The Monotone Sequence Game Exposition by Gasarch

1 Introduction

This is a writeup of some of the material in [?].

Recall the following theorem. For six proofs of this theorem see [?]. BILL- ADD HTTP SITE TO THE REF.

Def 1.1 Let $n \ge 1$. Let L be any linear order. Let $\vec{a} \in L^*$. A monotonic sub sequence of \vec{a} of length n (henceforth n-mono-subseq) is a sub sequence that is either increasing or decreasing.

Theorem 1.2 Let $n \ge 1$. Let L be any linear order with at least $(n-1)^2 + 1$ elements. Let \vec{a} be a sequence of at least $(n-1)^2 + 1$ distinct elements from L. Then either there exists an n-mono-subseq.

This theorem inspires the following game.

Def 1.3 Let $n \ge 1$. Let L be a linear order.

- 1. Let G(L, n) be the following game. Players I and II alternate play with I going first. In each turn a Player picks an element of L that has not been picked before. The picks forms a sequence. The first Player to complete an *n*-mono-subseq wins. If L is finite and all of the numbers are chosen without a winner, then the game is a tie.
- 2. Let $\vec{a} \in L^*$. Let $GAL(L, n, \vec{a})$ be the game that is just like GAL(L, n) but it starts with position \vec{a} . Player I has the first move iff $|\vec{a}|$ is even. Note that if \vec{a} is the empty vector then we recover GAL(L, n).

Def 1.4 Let $n \ge 1$. Let L be a linear order. Let $\vec{a} \in L^*$.

 $WIN(L, n, \vec{a}) = \begin{cases} I & \text{if Player I has a winning strategy for the game } G(L, n, \vec{a}) ; \\ II & \text{if Player II has a winning strategy for the game } G(L, n, \vec{a}) ; \\ T & \text{if neither Player has a winning strategy for the game } G(L, n, \vec{a}) . \end{cases}$ (1)

Note that if $WIN(L, n, \vec{a}) = T$ and both Players play perfectly then the game is a TIE.

Notation 1.5 WIN(L, n) is $WIN(L, n, \lambda)$ where λ is the empty vector.

Theorem 1.6 Let L be a linear order such that $|L| \ge (n-1)^2 + 1$. Then $WIN(L,n) \ne T$.

Proof: This follows from Theorem 1.2.

Def 1.7 If $N \in \mathbb{N}$ then L_N is the ordering $1 < 2 < \cdots < N$. As usual Z is the integers N is the naturals, Q is the rationals. These are all ordered sets.

Note 1.8 By Theorem 1.6 $W(L_{(n-1)^2+1}, n) \neq T$. The following question is open and interesting: Given n, what is the least m such that $W(L_m, n) \neq T$?

We show the following.

Def 1.9

1. For all $N \in \mathbb{N}$ there exists $n_0 \in \mathbb{N}$ and $J \in \{I, II\}$ such that

$$(\forall n \ge n_0)[WIN(L_N, n) = J].$$

2. For all $n \ge 4$, WIN(Q, n) = I.

2 Useful Definitions and Lemmas

Def 2.1 Let L be a linear order.

- 1. A function $f: L \to L$ is an order preserving bijection if f is a bijection and, for all $x < y \in L$, f(x) < f(y).
- 2. A function $f: L \to L$ is an order investing bijection if f is a bijection and, for all $x < y \in L$, f(x) > f(y).

3 $WIN(L_N, n)$

4 WIN(Q, n)

We leave the following easy theorem as an exercise.

Theorem 4.1 W(Q, 1) = I, W(Q, 2) = II, W(Q, 3) = I.

Lemma 4.2 Assume the following are true. Let $\vec{a} \in Q^*$ and $n \in N$. Let a_i be the *i*th element of \vec{a} . Let \vec{a} be \vec{a} with a_i removed.

- 1. $W(L, n, \vec{a}) = II$.
- 2. $W(L, n, \vec{a}) = II.$
- 3. At the end of the game $W(L, n, \vec{a})$ there is an n-mono-subseq that does not contain a_i .

Then $W(L, n, \vec{a}) = I$. (This yields a contradiction.)

Theorem 4.3 For all $n \ge 4$, $W(\mathbf{Q}, n) = I$.

Proof: By Theorem 1.6 one of the two Players has a winning strategy. Assume, by way of contradiction, that *II* has a winning strategy. We give a strategy for Player I such that, if Player II plays his winning strategy, Player I wins.

Winning strategy for Player I

- 1. On the first move Player I plays a_1 (the value of a_1 does not matter).
- 2. Player II's plays a_2 . We assume that $a_1 < a_2$. (If $a_2 < a_1$ then a similar strategy works.)
- 3. Player I plays $a_3 < a_1 < a_2$.
- 4. There are four cases depending on what Player II does.

(a) Player II plays $a_4 < a_3 < a_1 < a_2$. If n = 4 then Player I plays $a_5 < a_4$ to form $a_1 > a_2 > a_4 > a_5$ and win. If $n \ge 5$ then Player I plays a_5 such that

$$a_4 < a_3 < a_5 < a_1 < a_2.$$

We show that the premises of Lemma 4.2 hold. Let $\vec{a} = (a_1, a_2, a_3, a_4, a_5)$ and i = 1. Since Player II was playing a winning strategy $WIN(L, n, \vec{a}) = II$. Look at $\vec{a} = (a_2, a_3, a_4, a_5)$. Note that

$$a_4 < a_3 < a_5 < a_2.$$

Claim 1: At the end of the game there will be an *n*-mono-subseq that does not contain a_1 .

Proof of Claim 1:

If a_1 is in an increasing subsequence then that subsequence looks like

$$a_1 < a_{i_2} < a_{i_3} < \dots < a_{i_n}$$

 $1 < i_2 < i_3 < \dots < i_n$

where $i_2 \geq 2$ and $i_3 \geq 6$. Hence the following is an increasing subsequence of length *n* that does not contain a_1 .

$$a_3 < a_5 < a_{i_3} < \cdots < a_{i_n}$$
.

If a_1 is in a decreasing subsequence then that subsequence looks like

$$a_1 > a_{i_2} > a_{i_3} > a_{i_4} > \dots > a_{i_n}$$

where $i_2 \geq 3$. Hence the following is a decreasing subsequence of length *n* that does not contain a_1 .

$$a_2 > a_{i_2} > a_{i_3} > a_{i_4} > \dots > a_{i_n}$$

End of Proof of Claim 1

(b) Player II plays a_4 such that $a_3 < a_4 < a_1 < a_2$. Claim 2: At the end of the game there will be an *n*-mono-subseq that does not contain a_1 .

Proof of Claim 2:

If a_1 is in an increasing subsequence then that subsequence looks like:

$$a_1 < a_{i_2} < a_{i_3} < \dots < a_{i_n}$$

 $1 < i_2 < i_3 < \dots < i_n$

where $i_3 \ge 5$. Hence the following is an increasing subsequence of length n that does not have a_1 .

$$a_3 < a_4 < a_{i_3} < \cdots < a_{i_n}$$
.

If a_1 is in a decreasing subsequence then that subsequence looks like:

$$a_1 > a_{i_2} > a_{i_3} > \dots > a_{i_n}$$

 $1 < i_2 < i_3 < \dots < i_n.$

Since $a_2 > a_1$ we know $i_2 \ge 3$. Hence the following is a decreasing subsequence of length n that does not have a_1 .

$$a_2 > a_{i_2} > a_{i_3} > \dots > a_{i_n}$$

End of Proof of Claim 2

(c) Player II plays a_4 such that $a_3 < a_1 < a_4 < a_2$.

Claim 3: At the end of the game there will be an *n*-mono-subseq that does not contain a_1 .

Proof of Claim 3:

If a_1 is in an increasing subsequence then that subsequence looks either like

$$a_1 < a_{i_2} < a_{i_3} < \dots < a_{i_n}$$

$$1 < i_2 < i_3 < \dots < i_n$$

where $i_3 \ge 5$

Hence the following is an increasing subsequence of length n that does not have a_1 .

$$a_3 < a_4 < a_{i_3} < \cdots a_{i_4}$$
.

If a_1 is in a decreasing subsequence then that subsequence looks like

$$a_1 > a_{i_2} > a_{i_3} > \cdots > a_{i_n}$$

where $i_2 \geq 3$.

Hence we have the following decreasing subsequence of length n that does not have a_1 .

$$a_2 > a_{i_2} > a_{i_3} > \dots > a_{i_n}$$

 $1 > i_2 > i_3 > \dots > i_n$

End of Proof of Claim 3

(d) Player II plays a_4 such that $a_3 < a_1 < a_2 < a_4$. If n = 4 then Player I plays $a_5 > a_4$ and wins via $a_1 < a_2 < a_4 < a_5$. If $n \ge 5$ then Player I plays a_5 such that

$$a_3 < a_5 < a_1 < a_2 < a_4.$$

Claim 4: At the end of the game there will be an *n*-mono-subseq that does not contain a_3 .

Proof of Claim 4:

If a_3 is in an increasing subsequence then that subsequence looks either like

$$a_3 < a_{i_2} < a_{i_3} < \dots < a_{i_n}$$

 $1 < i_2 < i_3 < \dots < i_n$
 6

where $i_2 \ge 4$

Hence the following is an increasing subsequence of length n that does not have a_3 .

$$a_1 < a_2 < a_{i_3} < \cdots a_{i_4}$$

If a_3 is in a decreasing subsequence then that subsequence looks like

$$a_{i_1} > a_3 > a_{i_3} > \dots > a_{i_n}$$

 $i_1 < 3 < i_3 < \dots < i_n$

where $i_3 \ge 6$.

Hence we have the following decreasing subsequence of length n that does not have a_3 .

$$a_{1_1} > a_5 > a_{i_3} > \dots > a_{i_n}$$

End of Proof of Claim 4