2L(n)).

We will then find a restriction of the w-bits so that the remaining circuit is a
small deterministic circuit that computes f(z1 · · · zcL(n)) enough of the time to
yield a contradiction.

We construct D in stages.

1. Let 1 ≤ j ≤ i − 1. Recall that bj = fcL(n)(zu1 · · · zucL(n)
) where Bj =

{u1 < · · · < ucL(n)}. For 1 ≤ k ≤ cL(n) if uk /∈ {1, . . . , cL(n)} then
replace zk by wk. Since, for all j ≤ i− 1, |Bi ∩ Bj| ≤ L(n), there are at
most L(n) u-variables.

Construct a circuit Dj that computes this function. This is the circuit
we will use for now. When we later restrict all of the wk’s, we will have
bj as a function of L(n) variables. By Lemma 4.1 such a circuit has size
L(n)2L(n). Since there are i − 1 of them the size of all the restricted
Dj’s together is ≤ (i− 1)L(n)2L(n) ≤ nL(n)2L(n). (Note that if the Bi’s
were chosen less carefully we could have ≤ ncL(n)2cL(n). We comment
on why this would not have sufficed our purposes after the proposition
and after the corollary that follows it.)

2. We construct a circuit D on z1 · · · zcL(n) · wcL(n)+1 · · ·wc2L(n) as follows.
First the circuit computes D1, . . . , Di−1. The outputs of these are fed
into Cn. The size of Cn is sc(n) hence after we restrict the wk’s, the final
circuit will have size ≤ nL(n)2L(n) + sc(n).

We examine what D does. Let the input be z1 · · · zcL(n) ·wcL(n)+1 · · ·wc2L(n).
Let Gc2L(n)(z1 · · · zcL(n)wcL(n)+1 · · ·wc2L(n)) = b1 · · · bn. For j ≤ i− 1,

Dj(z1 · · · zcL(n)wcL(n)+1 . . . , wc2L(n)) = bj.

So D will compute Cn(b1 · · · bi−1). By the definition of Cn, as we rewrote it
above,

for over 1
2

+ eps(n) of the (z, w) ∈ {0, 1}cL(n) × {0, 1}c2L(n)−cL(n)

10

Cn(Gc2L(n)(zw)[1 : i− 1]) = bi where Gc2L(n)(zw) = b1 · · · bn.

Since for all (z, w) ∈ {0, 1}cL(n) × {0, 1}c2L(n)−cL(n) we have bi = fcL(n)(z)
we have

for over 1
2

+ eps(n) of the (z, w) ∈ {0, 1}cL(n) × {0, 1}c2L(n)−cL(n),

Cn(Gc2L(n)(zw)[1 : i− 1]) = fcL(n)(z).

By Lemma 4.3 there exists wo ∈ {0, 1}c2L(n)−cL(n) such that
for over 1

2
+ eps(n) of the z ∈ {0, 1}cL(n)

Cn(Gc2L(n)(zwo)[1 : i− 1]) = fcL(n)(z).

The circuit that uses this value of wo is of size ≤ nL(n)2L(n) + sc(n). Since
sc(n) << S(cL(n)) − nL(n)2L(n) this circuit is of size << S(c(L(n))). this
contradicts the hardness assumption on fcL(n).

Note 5.2 We used a carefully chosen set of Bi’s such that |Bi ∩ Bj| ≤ L(n).
What is we had been less careful and only demanded that |Bi ∩ Bj| ≤ cL(n)
which is trivial to obtain? Then the theorem would have been weakened in
only one place- we would need sc(n) << S(cL(n)) − cnL(n)2cL(n) instead of
sc(n) << S(cL(n))− nL(n)2L(n). See the note after the next corollary to see
why this matters.

Corollary 5.3 Let 0 < ε < 1 and c > 2
ε
. By setting L(n) = log n, S(n) = 2εn,

T (n) = 2n, eps(n) = 1
4n

, and sc(n) = nεc/2:

HARD2εn, 1
4n

,2n ⇒ (∀c >
2

ε
)[NNBPc2 log n,nεc, 1

4n
,nc+1+pc(n)].

Proof: The only condition to check is s(n) << S(cL(n)) − nL(n)2L(n).
Note that

S(c(L(n)) = 2εc log n = nεc, and
nL(n)2L(n) = n2 log n
Since c > 2

ε
we have εc > 2 so

S(cL(n)) − nL(n)2L(n) = nεc − n2 log n ≥ Ω(nεc). Since sc(n) = nεc/2 we
have sc(n) << S(cL(n))− nL(n)2L(n).

11

Note 5.4 In the proof of Proposition 5.1 we used a carefully chosen set of
Bi’s such that |Bi ∩ Bj| ≤ L(n). What if we had been less careful and only
demanded that |Bi ∩ Bj| ≤ cL(n) (which is trivial to obtain)? Then the
theorem would have been weakened in only one place- we would need sc(n) <<
S(cL(n)) − cnL(n)2cL(n) instead of sc(n) << S(cL(n)) − nL(n)2L(n). The
function sc(n) in Corollary 5.3 would not have satisfied this condition. What
function would have? We would still have S(cL(n)) = nεc; however now we
have cnL(n)2cL(n) = (cn log n)nc = cnc+1 log n. So S(cL(n)) − cnL(n)2L(n) =
nεc − cnc+1 log n < 0. Hence no sc(n) works.

6 NNBP ⇒ PSRAND

Proposition 6.1 Let G : {0, 1}∗ → {0, 1}∗ such that, for all n, G restricted
to {0, 1}L(n) maps to {0, 1}n. If G is not (L(n), s(n), diff(n))-pseudorandom

then G is (L(n), s(n), diff(n)
n

)-next bit predictable. By taking the contrapositive
this can be restated as

NNBPL(n),s(n),diff(n)/n,t(n) ⇒ PSRANDL(n),s(n),diff(n),t(n).

Proof: Since G is not (L(n), s(n), diff(n))-pseudorandom there exists an
s(n)-sized circuit Cn such that

Prx∈{0,1}n(Cn(x) = 1)− Prz∈{0,1}L(n)(Cn(GL(n)(z)) = 1) > diff(n).

For 0 ≤ i ≤ n let
pi = Prz∈{0,1}L(n),w∈{0,1}n−i,b1···bi=GL(n)(z)[1:i](Cn(b1 · · · biw) = 1)

Note that
p0 = Pr(Cn(w) = 1 : w ∈ {0, 1}n) = Pr(Cn(x) = 1 : x ∈ {0, 1}n),
pn = Pr(Cn(GL(n)(z)) = 1 : z ∈ {0, 1}L(n)).

Hence p0 − pn > diff(n).
Note that

(p0 − p1) + (p1 − p2) + · · ·+ (pn−1 − pn) = p0 − pn = p0 − pn > diff(n).
Hence there exists i such that

pi−1 − pi > diff(n)
n

.
Though Experiment: Take a random z1 · · · zL(n) ∈ {0, 1}L(n) and let Cn(z1 · · · zL(n)) =

b1 · · · bn. Now take a random wi · · ·wn ∈ {0, 1}n−i. The probability that
Cn(b1 · · · bi−1wi · · ·wn) = 1 is ‘large’. BUT if you take a random wi+1 · · ·wn ∈

12

{0, 1}n−i−1 then the probability that Cn(b1 · · · biwi+1 · · ·wn) = 1 is ‘small’.
This means that if you extend b1 · · · bi−1 with the correct next bit then Cn is
less likely to be 1 (on an extension of this extended string) then if you had
extended by the incorrect next bit.

We now produce a circuit D : {0, 1}n → {0, 1} based on the above intuition.
The first i− 1 bits will be inputs, the remaining n− i + 1 bits will be chosen
at random. We will then apply Lemma 4.4 to set values of the random bits to
obtain a deterministic circuit.

1. Input(b1 · · · bi−1). (We only care when b1 · · · bi−1 ∈ IMG(GL(n)).

2. Pick wi · · ·wn ∈ {0, 1}n−i at random.

3. Compute b = Cn(b1 · · · bi−1wi · · ·wn).

4. If b = 1 then output 1− wi. If b = 0 then output wi.

Picture the random variable: Take a random z1 · · · zL(n) ∈ {0, 1}L(n) and
let Cn(z1 · · · zL(n)) = b1 · · · bn. Now take a random wi · · ·wn ∈ {0, 1}n−i. Run
D(b1 · · · bi−1) with random bits wi · · ·wn. Output the answer.

Let E be the probability that the output is bi (that is, the probability that
D outputs the correct next bit).

Pr(E) = Pr(wi = bi ∧ Cn(b1 · · · bi−1wi · · ·wn) = 0)+
Pr(wi = bi ∧ Cn(b1 · · · bi−1wi · · ·wn) = 1)

= Pr(wi = bi)Pr(Cn(b1 · · · bi−1wi · · ·wn) = 0|wi = bi)+
Pr(wi = bi)Pr(Cn(b1 · · · bi−1wi · · ·wn) = 1|wi = bi)

We need to determine these various quantities.

1) Pr(wi = bi) = Pr(wi = bi) = 1
2
.

2) Pr(Cn(b1 · · · bi−1wi · · ·wn) = 0|wi = bi). Note that

Pr(Cn(b1 · · · bi−1wi · · ·wn) = 1|wi = bi) = Pr(Cn(b1 · · · bi−1biwi+1 · · ·wn) = 1) = pi.

Hence

Pr(Cn(b1 · · · bi−1wi · · ·wn) = 0|wi = bi) = 1− pi.

13

3) Pr(Cn(b1 · · · bi−1wi · · ·wn) = 1|wi = bi).
Note that

pi−1 = Pr(Cn(b1 · · · bi−1wi · · ·wn) = 1)
= Pr(wi = bi ∧ Cn(b1 · · · bi−1wi · · ·wn) = 1)+

Pr(wi = bi ∧ Cn(b1 · · · bi−1wi · · ·wn) = 1)

= Pr(wi = bi)Pr(Cn(b1 · · · bi−1biwi+1 · · ·wn) = 1|wi = bi)+
Pr(wi = bi ∧ Cn(b1 · · · bi−1wi · · ·wn) = 1)

= 1
2
pi + Pr(wi = 1 = bi)Pr(Cn(b1 · · · bi−1wi · · ·wn) = 1|wi = bi)

= 1
2
pi + 1

2
Pr(Cn(b1 · · · bi−1wi · · ·wn) = 1|wi = bi)

We can use this equation to easily find
Pr(Cn(b1 · · · bi−1wi · · ·wn) = 1|wi = bi).
Hence

1
2
pi + 1

2
Pr(Cn(b1 · · · bi−1wi · · ·wn) = 1|wi = bi) = pi−1

pi + Pr(Cn(b1 · · · bi−1wi · · ·wn) = 1|wi = bi) = 2pi−1

Pr(Cn(b1 · · · bi−1wi · · ·wn) = 1|wi = bi) = 2pi−1 − pi

Now that we have Pr(Cn(b1 · · · bi−1wi · · ·wn) = 1|wi = bi). We have all the
pieces we need to calculate Pr(E).

Hence

Pr(E) = Pr(wi = bi)Pr(Cn(b1 · · · bi−1wi · · ·wn) = 0|wi = bi)+
Pr(wi = bi)Pr(Cn(b1 · · · bi−1wi · · ·wn) = 1|wi = bi)

= 1
2
(1− pi) + 1

2
(2pi−1 + pi)

= 1
2

+ pi−1 − pi

= 1
2

+ diff(n)
n

We apply Lemma 4.4 with D, i as above, X = {0, 1}n, Hn = IMG(Gn[1 :
i− 1]), and

f(b1 · · · bi−1) = {bi | b1 · · · bi ∈ IMG(Gn[1 : i]).

Hence we obtain fixed values of w such that, if they are fixed as such, then,
for 1

2
+ diff(n)

n
of the z ∈ {0, 1}L(n) we have D(Gn(z)[1 : i − 1]) = bi where

Gn(z) = b1 · · · bn. Hence G is (L(n), s(n), diff(n)
n

)-next-bit-predicable.

14

Corollary 6.2 Let 0 < ε < 1. Let c > 2
ε
.

1. By setting L(n) = c2 log n, sc(n) = nεc/2, t(n) = nc+1+pc(n), diff(n) = 1
4

we obtain

(∀c ≥ 2

ε
)[NNBPc2 log n,nεc/2, 1

4n
,nc+1+pc(n) ⇒ (∀c ≥ 2

ε
)[PSRANDc2 log n,nεc/2, 1

4
,nc+1+pc(n)].

Hence

[(∀c ≥ 2

ε
)[NNBPc2 log n,nεc/2, 1

4n
,nc+1+pc(n)]] ⇒ [(∀c ≥ 2

ε
)[PSRANDc2 log n,nεc/2, 1

4
,nc+1+pc(n)]].

2. Combining the above with Corollary 5.3 we obtain

HARD2εn, 1
4n

,2n ⇒ (∀c ≥ 2

ε
)[PSRANDc2 log n,nεc, 1

4
,nc+1+pc(n)].

7 PSRAND ⇒ CONTAINS

Proposition 7.1 Assume there exists G : {0, 1}∗ → {0, 1}∗ such that the
following occur.

1. G ∈ DTIME(t(n)).

2. For all n, if G is restricted to {0, 1}L(n) then it maps to {0, 1}n.

3. G is (L(n), s(n), diff(n))-pseudorandom.

Assume that t′ : N → N is such that, for any constant c, t′(cn) = O(t(n)).
Then BPP(t′(n), r(n), err(n)) ⊆ DTIME(u(n)) where

1. 2L(r(n))(t(r(n)) + t′(n)) ≤ u(n),

2. (t′(n))2 ≤ s(n),

3. diff(n) + err(n) ≤ 1
2
.

This can be restated as

PSRANDL(n),s(n),diff(n),t(n) ⇒ CONTAINSt′(n),r(n),err(n),u(n).

15

Proof: We will keep everything parameterized and note when the condi-
tions give us what we need.

Let A ∈ BPP(t′(n), r(n), err(n)). Let G be an (L(n), s(n), diff(n))-pseudorandom
generator such that GL(n) ∈ DTIME(t(n)) and GL(n) : {0, 1}L(n) → {0, 1}n.

Let Gr(n) : {0, 1}L(r(n)) → {0, 1}r(n). Note that Gr(n) is in DTIME(t(r(n))).
(Also note that this is NOT our standard use of subscripts.)

The following algorithm shows that A ∈ DTIME(u(n)). The time bound
will be easy; however, proving that it is correct will be interesting.

1. Input(x). |x| = n.

2. For every z ∈ {0, 1}L(r(n)) compute y = Gr(n)(z) and run M(x, y) (This
takes 2L(r(n))(t(r(n)) + t′(n)) steps.) Keep a count of for how many y’s
we get a 0 and for how many y’s we get a 1.

3. If the number of 0’s is in the majority then output 0. If the number of
1’s is in the majority then output 1.

This algorithm runs in time 2L(r(n))(t(r(n))+t′(n)) ≤ u(n), so the algorithm
runs in the desired time. Our concern is, is it correct? Assume, by way of
contradiction, that it is incorrect. Assume on input x0 ∈ {0, 1}n the algorithm
gives the wrong answer. We assume x0 ∈ A but the algorithm outputs 0 (the
other case, where x0 /∈ A but the algorithm outputs 1, is symmetric.) We have
the following:

1. Since x0 ∈ A, for ≤ err(n) of the y ∈ {0, 1}r(n) M(x0, y) = 0. Hence

Pr(M(x0, y) = 0 : y ∈ {0, 1}r(n)) ≤ err(n).

2. Since the algorithm outputs 0, for≥ 1
2

of the z ∈ {0, 1}L(r(n)), M(x0, Gr(n)(z)) =
0. Hence

Pr(M(x0, Gr(n)(z)) = 0 : z ∈ {0, 1}L(r(n))) ≥ 1
2
.

Make a circuit out of M(x0,−) that will, on input y ∈ {0, 1}r(n) compute
M(x0, y). This circuit is of size (t′(n + r(n)))2 ≤ (t(2r(n))2 = O((t′(r(n)))2).
(We are using r(n) ≤ n and the condition on t′.) By the above

|Pr(C(y) = 0 : y ∈ {0, 1}r(n))−Pr(C(GL(n)(z)) = 0 : z ∈ {0, 1}L(r(n))| > 1

2
−err(n)

This will lead to a contradiction if

16

(t′(r(n)))2 ≤ s(r(n)) (we achieve by (t′(n))2 ≤ s(n))
and
1
2
− err(n) ≥ diff(n) (we achieve by diff(n)− err(n) ≤ 1

2
).

Corollary 7.2 Let 0 < ε < 1 and let r(n) be any polynomial.

1.

PSRANDL(n),s(n),diff(n),t(n) ⇒ CONTAINS√
s(n),r(n), 1

2
−diff(n),2L(r(n))(t(r(n))+

√
s(n))

.

2. Let c ≥ 2/ε. By setting L(n) = c2 log n, s(n) = nεc/2, eps(n) = 1
4n

, and
t(n) = nc+1 + pc(n) we obtain the following.

PSRANDc2 log n,nεc/2, 1
4
,nc+1+pc(n) ⇒ CONTAINSncε/4,r(n), 1

4
,r(n)(r(n)c+1+pc(r(n)))+nεc/4 .

3. Combining the above with Corollary6.2.2 we obtain the following.

HARD2εn, 1
4n

,2n ⇒ (∀c ≥ 2

ε
)[CONTAINSncε/4,r(n), 1

4
,r(n)(r(n)c+1+pc(r(n))+nεc/4].

The last part of the last corollary is really what we want. We restate it
without as much jargon.

Theorem 7.3 Let 0 < ε < 1. Assume there exists a function f ∈ DTIME(2n)
such that f is (2εn, 1

4n
)-hard. Then for almost all k there exists a polynomial

qk such that BPP(nk, nk, 1
4
) ⊆ DTIME(qk(n)). In particular BPP = P.

Proof:
We are assuming the premise of Corollary 7.2.3. Hence we have the con-

clusion which we write as

(∀c ≥ 2

ε
)[BPP(ncε/4, r(n),

1

4
) ⊆ DTIME(r(n)(r(n)c+1 + pc(r(n)) + nεc/4].

Let A ∈ BPP(nk, nk, 1
4
). Let c be such that c ≥ 2

ε
and k ≤ cε/2. Let

r(n) = nk. Then we have

BPP(nk, nk,
1

4
) ⊆ BPP(ncε/4, r(n),

1

4
) ⊆ DTIME(r(n)(r(n)c+1+pc(r(n))+nεc/4].

Note that the time bound is polynomial in n, which is all we need.

17

8 Notation Used Throughout the Paper

Notation 8.1 Throughout this paper the following hold.

1. L(n) : N → N (think log). c will be a constant. cL(n) will be used alot.

2. s(n), S(n) : N → N (think poly, 2εn). Bounds on circuit size.

3. r(n) : N → N (think poly). We require r(n) ≥ n. The random string
that a BPP machine uses.

4. t(n), T (n) : N → N (think poly, 2n). Run times.

5. G : {0, 1}∗ → {0, 1}∗. At different places we will also require that either
(1) for all n {0, 1}L(n) maps to {0, 1}n, or (2) for all n {0, 1}cL(n) maps
to {0, 1}n, or (3) for all n {0, 1}c2L(n) maps to {0, 1}n. We denote the
subfunction that maps {0, 1}m to {0, 1}n by Gm. (m will be L(n) or
cL(n) or c2L(n)). A potential psuedorandom generator.

6. f : {0, 1}∗ → {0, 1}. We denote the subfunction that maps {0, 1}n to
{0, 1} by fn. A “hard” function.

7. err(n) : N → Q ∩ (0, 1/2) (think 1
4
) An error, so the smaller it is the less

chance of error.

8. diff(n) : N → Q ∩ (0, 1/2) (think 1
poly

). diff(n) is decreasing. How much
two distributions differ. The smaller it is, the less they differ.

9. eps(n) : N → Q ∩ (0, 1/2) (think 1
poly

). eps(n) is decreasing. How much

more than 1
2

of the elements of some domain a function is computed
correctly. The larger eps(n) the large the domain we can compute the
function on.

References

[1] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer
and System Sciences, 49, 1994. Prior version in FOCS88.

18

