
An Exposition of the Main Theorem in
Enumerations of the Kolmogorov Function

Authors of paper:
Beigel, Buhrman, Fejer, Fortnow Grabowski, Longpre, Muchnik, Stephan, Torenvliet

Author of this writeup: Gasarch

1 Introduction and Definitions

The following definition is basic to Kolmogorov complexity (see [?]).

Def 1.1 Let x be a string of length n.

1. C(x) is the size of the smallest program that outputs x. This is the
Kolmogorov complexity of x. (Note- to formalize this we would need
so specify what a program is; however, the Kolmogorov complexity of
a string changes by only a constant when you change programming
systems.)

2. We define Cs(x) to be an approximation to C after s steps. Formally
we define C0(x) = n + O(1) since without any work you know there
is a program that stores x and prints it. (The O(1) depends on the
particular programming system.) Cs(x) is obtained by running the
first s Turing machines for s steps on 0; if any of them prints x and
has size ≤ Cs−1(x) then output the size of the smallest such machine.

Intuitively a function f is m-enumerable if there is a process that, on
input x, enumerates ≤ m candidates for f(x) one of which really is f(x).
We formalize this.

Notation 1.2 We is the domain of the eth Turing machine, so W0,W1, . . .
is a list of all c.e. sets. WA

e is the domain of the eth oracle Turing machine
using oracle A, so WA

0 ,WA
1 , . . . is a list of all c.e.-in-A sets.

Def 1.3 [1, 2] Let m ≥ 1 and let A ⊆ N.

1. f is m-enumerable if there is a computable function h such that

(∀x)[|Wh(x)| ≤ m ∧ f(x) ∈Wh(x)].

2. f is m-enumerable-in-A if there is a computable function h such that
(∀x)[|WA

h(x)| ≤ m ∧ f(x) ∈WA
h(x)].

1

3. ENA(m) is the class of all m-enumerable-in-A functions.

We need the following definition and theorem from computability theory.

Def 1.4 Let f be a partial function and F be a total function. f is domi-
nated by F if, for every x such that f(x) exists, f(x) < F (x). f is computably
dominated if there is a computable function F such that f is dominated by F .

Def 1.5 [3] A set X is extensive if, for every computably dominated par-
tial computable function f , there is a total function g ≤T X such that g
extends f .

Lemma 1.6 [3] Let A be a set. There exists a set X such that the following
hold.

1. A ≤T X.

2. K ≤T X → K ≤T A.

3. X is extensive.

We need the following definition and theorem from bounded queries.

Def 1.7 Let k ∈ N and D ⊆ N. Then #D
k (x1, . . . , xk) = |D ∩ {x1, . . . , xk}|.

Lemma 1.8 [1, 2] Let k ∈ N. If #K
k ∈ ENA(k) then K ≤T A.

Note 1.9 Kummer showed [4] that, for all D, #D
k ∈ ENA(k) then D ≤T A.

We need the following easy lemma and corollary from kolgmorov theory.
They are both folklore; we include their proofs for completeness.

Lemma 1.10 Let a, b ∈ N such that a+ 1 ≤ b. Let G be a set of at least 2b

strings. Then there exists at least 2a strings w ∈ G such that C(w) ≥ a.

2

Proof: Assume, by way of contradiction, that
|{w ∈ G : C(w) ≥ a}| < 2a.

Note that
|{w ∈ G : C(w) < a}| ≤ |{w : C(w) < a}| ≤ 20+21+ · · ·+2a−1 = 2a−1.

Hence

2b ≤ |G| = |{w ∈ G : C(w) < a}|+|{w ∈ G : C(w) ≥ a}| ≤ 2a−1+2a < 2a+1.

This implies b < a + 1 which contradicts the hypothesis that a + 1 ≤ b.

Corollary 1.11 Let i,m ∈ N. If G is a set of 2m−(i−1)d
√
me strings then

there exists at least 2m−id
√
me+dm1/3e strings w ∈ G such that C(w) ≥

m− i d
√
me+

⌈
m1/3

⌉
.

Proof: Apply Lemma 1.10 with a = m − i d
√
me +

⌈
m1/3

⌉
and b =

m− (i− 1) d
√
me.

2 An Easy Theorem about C

Theorem 2.1 C ≤tt K and K ≤T C.

Proof:
1) C ≤tt K. Given x we can compute C(x) as follows. For all machines M
of length ≤ |x|+O(1) ask K “does M(0) halt and output x?” Once you get
the answers, output the length of the shortest such M for which the answer
was YES.

2) K ≤T C. We need to look at the partial computable function f below:
f : On input x find s such that x ∈ Ks−Ks−1 (this might not happen). Let
|x| = n and m = 2n. Find Cs(z) for every z of length m. Output the z with
the largest Cs-value (break ties lexicographically). Note the following:

If x ∈ K, z = f(x), and s is such that z ∈ Ks −Ks−1 then the following
hold.

Cs(z) ≥ |z| = m + O(1) (since (∃z′, |z′| = m)[C(z′) ≥ m + O(1)]).

C(z) ≤ logm + O(1) (since z can be computed from the code for f and the
input x, |x| = n = logm).

3

Here is the key: If x ∈ Ks −Ks−1 then there exists a string z = f(x) of
length m such that Cs(z) > C(z). Hence, if s is such that (∀z)[|z| = m →
Cs(z) = C(z)] then x ∈ K iff x ∈ Ks. Using this we have the following
algorithm for K ≤T C.

K ≤T C: on input x, let |x| = n and m = 2n. Find C(z) for all
z ∈ {0, 1}m. Find s such that, for all z ∈ {0, 1}m, Cs(z) = C(z). If x ∈ Ks

then output YES, otherwise output NO.

Note 2.2 Kummer has shown that K ≤tt C [5].

3 Main Theorem

Theorem 3.1 Let k ∈ N. If C ∈ ENA(k) then K ≤T A.

Proof:
Let C ∈ ENA(k) via h. Note that h is computable. We will not use h

until later.
By Lemma 1.6 there exists a set X such that A ≤T X, K ≤T X → K ≤T

A, and X is extensive (Definition 1.5). We show that #K
k ∈ ENX(()k), hence

by Lemma 1.8, K ≤T X; so K ≤T A.
We need to define k+ 1 partial computable functions on ordered k-tuple

(x1, . . . , xk). We assume throughout that
∑k

i=1 |xi| = n and that m = 2n.

f0(x1, . . . , xk) = {0, 1}m.

For 1 ≤ i ≤ k, fi(x1, . . . , xk) is defined as follows: find the least s such
that #Ks

k (x1, . . . , xk) = i (this might not ever happen). Compute Cs(z) for
every z ∈ fi−1(x1, . . . , xk). Order the strings by largest to smallest value
of Cs (break ties via lexicographic ordering). Output the highest ranked

2m−id
√
me strings.

Clearly f0, . . . , fk are partial computable functions that are computably
dominated. Hence, for each i, 0 ≤ i ≤ k, there exists total gi ≤T X such
that gi extends fi. We may assume that, for all (x1, . . . , xk), for all i,

gi(x1, . . . , xk) is a set of size 2m−id
√
me. In particular, it is not empty.

Claim 0: Let (x1, . . . , xk) ∈ N. If there exists i, 1 ≤ i ≤ k, such that
gi(x1, . . . , xk) 6⊆ gi−1(x1, . . . , xk) then #K

k (x1, . . . , xk) 6= k.
Proof: We prove the contrapositive. If #K

k (x1, . . . , xk) = k then, for
i, 0 ≤ i ≤ k, fi(x1, . . . , xk) = gi(x1, . . . , xk). Hence, for all i, 1 ≤ i ≤ k,
gi(x1, . . . , xk) ⊆ gi−1(x1, . . . , xk).

4

Claim 1: Let n ∈ N. Let x1, . . . xk ∈ N be such that
∑k

i=1 |xi| = n. Let m =
2n. We assume that for all i, 1 ≤ i ≤ k, gi(x1, . . . , xk) ⊆ gi−1(x1, . . . , xk).
For 1 ≤ i ≤ k define

si =

{
the least s such that #Ks

k (x1, . . . , xk) = i if #K
k (x1, . . . , xk) ≥ i;

∞ otherwise.

For all i, 1 ≤ i ≤ k, if si <∞ then

1. (∀z ∈ gi(x1, . . . , xk))[Csi(z) ≥ m− i d
√
me+

⌈
m1/3

⌉
], and

2. (∀z ∈ gi(x1, . . . , xk))[C(z) ≤ m− i d
√
me+ 2 logm + O(1)].

Proof: Let i be such that si < ∞. Note that, for all 1 ≤ j ≤ i,
fj(x1, . . . , xk) exists, so gj(x1, . . . , xk) = fj(x1, . . . , xk). Let z ∈ gi(x1, . . . , xk).

(1) We show that Csi(z) ≥ m− i d
√
me+

⌈
m1/3

⌉
. Since |gi−1(x1, . . . , xk)| =

2m−(i−1)d
√
me, by Corollary 1.11, there are at least 2m−id

√
me+dm1/3e strings

w ∈ gi−1(x1, . . . , xk) such that C(w) ≥ m − i d
√
me +

⌈
m1/3

⌉
; hence,

Csi(w) ≥ C(w) ≥ m− i d
√
me+

⌈
m1/3

⌉
. Since z ∈ gi(x1, . . . , xk), Csi(z) is

in the top 2m−id
√
me of gi−1(x1, . . . , xk) in terms of Csi-complexity. Hence

Csi(z) ≥ m− i d
√
me+

⌈
m1/3

⌉
.

(2) We show that C(z) ≤ m− i
√
m + 2 logm + O(1).

Given (x1, . . . , xk) one can produce fi(x1, . . . , xk) as follows: Let f0(x1, . . . , xm) =
{0, 1}k. For 1 ≤ j ≤ i do the following: find the least s such that #Ks

k (x1, . . . , xk) =
j, rank all the strings in {0, 1}m via their Cs complexity (break ties via lex-
icographic ordering), and let fj(x1, . . . , xk) be the top 2m−j

√
m strings in

fj−1(x1, . . . , xk).
Given the lexicographic rank of z in fi(x1, . . . , xk) one can easily produce

z from fi(x1, . . . , xk).
Hence, to describe z, you need (x1, . . . , xk) and the lexicographic rank

r of z in fi(x1, . . . , xk). The space needed for (x1, . . . , xk) is 2n (use the
standard trick of encoding 0 by 00, 1 by 11, and commas by 01). Note that
2n = 2 logm. The space needed for r is log |fi(x1, . . . , xk)| = log(2m−i

√
m) =

m− i
√
m. Hence the total description is size m− i

√
m+ 2 logm+O(1).

Claim 2: For almost all k-tuples (x1, . . . , xk) ∈ N, if z ∈ gk(x1, . . . , xk),
and s is the least stage such that Cs(z) = C(z), then #K

k (x1, . . . , xk) =
#Ks

k (x1, . . . , xk).

5

Proof: If #K
k (x1, . . . , xk) = 0 then the claim is obvious. Let s1, . . . , sk

be as in Claim 1. By Claim 1, if #K
k (x1, . . . , xk) = i, and

∑k
i=1 |xi| is

large enough, then Csi(z) > C(z) = Cs(z), hence s > si. Therefore
#K

k (x1, . . . , xk) = #Ks
k (x1, . . . , xk).

We now give an algorithm for #K
k (x1, . . . , xk) ∈ ENX(k). The algorithm

uses h (recall that C ∈ ENA(k) via h and h is computable), and g1, . . . , gk ≤T

X. The algorithm works for almost all k-tuples; however, one can easily code
the finite information needed to make it always work.

1. Input(x1, . . . , xk).

2. For 0 ≤ i ≤ k compute gi(x1, . . . , xk).

3. If there exists i, 1 ≤ i ≤ k, such that gi(x1, . . . , xk) 6⊆ gi−1(x1, . . . , xk)
then output {0, 1, . . . , k − 1} and stop. (This is correct by Claim 0.)

4. (Assume gk(x1, . . . , xk) ⊆ · · · ⊆ g0(x1, . . . , xk).) Let z be the lexi-
cographic least element of gk(x1, . . . , xk) (such a z must exist since
gk(x1, . . . , xk) is not empty). Enumerate WA

h(z). For each number

enumerated we might output a candidate for #K
k (x1, . . . , xk). As-

sume WA
h(z) enumerates c. Find the least s such that Cs(z) = c (this

will happen if c = C(z) but might not happen otherwise). Output
#Ks

k (x1, . . . , xk). If c = C(z) then, by Claim 2, #K
k (x1, . . . , xk) =

#Ks
k (x1, . . . , xk).

Note that (1) for every number enumerated by WA
h(z) our algorithm may

output a candidate for #K
k (x1, . . . , xk), and (2) when the correct value of

C(z) is enumerated by WA
h(z) our algorithm outputs the correct value for

#K
k (x1, . . . , xk). Hence #K

k ∈ ENX(k).

References

[1] R. Beigel, W. Gasarch, J. Gill, and J. Owings. Terse, Superterse, and
Verbose sets. Information and Computation, 103(1):68–85, Mar. 1993.
Earlier version is TR 1806, Univ of MD, 1987.

[2] W. Gasarch and G. Martin. Bounded Queries in Recursion Theory.
Progress in Computer Science and Applied Logic. Birkhäuser, Boston,
1999.

6

[3] C. Jockusch and R. Soare. Π0
1 classes and degrees of theories. Transac-

tions of the American Math Society, 173:33–56, 1972.

[4] M. Kummer. A proof of Beigel’s cardinality conjecture. Journal of Sym-
bolic Logic, 57(2):677–681, June 1992. http://www.jstor.org/action/
showPublication?journalCode=jsymboliclogic.

[5] M. Kummer. On the complexity of random strings. In Thirteenth
International Symposium on Theoretical Aspects of Computer Science:
Proceedings of STACS 1996, Grenoble, France, Lecture Notes in Com-
puter Science, New York, Heidelberg, Berlin, 1996. Springer-Verlag.
http://www.springerlink.com.

7

