An Exposition of the Main Theorem in
Enumerations of the Kolmogorov Function
Authors of paper:
Beigel, Buhrman, Fejer, Fortnow Grabowski, Longpre, Muchnik, Stephan, Torenvliet
Author of this writeup: Gasarch

1 Introduction and Definitions

The following definition is basic to Kolmogorov complexity (see [?]).
Def 1.1 Let x be a string of length n.

1. $C(x)$ is the size of the smallest program that outputs x. This is the Kolmogorov complexity of x. (Note- to formalize this we would need so specify what a program is; however, the Kolmogorov complexity of a string changes by only a constant when you change programming systems.)
2. We define $C_{s}(x)$ to be an approximation to C after s steps. Formally we define $C_{0}(x)=n+O(1)$ since without any work you know there is a program that stores x and prints it. (The $O(1)$ depends on the particular programming system.) $C_{s}(x)$ is obtained by running the first s Turing machines for s steps on 0 ; if any of them prints x and has size $\leq C_{s-1}(x)$ then output the size of the smallest such machine.

Intuitively a function f is m-enumerable if there is a process that, on input x, enumerates $\leq m$ candidates for $f(x)$ one of which really is $f(x)$. We formalize this.

Notation 1.2 W_{e} is the domain of the e th Turing machine, so W_{0}, W_{1}, \ldots is a list of all c.e. sets. W_{e}^{A} is the domain of the e th oracle Turing machine using oracle A, so $W_{0}^{A}, W_{1}^{A}, \ldots$ is a list of all c.e.-in- A sets.

Def 1.3 [1, 2] Let $m \geq 1$ and let $A \subseteq \mathrm{~N}$.

1. f is m-enumerable if there is a computable function h such that $(\forall x)\left[\left|W_{h(x)}\right| \leq m \wedge f(x) \in W_{h(x)}\right]$.
2. f is m-enumerable-in- A if there is a computable function h such that $(\forall x)\left[\left|W_{h(x)}^{A}\right| \leq m \wedge f(x) \in W_{h(x)}^{A}\right]$.
3. $\mathrm{EN}^{A}(m)$ is the class of all m-enumerable-in- A functions.

We need the following definition and theorem from computability theory.
Def 1.4 Let f be a partial function and F be a total function. f is dominated by F if, for every x such that $f(x)$ exists, $f(x)<F(x) . f$ is computably dominated if there is a computable function F such that f is dominated by F.

Def 1.5 [3] A set X is extensive if, for every computably dominated partial computable function f, there is a total function $g \leq_{\mathrm{T}} X$ such that g extends f.

Lemma 1.6 [3] Let A be a set. There exists a set X such that the following hold.

1. $A \leq_{\mathrm{T}} X$.
2. $K \leq_{\mathrm{T}} X \rightarrow K \leq_{\mathrm{T}} A$.
3. X is extensive.

We need the following definition and theorem from bounded queries.
Def 1.7 Let $k \in \mathrm{~N}$ and $D \subseteq \mathrm{~N}$. Then $\#_{k}^{D}\left(x_{1}, \ldots, x_{k}\right)=\left|D \cap\left\{x_{1}, \ldots, x_{k}\right\}\right|$.

Lemma $1.8\left[1\right.$, 2] Let $k \in \mathrm{~N}$. If $\#_{k}^{K} \in \operatorname{EN}^{A}(k)$ then $K \leq_{\mathrm{T}} A$.

Note 1.9 Kummer showed [4] that, for all $D, \#_{k}^{D} \in \operatorname{EN}^{A}(k)$ then $D \leq_{\mathrm{T}} A$.
We need the following easy lemma and corollary from kolgmorov theory. They are both folklore; we include their proofs for completeness.

Lemma 1.10 Let $a, b \in \mathrm{~N}$ such that $a+1 \leq b$. Let G be a set of at least 2^{b} strings. Then there exists at least 2^{a} strings $w \in G$ such that $C(w) \geq a$.

Proof: Assume, by way of contradiction, that

$$
|\{w \in G: C(w) \geq a\}|<2^{a} .
$$

Note that

$$
|\{w \in G: C(w)<a\}| \leq|\{w: C(w)<a\}| \leq 2^{0}+2^{1}+\cdots+2^{a-1}=2^{a}-1 .
$$

Hence

$$
2^{b} \leq|G|=|\{w \in G: C(w)<a\}|+|\{w \in G: C(w) \geq a\}| \leq 2^{a}-1+2^{a}<2^{a+1} .
$$

This implies $b<a+1$ which contradicts the hypothesis that $a+1 \leq b$.

Corollary 1.11 Let $i, m \in \mathrm{~N}$. If G is a set of $2^{m-(i-1)\lceil\sqrt{m}\rceil}$ strings then there exists at least $2^{m-i}\lceil\sqrt{m}\rceil+\left\lceil m^{1 / 3}\right\rceil$ strings $w \in G$ such that $C(w) \geq$ $m-i\lceil\sqrt{m}\rceil+\left\lceil m^{1 / 3}\right\rceil$.

Proof: Apply Lemma 1.10 with $a=m-i\lceil\sqrt{m}\rceil+\left\lceil m^{1 / 3}\right\rceil$ and $b=$ $m-(i-1)\lceil\sqrt{m}\rceil$.

2 An Easy Theorem about C

Theorem 2.1 $C \leq_{\mathrm{tt}} K$ and $K \leq_{\mathrm{T}} C$.

Proof:

1) $C \leq_{\mathrm{tt}} K$. Given x we can compute $C(x)$ as follows. For all machines M of length $\leq|x|+O(1)$ ask K "does $M(0)$ halt and output x ?" Once you get the answers, output the length of the shortest such M for which the answer was YES.
2) $K \leq_{T} C$. We need to look at the partial computable function f below: f : On input x find s such that $x \in K_{s}-K_{s-1}$ (this might not happen). Let $|x|=n$ and $m=2^{n}$. Find $C_{s}(z)$ for every z of length m. Output the z with the largest C_{s}-value (break ties lexicographically). Note the following:

If $x \in K, z=f(x)$, and s is such that $z \in K_{s}-K_{s-1}$ then the following hold.
$C_{s}(z) \geq|z|=m+O(1)\left(\right.$ since $\left.\left(\exists z^{\prime},\left|z^{\prime}\right|=m\right)\left[C\left(z^{\prime}\right) \geq m+O(1)\right]\right)$.
$C(z) \leq \log m+O(1)$ (since z can be computed from the code for f and the input $x,|x|=n=\log m)$.

Here is the key: If $x \in K_{s}-K_{s-1}$ then there exists a string $z=f(x)$ of length m such that $C_{s}(z)>C(z)$. Hence, if s is such that $(\forall z)[|z|=m \rightarrow$ $\left.C_{s}(z)=C(z)\right]$ then $x \in K$ iff $x \in K_{s}$. Using this we have the following algorithm for $K \leq_{\mathrm{T}} C$.
$K \leq_{\mathrm{T}} C$: on input x, let $|x|=n$ and $m=2^{n}$. Find $C(z)$ for all $z \in\{0,1\}^{m}$. Find s such that, for all $z \in\{0,1\}^{m}, C_{s}(z)=C(z)$. If $x \in K_{s}$ then output YES, otherwise output NO.

Note 2.2 Kummer has shown that $K \leq_{\mathrm{tt}} C$ [5].

3 Main Theorem

Theorem 3.1 Let $k \in \mathrm{~N}$. If $C \in \operatorname{EN}^{A}(k)$ then $K \leq{ }_{\mathrm{T}} A$.
Proof:
Let $C \in \operatorname{EN}^{A}(k)$ via h. Note that h is computable. We will not use h until later.

By Lemma 1.6 there exists a set X such that $A \leq_{\mathrm{T}} X, K \leq_{\mathrm{T}} X \rightarrow K \leq_{\mathrm{T}}$ A, and X is extensive (Definition 1.5). We show that $\#_{k}^{K} \in \operatorname{EN}^{X}(() k)$, hence by Lemma $1.8, K \leq_{\mathrm{T}} X$; so $K \leq_{\mathrm{T}} A$.

We need to define $k+1$ partial computable functions on ordered k-tuple $\left(x_{1}, \ldots, x_{k}\right)$. We assume throughout that $\sum_{i=1}^{k}\left|x_{i}\right|=n$ and that $m=2^{n}$.
$f_{0}\left(x_{1}, \ldots, x_{k}\right)=\{0,1\}^{m}$.
For $1 \leq i \leq k, f_{i}\left(x_{1}, \ldots, x_{k}\right)$ is defined as follows: find the least s such that $\#_{k}^{K_{s}}\left(x_{1}, \ldots, x_{k}\right)=i$ (this might not ever happen). Compute $C_{s}(z)$ for every $z \in f_{i-1}\left(x_{1}, \ldots, x_{k}\right)$. Order the strings by largest to smallest value of C_{s} (break ties via lexicographic ordering). Output the highest ranked $2^{m-i\lceil\sqrt{m}\rceil}$ strings.

Clearly f_{0}, \ldots, f_{k} are partial computable functions that are computably dominated. Hence, for each $i, 0 \leq i \leq k$, there exists total $g_{i} \leq_{\mathrm{T}} X$ such that g_{i} extends f_{i}. We may assume that, for all $\left(x_{1}, \ldots, x_{k}\right)$, for all i, $g_{i}\left(x_{1}, \ldots, x_{k}\right)$ is a set of size $2^{m-i}\lceil\sqrt{m}\rceil$. In particular, it is not empty.
Claim 0: Let $\left(x_{1}, \ldots, x_{k}\right) \in \mathrm{N}$. If there exists $i, 1 \leq i \leq k$, such that $g_{i}\left(x_{1}, \ldots, x_{k}\right) \nsubseteq g_{i-1}\left(x_{1}, \ldots, x_{k}\right)$ then $\#_{k}^{K}\left(x_{1}, \ldots, x_{k}\right) \neq k$.
Proof: We prove the contrapositive. If $\#_{k}^{K}\left(x_{1}, \ldots, x_{k}\right)=k$ then, for $i, 0 \leq i \leq k, f_{i}\left(x_{1}, \ldots, x_{k}\right)=g_{i}\left(x_{1}, \ldots, x_{k}\right)$. Hence, for all $i, 1 \leq i \leq k$, $g_{i}\left(x_{1}, \ldots, x_{k}\right) \subseteq g_{i-1}\left(x_{1}, \ldots, x_{k}\right)$.

Claim 1: Let $n \in \mathbf{N}$. Let $x_{1}, \ldots x_{k} \in \mathrm{~N}$ be such that $\sum_{i=1}^{k}\left|x_{i}\right|=n$. Let $m=$ 2^{n}. We assume that for all $i, 1 \leq i \leq k, g_{i}\left(x_{1}, \ldots, x_{k}\right) \subseteq g_{i-1}\left(x_{1}, \ldots, x_{k}\right)$. For $1 \leq i \leq k$ define

$$
s_{i}= \begin{cases}\text { the least } s \text { such that } \#_{k}^{K_{s}}\left(x_{1}, \ldots, x_{k}\right)=i & \text { if } \#_{k}^{K}\left(x_{1}, \ldots, x_{k}\right) \geq i \\ \infty & \text { otherwise }\end{cases}
$$

For all $i, 1 \leq i \leq k$, if $s_{i}<\infty$ then

1. $\left(\forall z \in g_{i}\left(x_{1}, \ldots, x_{k}\right)\right)\left[C_{s_{i}}(z) \geq m-i\lceil\sqrt{m}\rceil+\left\lceil m^{1 / 3}\right\rceil\right]$, and
2. $\left(\forall z \in g_{i}\left(x_{1}, \ldots, x_{k}\right)\right)[C(z) \leq m-i\lceil\sqrt{m}\rceil+2 \log m+O(1)]$.

Proof: Let i be such that $s_{i}<\infty$. Note that, for all $1 \leq j \leq i$, $f_{j}\left(x_{1}, \ldots, x_{k}\right)$ exists, so $g_{j}\left(x_{1}, \ldots, x_{k}\right)=f_{j}\left(x_{1}, \ldots, x_{k}\right)$. Let $z \in g_{i}\left(x_{1}, \ldots, x_{k}\right)$.
(1) We show that $C_{s_{i}}(z) \geq m-i\lceil\sqrt{m}\rceil+\left\lceil m^{1 / 3}\right\rceil$. Since $\left|g_{i-1}\left(x_{1}, \ldots, x_{k}\right)\right|=$ $2^{m-(i-1)\lceil\sqrt{m}\rceil}$, by Corollary 1.11, there are at least $2^{m-i}\lceil\sqrt{m}\rceil+\left\lceil m^{1 / 3}\right\rceil$ strings $w \in g_{i-1}\left(x_{1}, \ldots, x_{k}\right)$ such that $C(w) \geq m-i\lceil\sqrt{m}\rceil+\left\lceil m^{1 / 3}\right\rceil$; hence, $C_{s_{i}}(w) \geq C(w) \geq m-i\lceil\sqrt{m}\rceil+\left\lceil m^{1 / 3}\right\rceil$. Since $z \in g_{i}\left(x_{1}, \ldots, x_{k}\right), C_{s_{i}}(z)$ is in the top $2^{m-i}\lceil\sqrt{m}\rceil$ of $g_{i-1}\left(x_{1}, \ldots, x_{k}\right)$ in terms of $C_{s_{i}}$-complexity. Hence $C_{s_{i}}(z) \geq m-i\lceil\sqrt{m}\rceil+\left\lceil m^{1 / 3}\right\rceil$.
(2) We show that $C(z) \leq m-i \sqrt{m}+2 \log m+O$ (1).

Given $\left(x_{1}, \ldots, x_{k}\right)$ one can produce $f_{i}\left(x_{1}, \ldots, x_{k}\right)$ as follows: Let $f_{0}\left(x_{1}, \ldots, x_{m}\right)=$ $\{0,1\}^{k}$. For $1 \leq j \leq i$ do the following: find the least s such that $\#_{k}^{K_{s}}\left(x_{1}, \ldots, x_{k}\right)=$ j, rank all the strings in $\{0,1\}^{m}$ via their C_{s} complexity (break ties via lexicographic ordering), and let $f_{j}\left(x_{1}, \ldots, x_{k}\right)$ be the top $2^{m-j \sqrt{m}}$ strings in $f_{j-1}\left(x_{1}, \ldots, x_{k}\right)$.

Given the lexicographic rank of z in $f_{i}\left(x_{1}, \ldots, x_{k}\right)$ one can easily produce z from $f_{i}\left(x_{1}, \ldots, x_{k}\right)$.

Hence, to describe z, you need $\left(x_{1}, \ldots, x_{k}\right)$ and the lexicographic rank r of z in $f_{i}\left(x_{1}, \ldots, x_{k}\right)$. The space needed for $\left(x_{1}, \ldots, x_{k}\right)$ is $2 n$ (use the standard trick of encoding 0 by 00,1 by 11 , and commas by 01). Note that $2 n=2 \log m$. The space needed for r is $\log \left|f_{i}\left(x_{1}, \ldots, x_{k}\right)\right|=\log \left(2^{m-i \sqrt{m}}\right)=$ $m-i \sqrt{m}$. Hence the total description is size $m-i \sqrt{m}+2 \log m+O(1)$.

Claim 2: For almost all k-tuples $\left(x_{1}, \ldots, x_{k}\right) \in \mathbf{N}$, if $z \in g_{k}\left(x_{1}, \ldots, x_{k}\right)$, and s is the least stage such that $C_{s}(z)=C(z)$, then $\#_{k}^{K}\left(x_{1}, \ldots, x_{k}\right)=$ $\#_{k}^{K_{s}}\left(x_{1}, \ldots, x_{k}\right)$.

Proof: If $\#_{k}^{K}\left(x_{1}, \ldots, x_{k}\right)=0$ then the claim is obvious. Let s_{1}, \ldots, s_{k} be as in Claim 1. By Claim 1, if $\#_{k}^{K}\left(x_{1}, \ldots, x_{k}\right)=i$, and $\sum_{i=1}^{k}\left|x_{i}\right|$ is large enough, then $C_{s_{i}}(z)>C(z)=C_{s}(z)$, hence $s>s_{i}$. Therefore $\#_{k}^{K}\left(x_{1}, \ldots, x_{k}\right)=\#_{k}^{K_{s}}\left(x_{1}, \ldots, x_{k}\right)$.

We now give an algorithm for $\#_{k}^{K}\left(x_{1}, \ldots, x_{k}\right) \in \operatorname{EN}^{X}(k)$. The algorithm uses h (recall that $C \in \operatorname{EN}^{A}(k)$ via h and h is computable), and $g_{1}, \ldots, g_{k} \leq_{\mathrm{T}}$ X. The algorithm works for almost all k-tuples; however, one can easily code the finite information needed to make it always work.

1. $\operatorname{Input}\left(x_{1}, \ldots, x_{k}\right)$.
2. For $0 \leq i \leq k$ compute $g_{i}\left(x_{1}, \ldots, x_{k}\right)$.
3. If there exists $i, 1 \leq i \leq k$, such that $g_{i}\left(x_{1}, \ldots, x_{k}\right) \nsubseteq g_{i-1}\left(x_{1}, \ldots, x_{k}\right)$ then output $\{0,1, \ldots, k-1\}$ and stop. (This is correct by Claim 0.)
4. (Assume $g_{k}\left(x_{1}, \ldots, x_{k}\right) \subseteq \cdots \subseteq g_{0}\left(x_{1}, \ldots, x_{k}\right)$.) Let z be the lexicographic least element of $g_{k}\left(x_{1}, \ldots, x_{k}\right)$ (such a z must exist since $g_{k}\left(x_{1}, \ldots, x_{k}\right)$ is not empty). Enumerate $W_{h(z)}^{A}$. For each number enumerated we might output a candidate for $\#_{k}^{K}\left(x_{1}, \ldots, x_{k}\right)$. Assume $W_{h(z)}^{A}$ enumerates c. Find the least s such that $C_{s}(z)=c$ (this will happen if $c=C(z)$ but might not happen otherwise). Output $\#_{k}^{K_{s}}\left(x_{1}, \ldots, x_{k}\right)$. If $c=C(z)$ then, by Claim $2, \#_{k}^{K}\left(x_{1}, \ldots, x_{k}\right)=$ $\#_{k}^{K_{s}}\left(x_{1}, \ldots, x_{k}\right)$.

Note that (1) for every number enumerated by $W_{h(z)}^{A}$ our algorithm may output a candidate for $\#_{k}^{K}\left(x_{1}, \ldots, x_{k}\right)$, and (2) when the correct value of $C(z)$ is enumerated by $W_{h(z)}^{A}$ our algorithm outputs the correct value for $\#_{k}^{K}\left(x_{1}, \ldots, x_{k}\right)$. Hence $\#_{k}^{K} \in \operatorname{EN}^{X}(k)$.

References

[1] R. Beigel, W. Gasarch, J. Gill, and J. Owings. Terse, Superterse, and Verbose sets. Information and Computation, 103(1):68-85, Mar. 1993. Earlier version is TR 1806, Univ of MD, 1987.
[2] W. Gasarch and G. Martin. Bounded Queries in Recursion Theory. Progress in Computer Science and Applied Logic. Birkhäuser, Boston, 1999.
[3] C. Jockusch and R. Soare. Π_{1}^{0} classes and degrees of theories. Transactions of the American Math Society, 173:33-56, 1972.
[4] M. Kummer. A proof of Beigel's cardinality conjecture. Journal of Symbolic Logic, 57(2):677-681, June 1992. http://www.jstor.org/action/ showPublication?journalCode=jsymboliclogic.
[5] M. Kummer. On the complexity of random strings. In Thirteenth International Symposium on Theoretical Aspects of Computer Science: Proceedings of STACS 1996, Grenoble, France, Lecture Notes in Computer Science, New York, Heidelberg, Berlin, 1996. Springer-Verlag. http://www.springerlink.com.

