
Open Sets are Ramsey
Exposition by William Gasarch

1 Introduction

Notation 1.1 Let a ∈ N.
(
N
a

)
is the set of all a-sized subsets of N.

(
N
ω

)
is the set of all

infinite subsets of N.

Def 1.2 Let a ∈ N. Let COL be a 2-coloring of
(
N
a

)
. H ∈

(
N
ω

)
is homogeneous if there exists

a color c such that every X ∈
(

H
a

)
is colored c. Note that we built into the definition of

homogenous that the set is infinite.

Recall the infinite a-ary Ramsey’s theorem (the 2-color case)

Theorem 1.3 For all a ∈ N, for all 2-colorings of
(
N
a

)
, there exists a homogenous set.

Why stop at a ∈ N? What about the case of a = ω?
IS the following true:

Theorem? For all 2-colorings of
(
N
ω

)
, there exists an infinite homogenous set.

NO. In Section 3 we provide a counterexample. But what if the coloring is well behaved?

Def 1.4

1. A 2-coloring of
(
N
ω

)
is Ramsey if there exists a homogenous set.

2. A subset RED of
(
N
ω

)
is Ramsey if the coloring formed by coloring all elements of

RED, RED, and coloring all other sets BLUE, is homogenous.

3. A subset X of 2(N
ω) is called Ramsey if every A ∈ X is Ramsey.

Convention 1.5 We identify elements of
(
N
ω

)
with elements of {0, 1}ω that have an infinite

number of 1’s.

Def 1.6 Let RED be a subset of
(
N
ω

)
.

1. If σ ∈ {0, 1}∗ then
Oσ = {A | σ � A ∧ (∃∞i)[A[i] = 1]}.

2. RED is a Basic Open Set if it is of the form Oσ. We denote the set of basic open sets
by Σ0 or Π0.
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3. RED is Open if it is a finite or countable union of basic open sets. We denote the set
of open sets by Σ1. Note that the open sets here are the same induced by the metric
d(x, y) = 1

1+i
where i is the least number x and y differ on.

4. RED is Closed if it is the finite or countable intersection of basic open sets. We denote
the set of open sets by Π1. It is easy to show that a set if Closed iff its complement is
open.

5. We define Σα, Πα, and ∆α inductively for all countable ordinals α.

• A set is in Σα if it is the finite or countable union of sets in Π<α.

• A set is in Πα if it is the finite or countable intersection of sets in Σ<α.

• A set is ∆α if it is in both Σα and Πα.

• A set is Borel if there exists an α such that it is in Σα or Πα.

Are their elements of
(
N
ω

)
that are not Borel? Yes, the set of Borel sets is countable. Is

there a nice class of sets that are just barely not Borel? Yes.

Def 1.7 Let GREEN be a subset of
(
N
ω

)
×

(
N
ω

)
.

1. GREEN is a Basic Open Set if it is the set of all pairs of strings with an infinite
number of 1’s in σ1{0, 1}ω × σ2{0, 1}ω. We denote the set of basic open sets by Σ0 or
Π0.

2. Σα, Πα, ∆α, and Borel subsets of
(
N
ω

)
×

(
N
ω

)
are defined similar to Definition 1.6.

3. Let RED be a subset of
(
N
ω

)
. RED is analytic if there exists a Green Borel set

GREEN ⊆
(
N
ω

)
×

(
N
ω

)
such that

RED = {X | (∃Y )[(X, Y ) ∈ GREEN ]}.

It is known that there are analytic sets that are not Borel.
In Section 4 we show that open sets are Ramsey. Galvin and Prikry [2] first proved

this. Actually they proved something stronger: that every Borel Set is Ramsey. More is
known: Silver [5] showed that all Analytic sets are Ramsey. Ellentuck [1] and Tanaka [7]
have alternative proofs.

2 Examples

We will break with mathematical tradition and give some examples.

Example 2.1
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1.
RED = {x | x(1)x(2)x(3)x(4)x(5) = 00110}.

RED is a basic open set. RED is Ramsey since the following is a BLUE-homoegenous
set:

{x | x(1)x(2)x(3)x(4)x(5) = 00000}.

There are no RED-homogenous sets.

2.
RED = {x | (∃i)[i ∈ x ∧ i is prime ]}.

RED is an open set as it is the union over all primes p of

{x | 0p−11 � x}.

RED is Ramsey:

• The following set is RED-homogenous: THE PRIMES.

• The following set is BLUE-homogenous: THE NONPRIMES.

(Prime can be replaced with any infinite subset of N and everything said here still
holds.)

3.
RED = {x | (∀i)[i ∈ x =⇒ i is prime ]}.

Complement is
{x | (∃i)[i ∈ x =⇒ i is not prime ]}.

By the above item RED is open, so RED is closed.

4.
RED = {x | (∃∞i)[i ∈ x ∧ i is prime ]}.

First let
REDn = {x | (∃ at least ni)[i ∈ x ∧ i is prime ]}.

REDn is open as it is the union as σ has ≥ n primes in it of Oσ. So REDn is Σ1.
Hence the intersection of all of the REDn is Π2. This is RED. RED is Ramsey:

• The following set is RED-homogenous: THE PRIMES.

• The following set is BLUE-homogenous: THE NONPRIMES.

(Prime can be replaced with any infinite subset of N and everything said here still
holds.)

3



5. Let x ∈ {0, 1}ω. Let RED = {x}. So RED is a singleton set. RED is closed (or Π1)
since

RED =
⋂
σ�x

Oσ.

RED is Ramsey- let H be any proper infinite subset of x. It is a BLUE-homoegenous
set. There are no RED-homogenous sets.

6. Let RED be a countable union of elements of {0, 1}∗. Using the above item RED is
a countable union of closed sets (Π1 sets) and hence RED is Σ2. One can show that
RED is Ramsey by constructing a BLUE homogenous set via diagonziation.

7.
RED = {x | (∃∞i)[x[i] = 1 ∧ (∀1 ≤ j ≤ i)[x[i + j] = 0] ∧ x[2i + 1] = 1}.

So there are an infinitely number of blocks that have x[i] = 1 and then have i 0’s and
then a 1. Let

REDn = {x | (∃ at least n i)[x[i] = 1 ∧ (∀1 ≤ j ≤ i)[x[i + j] = 0] ∧ x[2i + 1] = 1}.

REDn is open. RED is the intersection of the REDn and hence is Π2.

3 The Counter Example

We first do a counterexample to a different theorem that is instructive.

Theorem 3.1 There exists a 2-coloring of
(
N
2

)
that has no computable homogenous set.

(Note that we do not keep track of how complicated the 2-coloring is.)

Proof:
List out all of the computable 0-1 valued on one variable:

f1, f2, . . . ,

We construct a coloring COL to satisfy the following requirements:

For all e < ω:
Re: if (∃∞i)[fe(i) = 1] then fe is not an indicator function for a homog set.

We color in stages. By state e < ω we will color at most 2e pairs.
Construction:
Stage e. We satisfy Re. If (∃∞w)[fe(w) = 1] then do the following, else goto the next stage.
Let x, y, z be natural numbers such that
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• fe(x) = fe(y) = fe(z) = 1,

• COL(x, y) is not yet defined, and

• COL(x, z) is not yet defined.

(We later show that such exists.) We define COL(x, y) = RED and COL(x, z) = BLUE.
Now fe cannot be the indicator function for a homogenous set.

We need to show that such x, y, z exist. Let

W = {i | fe(i) = 1}.

KEY: By state e we will have only defined COL on a finite number of elements of
(
N
2

)
(at

most 2e). Since W is infinite there will exist x, y, z ∈ W such that COL(x, y), COL(x, z)
are not defined. Hence x, y, z exist.

State ω: For all x, y such that COL(x, y) is not defined, we define it to be RED.
End of Construction

By comments made in the proof, the construction works.
The KEY to the proof was that there are only a countable number of requirements and,

at every stage e < ω, only a finite number of edges have been colored. The proof above would
work with any countable number of functions you want to not have as indicator functions
for homogenous sets. What if there is an uncountable number of functions that you want to
not have as indicator functions of homogenous sets? The proof would not go through since
by stage α where α is uncountable you would have already colored all of the edges. This is
a good thing— if the proof did go through you would have disproved Ramsey’s Theorem.

Note 3.2 Specker [6] (see also [3, 4] has shown that there is a computable coloring with no
computable homogenous set.

Theorem 3.3 There exists a 2-coloring of
(
N
ω

)
that has no homogenous set.

Proof:
List out all of the infinite subsets of N via their indicator functions.

f1, f2, . . . ,

The . . . is tricky. Let α be the least ordinal of cardinality 2ℵ0 . We index the fe by all
ordinals < α (this requires the Axiom of Choice). Note that for any β < α there are LESS
THAN 2ℵ0 functions in the set {fγ | γ ≤ β}.

We construct a coloring COL to satisfy the following requirements:

For all γ < α

5



Rγ: if (∃∞i)[fγ(i) = 1] then fγ is not an indicator function for a homog set.

Stage γ. We satisfy Rγ. If (∃∞w)[fγ(w) = 1] then do the following, else goto the next stage.
Let X, Y, Z ∈

(
N
ω

)
be disjoint sets such that

• for all x ∈ X, y ∈ Y , z ∈ Z, fγ(x) = fγ(y) = fγ(z) = 1,

• COL(X ∪ Y ) is not yet defined, and

• COL(X ∪ Z) is not yet defined.

(We later show that such X, Y, Z exists.)
We define COL(X ∪ Y ) = RED and COL(X ∪ Z) = BLUE. Now fγ cannot be the

indicator function for a homogenous set.
We need to show that such X, Y, Z exist. Let

W = {i | fγ(i) = 1}.

KEY: By state γ we will have only defined COL on < 2ℵ0 elements of
(
N
ω

)
. Since W is

infinite there will exist X, Y ⊆ω W such that COL(X ∪ Y ), COL(X ∪ Z) are not defined.
Hence X, Y, Z exist.

State α: For all X such that COL(X) is not defined, we define it to be RED.
End of Construction

Note 3.4 The proof of Theorem 3.3 used the Axiom of Choice. What happens if the Axiom
of Determinacy is used instead? Is the theorem false? Are all sets Ramsey? We believe
these questions are open.

4 Ramsey’s Theorem is True for Open Colorings

Our goal is to show that if COL is a 2-coloring of
(
N
ω

)
where RED is an open set then there

exists an infinite homogenous set.
For this section coloring means a 2-coloring of

(
N
ω

)
. We won’t need to use that RED is

open until the very end.

Def 4.1 Let COL be a coloring. Let X be a finite subset of N. Let M, N be an infinite
subset of N.

1. X < M means that max(X) < min(M). So every element of M is bigger than every
element of X.

2. N ⊆ω M means that N is an infinite subset of M .
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3. M loves X if, for all N ⊆ω M −X, COL(X ∪N) = RED.

4. M hates X if (∀N ⊆ω M −X)(∃N ′ ⊆ω N)[COL(X ∪N ′) = BLUE].

Note 4.2 It is quite possible to have an M and an X such that M neither loves nor hates
X.

Lemma 4.3 Let COL be a coloring. If M loves X then any subset of M loves X. If M
hates X then any subset of M hates X.

Examples

1. RED = all sets that contain all of the evens.

M = {x | s ≥ 100 ∧ x is prime}.
X = {2, 4, 6, 8}.
Does M love X? NO: N = M−{101} is a subset of M−X such that N ∪X is BLUE.

Does M hate X? YES: If N ⊆ω M −X then N ∪X is BLUE.

Note: M hates ∅.

2. RED = all sets that contain all of the evens.

M = {x | x ≡ 0 (mod 2) ∧ x ≥ 100}.
X = {2, 4, 6, 8, . . . , 98, 100, 102, 104}.
Does M love X? NO: N = M − {100, 102, 104, 106} is a subset of M −X such that
N ∪X is BLUE.

Does M hate X? YES: every proper N ⊆ω M −X will have N ∪X BLUE.

Note: M hates ∅.

3. RED = all sets that contain an infinite number of evens

M = {x | x ≡ 0 (mod 2) ∧ x ≥ 100}.
X = {2, 4, 6, 8, . . . , 98, 100, 102, 104}.
Does M love X? YES: if N ⊆ω M − X then X ∪ X will have an infinite number of
evens, so its RED.

Note: M loves ∅.
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4. RED = all sets that contain an infinite number of evens

M = {x | x ≡ 0 (mod 2) ∧ x ≥ 100}.
X = {1, 3, 5, 6}.
Does M love X? YES: if N ⊆ω M − X then X ∪ X will have an infinite number of
evens, so its RED.

Note: M loves ∅.

5. RED = all sets that contain an infinite number of evens

M = {x | x ≡ 0 (mod 2) ∧ x ≥ 100} ∪ {x | x ≡ 0 (mod 3) ∧ x ≥ 100}.
X = {2, 4, 6, 8, . . . , 98, 100, 102, 104}.
Does M love X? NO: Take N to be all numbers ≥ 100 that are ≡ 3 (mod 6). N ⊆ω

ODD so N is BLUE. This set has all odds in it so its BLUE.

Does M hate X? NO: Take N to be all numbers ≥ 100 that are ≡ 0 (mod 2). All
subsets of this set are RED.

Note: M has a subset that loves the empty set: the set of evens ≥ 100.

6. RED = all sets such that if a number is IN then the successor is OUT.

M = {x | x ≡ 0 (mod 2)}.
X = {1, 3, 9}.
M loves X: Its KEY that we are taking N ⊆ω M − X so we can’t have 2 ∈ N and
hence cannot have 1, 2 ∈ X ∪N .

Note: M loves ∅.

7. RED = all sets that contain an infinite number of evens

M = {x | x ≡ 0 (mod 2) ∧ x ≥ 100} ∪ {x | x ≡ 0 (mod 3) ∧ x ≥ 100}.
X = {2, 3}.
M does NOT love X since every set that contains X is BLUE

M hates X.

End of Examples
For the rest of this section we fix a coloring COL. Love and Hate will be

defined relative to COL. We will only in the very last theorem put a condition
on COL.

Lemma 4.4 Let X be finite. For all M > X, M infinite,

• there exists M ′ ⊆ω M −X such that M ′ loves X, or

• there exists M ′ ⊆ω M −X such that M ′ hates X.

8



Proof: There are two cases.

1. There exists N ⊆ω M −X such that for all M ′′ ⊆ω N , COL(X ∪M ′′) = RED. Then
just M ′ = N . Note that this case can be written as

(∃N ⊆ω M −X)(∀M ′′ ⊆ω N)[COL(X ∪M ′′) = RED].

2. For all N ⊆ω M −X there exists M ′′ ⊆ω N such that COL(X ∪M ′′) = BLUE. This
is the very definition of M hates X so take M ′ = M .

Lemma 4.5 There exists an infinite set M such that, for all finite X ⊆ M , either M loves
X or M hates X.

Proof:
If M is an infinite set and X is a finite set then let L(M, X) be the infinite set that

results from applying Lemma 4.4.

M0 = N
M1 = L(M0, ∅)
a1 = the least element of M1

M2 = L(M1, {a1})
a2 = the least element of M2

We need to do the L-operator to BOTH {a1, a2} and {a2}. (We do not need to do the
L-operator with {a1} because all later subsets already love or hate {a1} by Lemma 4.3.) We
will not define a new a3 until we are done. To avoid too much notation we will reuse M3.
We write this in a way so it will generalize.

M3 = M2

M3 = L(M3, ∅ ∪ {a2})
M3 = L(M3, {a1} ∪ {a2})
a3 = the least element of M3

Now the general case. Assume that Mn−1, a1, . . . , an−1, an are defined. Let Y1, . . . , Y2n−1

be all subsets of {a1, . . . , an−1}.

Mn = Mn−1

Mn = L(Mn, Y1 ∪ {an})
Mn = L(Mn, Y2 ∪ {an})

... =
...

Mn = L(Mn, Y2n−1 ∪ {an})
an+1 = the least element of Mn
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Let M = {a1, a2, a3, . . .}. We show that this works. Let X be a finite subset of M . Let
an be the max element of X. When Mn was defined Mn either hated of loved X. Note that
M ⊆ω Mn. By Lemma 4.3 M will either love or hate X.

Lemma 4.6 Let M be the set from Lemma 4.5. Let X be finite such that X ⊆ M . If M
hates X then, for almost all n ∈ M , M hates X ∪ {n}.
Proof: Let

N = {n | n ∈ M ∧M loves X ∪ {n}}.
We show that N is finite. Since for all n M either hates or loves X ∪ {n} we obtain the
lemma.

Assume, by way of contradiction, that N is infinite. Note that N ⊆ω M . We show that
EVERY N ′ ⊆ω N is such that COL(X ∪N ′) = RED. This will contradict M hating X.

Let n be the least element of N ′ and N ′′ = N ′−{n}. Note that X ∪N ′ = (X ∪{n})∪N ′′

Since n ∈ N , M loves X ∪ {n}. Hence

COL(X ∪N ′) = COL((X ∪ {n}) ∪N ′′) = RED.

Lemma 4.7 Let M be the set from Lemma 4.5. If M hates ∅ then there exists N ⊆ω M
such that N hates every finite subset of itself.

Proof: Assume that M hates ∅. By Lemma 4.6 there exists a1 ∈ M such that M hates
{a1}.

Assume that a1, . . . , an−1 ∈ M are defined such that M hates all subsets of {a1, . . . , an−1}.
By Lemma 4.6 (applied 2n−1 times) there exists an ∈ M such that M hates all subsets of
{a1, . . . , an}.

Let N = {a1, a2, . . . , }. Since M hates every finite subset of N , and N ⊆ M , by
Lemma 4.3 N hates every subset of N .

Theorem 4.8 If RED is an open set then there exists an infinite homogenous set.

Proof:
Let M be the set constructed in Lemma 4.5. If M loves ∅ then M is a homogenous set

(since every subset of it is RED). If not, then by Lemma 4.7, there exists a infinite set N
that hates every subset of itself.

We show that every infinite subset of N is BLUE. Assume, by way of contradiction,
that some N ′ ⊆ω N was RED. Since the RED is an open set there exists σ such that

• σ is an initial segment of N ′

• Every set with initial segment σ is RED. Hence every subset of N ′ that includes σ is
RED.

Let X be the finite set coded by σ. Every subset of N ′ that includes X is RED. This
contradicts N hating X.
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5 Are there any Interesting Examples?

In this section we look at particular open sets (which we will call RED) and see what the
homogenous set is. None of them seem to need the full strength of the proof of the theorem.
We would like to see either an interesting open set that uses the full strength of the theorem,
or an easier proof.

Let A ⊆ {0, 1}∗ and

RED =
⋃
σ∈A

σ{0, 1}ω.

We look at a variety of types of sets A.
Examples
1) (∃n)(∀σ ∈ A)[σ(n) = 1].

So every RED set has n. Just let The set H = N − {n} is homogenous BLUE. There
are no RED homogeneous sets: If H is an infinite subsets then H − {n} is BLUE.

2) (∀σ ∈ A)(∃i ∈ N)[σ(i)σ(i + 1) = 11].
So every RED set has two consecutive numbers in it. The set H = EV EN is homogenous

BLUE. There are no RED homogeneous sets: If H is an infinite subsets then one can
carefully remove elements so that there are never two in a row (but there are still an infinite
number).

3) (∃X ⊆ N)(∀σ ∈ A)(∃i ∈ X)[0i1 � σ].
As an example let X be the primes. We are saying that every set in A has as its first

elements some primes. The set H = X is homogenous RED. No matter how many elements
you remove it will still have as its first element some element of X The set H = X is
homogenous BLUE for the same reason.
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