The Monotone Sequence Game
 Exposition by Gasarch

1 Introduction

This is a writeup of some of the material in [?].
Recall the following theorem. For six proofs of this theorem see [?].
BILL- ADD HTTP SITE TO THE REF.
Def 1.1 Let $n \geq 1$. Let L be any linear order. Let $\vec{a} \in L^{*}$. A monotonic sub sequence of \vec{a} of length n (henceforth n-mono-subseq) is a sub sequence that is either increasing or decreasing.

Theorem 1.2 Let $n \geq 1$. Let L be any linear order with at least $(n-1)^{2}+1$ elements. Let \vec{a} be a sequence of at least $(n-1)^{2}+1$ distinct elements from L. Then either there exists an n-mono-subseq.

This theorem inspires the following game.
Def 1.3 Let $n \geq 1$. Let L be a linear order.

1. Let $G(L, n)$ be the following game. Players I and II alternate play with I going first. In each turn a Player picks an element of L that has not been picked before. The picks forms a sequence. The first Player to complete an n-mono-subseq wins. If L is finite and all of the numbers are chosen without a winner, then the game is a tie.
2. Let $\vec{a} \in L^{*}$. Let $G A L(L, n, \vec{a})$ be the game that is just like $G A L(L, n)$ but it starts with position \vec{a}. Player I has the first move iff $|\vec{a}|$ is even. Note that if \vec{a} is the empty vector then we recover $\operatorname{GAL}(L, n)$.

Def 1.4 Let $n \geq 1$. Let L be a linear order. Let $\vec{a} \in L^{*}$.
$W I N(L, n, \vec{a})= \begin{cases}I & \text { if Player I has a winning strategy for the game } G(L, n, \vec{a}) ; \\ I I & \text { if Player II has a winning strategy for the game } G(L, n, \vec{a}) ; \\ T & \text { if neither Player has a winning strategy for the game } G(L, n, \vec{a}) .\end{cases}$
Note that if $W I N(L, n, \vec{a})=T$ and both Players play perfectly then the game is a TIE.

Notation 1.5 $W I N(L, n)$ is $W I N(L, n, \lambda)$ where λ is the empty vector.

Theorem 1.6 Let L be a linear order such that $|L| \geq(n-1)^{2}+1$. Then $W I N(L, n) \neq T$.

Proof: This follows from Theorem 1.2.

Def 1.7 If $N \in \mathrm{~N}$ then L_{N} is the ordering $1<2<\cdots<N$. As usual Z is the integers N is the naturals, Q is the rationals. These are all ordered sets.

Note 1.8 By Theorem 1.6 $W\left(L_{(n-1)^{2}+1}, n\right) \neq T$. The following question is open and interesting: Given n, what is the least m such that $W\left(L_{m}, n\right) \neq T$?

We show the following.

Def 1.9

1. For all $N \in \mathrm{~N}$ there exists $n_{0} \in \mathrm{~N}$ and $J \in\{I, I I\}$ such that

$$
\left(\forall n \geq n_{0}\right)\left[W I N\left(L_{N}, n\right)=J\right] .
$$

2. For all $n \geq 4, W I N(Q, n)=I$.

2 Useful Definitions and Lemmas

Def 2.1 Let L be a linear order.

1. A function $f: L \rightarrow L$ is an order preserving bijection if f is a bijection and, for all $x<y \in L, f(x)<f(y)$.
2. A function $f: L \rightarrow L$ is an order investing bijection if f is a bijection and, for all $x<y \in L, f(x)>f(y)$.

$3 W I N\left(L_{N}, n\right)$

$4 W I N(Q, n)$

We leave the following easy theorem as an exercise.
Theorem 4.1 $W(\mathrm{Q}, 1)=I, W(\mathrm{Q}, 2)=I I, W(\mathrm{Q}, 3)=I$.

Lemma 4.2 Assume the following are true. Let $\vec{a} \in \mathrm{Q}^{*}$ and $n \in \mathrm{~N}$. Let a_{i} be the ith element of \vec{a}. Let \vec{a} be \vec{a} with a_{i} removed.

1. $W(L, n, \vec{a})=I I$.
2. $W(L, n, \overrightarrow{\tilde{a}})=I I$.
3. At the end of the game $W(L, n, \vec{a})$ there is an n-mono-subseq that does not contain a_{i}.

Then $W(L, n, \vec{a})=I$. (This yields a contradiction.)

Theorem 4.3 For all $n \geq 4, W(\mathrm{Q}, n)=I$.
Proof: By Theorem 1.6 one of the two Players has a winning strategy. Assume, by way of contradiction, that $I I$ has a winning strategy. We give a strategy for Player I such that, if Player II plays his winning strategy, Player I wins.
Winning strategy for Player I

1. On the first move Player I plays a_{1} (the value of a_{1} does not matter).
2. Player II's plays a_{2}. We assume that $a_{1}<a_{2}$. (If $a_{2}<a_{1}$ then a similar strategy works.)
3. Player I plays $a_{3}<a_{1}<a_{2}$.
4. There are four cases depending on what Player II does.
(a) Player II plays $a_{4}<a_{3}<a_{1}<a_{2}$. If $n=4$ then Player I plays $a_{5}<a_{4}$ to form $a_{1}>a_{2}>a_{4}>a_{5}$ and win.
If $n \geq 5$ then Player I plays a_{5} such that

$$
a_{4}<a_{3}<a_{5}<a_{1}<a_{2} .
$$

We show that the premises of Lemma 4.2 hold. Let $\vec{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ and $i=1$. Since Player II was playing a winning strategy $W I N(L, n, \vec{a})=$ II. Look at $\overrightarrow{\vec{a}}=\left(a_{2}, a_{3}, a_{4}, a_{5}\right)$. Note that

$$
a_{4}<a_{3}<a_{5}<a_{2} .
$$

Claim 1: At the end of the game there will be an n-mono-subseq that does not contain a_{1}.

Proof of Claim 1:

If a_{1} is in an increasing subsequence then that subsequence looks like

$$
\begin{gathered}
a_{1}<a_{i_{2}}<a_{i_{3}}<\cdots<a_{i_{n}} \\
1<i_{2}<i_{3}<\cdots<i_{n}
\end{gathered}
$$

where $i_{2} \geq 2$ and $i_{3} \geq 6$. Hence the following is an increasing subsequence of length n that does not contain a_{1}.

$$
a_{3}<a_{5}<a_{i_{3}}<\cdots<a_{i_{n}} .
$$

If a_{1} is in a decreasing subsequence then that subsequence looks like

$$
a_{1}>a_{i_{2}}>a_{i_{3}}>a_{i_{4}}>\cdots>a_{i_{n}}
$$

where $i_{2} \geq 3$. Hence the following is a decreasing subsequence of length n that does not contain a_{1}.

$$
a_{2}>a_{i_{2}}>a_{i_{3}}>a_{i_{4}}>\cdots>a_{i_{n}}
$$

End of Proof of Claim 1

(b) Player II plays a_{4} such that $a_{3}<a_{4}<a_{1}<a_{2}$. Claim 2: At the end of the game there will be an n-mono-subseq that does not contain a_{1}.

Proof of Claim 2:

If a_{1} is in an increasing subsequence then that subsequence looks like:

$$
\begin{gathered}
a_{1}<a_{i_{2}}<a_{i_{3}}<\cdots<a_{i_{n}} \\
1<i_{2}<i_{3}<\cdots<i_{n}
\end{gathered}
$$

where $i_{3} \geq 5$. Hence the following is an increasing subsequence of length n that does not have a_{1}.

$$
a_{3}<a_{4}<a_{i_{3}}<\cdots<a_{i_{n}} .
$$

If a_{1} is in a decreasing subsequence then that subsequence looks like:

$$
\begin{gathered}
a_{1}>a_{i_{2}}>a_{i_{3}}>\cdots>a_{i_{n}} \\
1<i_{2}<i_{3}<\cdots<i_{n} .
\end{gathered}
$$

Since $a_{2}>a_{1}$ we know $i_{2} \geq 3$. Hence the following is a decreasing subsequence of length n that does not have a_{1}.

$$
a_{2}>a_{i_{2}}>a_{i_{3}}>\cdots>a_{i_{n}}
$$

End of Proof of Claim 2

(c) Player II plays a_{4} such that $a_{3}<a_{1}<a_{4}<a_{2}$.

Claim 3: At the end of the game there will be an n-mono-subseq that does not contain a_{1}.

Proof of Claim 3:

If a_{1} is in an increasing subsequence then that subsequence looks either like

$$
a_{1}<a_{i_{2}}<a_{i_{3}}<\cdots<a_{i_{n}}
$$

$$
1<i_{2}<i_{3}<\cdots<i_{n}
$$

where $i_{3} \geq 5$
Hence the following is an increasing subsequence of length n that does not have a_{1}.

$$
a_{3}<a_{4}<a_{i_{3}}<\cdots a_{i_{4}} .
$$

If a_{1} is in a decreasing subsequence then that subsequence looks like

$$
a_{1}>a_{i_{2}}>a_{i_{3}}>\cdots>a_{i_{n}}
$$

where $i_{2} \geq 3$.
Hence we have the following decreasing subsequence of length n that does not have a_{1}.

$$
\begin{gathered}
a_{2}>a_{i_{2}}>a_{i_{3}}>\cdots>a_{i_{n}} \\
1>i_{2}>i_{3}>\cdots>i_{n}
\end{gathered}
$$

End of Proof of Claim 3

(d) Player II plays a_{4} such that $a_{3}<a_{1}<a_{2}<a_{4}$. If $n=4$ then Player I plays $a_{5}>a_{4}$ and wins via $a_{1}<a_{2}<a_{4}<a_{5}$. If $n \geq 5$ then Player I plays a_{5} such that

$$
a_{3}<a_{5}<a_{1}<a_{2}<a_{4} .
$$

Claim 4: At the end of the game there will be an n-mono-subseq that does not contain a_{3}.

Proof of Claim 4:

If a_{3} is in an increasing subsequence then that subsequence looks either like

$$
\begin{gathered}
a_{3}<a_{i_{2}}<a_{i_{3}}<\cdots<a_{i_{n}} \\
1<i_{2}<i_{3}<\cdots<i_{n}
\end{gathered}
$$

where $i_{2} \geq 4$
Hence the following is an increasing subsequence of length n that does not have a_{3}.

$$
a_{1}<a_{2}<a_{i_{3}}<\cdots a_{i_{4}}
$$

If a_{3} is in a decreasing subsequence then that subsequence looks like

$$
\begin{gathered}
a_{i_{1}}>a_{3}>a_{i_{3}}>\cdots>a_{i_{n}} \\
i_{1}<3<i_{3}<\cdots<i_{n}
\end{gathered}
$$

where $i_{3} \geq 6$.
Hence we have the following decreasing subsequence of length n that does not have a_{3}.

$$
a_{1_{1}}>a_{5}>a_{i_{3}}>\cdots>a_{i_{n}}
$$

End of Proof of Claim 4

