## Showing that a Propositional Logic is Incomplete

## 1 Kleene's System

Kleene proposed the following set of axioms and rule of inference for Propositional Logic. AXIOMS

For any formulas $p, q, r$ the following are axioms.

1. $p \Rightarrow(q \Rightarrow p)$.
2. $(p \Rightarrow(q \Rightarrow r)) \Rightarrow((p \Rightarrow q) \Rightarrow(p \Rightarrow r))$.
3. $(p \wedge q) \Rightarrow p$.
4. $(p \wedge q) \Rightarrow q$.
5. $p \Rightarrow(q \Rightarrow(p \wedge q))$.
6. $p \Rightarrow(p \vee q)$.
7. $q \Rightarrow(p \vee q)$.
8. $(p \Rightarrow q) \Rightarrow((r \Rightarrow q) \Rightarrow((p \vee r) \Rightarrow q))$.
9. $(p \Rightarrow q) \Rightarrow((p \Rightarrow \neg q) \Rightarrow(\neg p))$.
10. $\neg \neg p \Rightarrow p$

## RULES OF INFERENCE

Modus Ponens. That is, if you have $p \Rightarrow q$ and $p$ then you get $q$.
COMPLETENESS It is known that Kleene's system is complete - any tautology is provable.

## 2 Heyting's System

Heyting was an intuitionist. Roughly speaking this means that he didn't believe that ( $p \vee \neg p$ ) is true.

Hence he wanted a system that was NOT complete. He wanted a system where you COULD NOT prove $(p \vee \neg p)$.

His system is just like Kleene's except that he replaced the last axiom with $\neg p \Rightarrow(p \Rightarrow q)$.

## 3 How to Prove Incompleteness?

We will show that Heyting's system cannot prove $(p \vee \neg p)$ by using INVARIANTS- we will show that the AXIOMS have a certain property, the Rules of inference preserve that property but the statement $(p \vee \neg p)$ does not have that property.

Def 3.1 We define truth tables for $\wedge, \vee, \neg$ that allow the truth values $0, \frac{1}{2}, 1$.

1. $p \wedge q$ evaluates to $\min \{p, q\}$.
2. $p \vee q$ evaluates to $\max \{p, q\}$.
3. $\neg p$ evalutes to $1-p$.
4. $p \Rightarrow q$ is evaluated by the following table which is a natural extrapolation of the usual rules.

| $p$ | $q$ | $p \Rightarrow q$ |
| :---: | :---: | :---: |
| - | - | - |
| 0 | 0 | 1 |
| 0 | $\frac{1}{2}$ | 1 |
| 0 | 1 | 1 |
| $\frac{1}{2}$ | 0 | $\frac{1}{2}$ |
| $\frac{1}{2}$ | $\frac{1}{2}$ | 1 |
| $\frac{1}{2}$ | 1 | 1 |
| 1 | 0 | 0 |
| 1 | $\frac{1}{2}$ | $\frac{1}{2}$ |
| 1 | 1 | 1 |

Def 3.2 A formula is a taut ${ }^{+}+$if, for any truth setting of 0 's, $\frac{1}{2}$ 's, and 1 's, we get 1 .

## Theorem 3.3

1. All of the axioms of Heyting's system are taut ${ }^{+}$.
2. If $p$ is $a$ taut $^{+}$and $p \Rightarrow q$ is $a$ taut $^{+}$then $q$ is $a$ taut $^{+}$(so Modus Ponens preserves taut $\left.{ }^{+}\right)$.
3. $(p \vee \neg p)$ is not $a$ taut ${ }^{+}$.
4. $(p \vee \neg p)$ cannot be derived in Heyting's system.

## Proof:

1) This is a case analysis which we defer to the next section.
2) Assume $p$ is a taut ${ }^{+}$and $p \Rightarrow q$ is a taut ${ }^{+}$. We assume that $p, q$ use the same set of vars. We show that $q$ is a taut ${ }^{+}$. Let $s$ be any setting of the vars in $q$ to $\left\{0, \frac{1}{2}, 1\right\}$. Under this setting $p$ evaluates to 1 and $p \Rightarrow q$ evaluates to 1 . Since $p \Rightarrow q$ evaluates to 1 we must have $p \leq q$. Since $p$ evaluates to $1, q$ evaluates to 1 .
3) In $(p \vee \neg p)$ look at the setting $p=\frac{1}{2}$. Then $\neg p$ evaluates to $\frac{1}{2}$, and the $\vee$ of two $\frac{1}{2}$ is $\frac{1}{2}$. Hence there is a setting where $(p \vee \neg p)$ evaluates to $\frac{1}{2} \neq 1$.
4) Since all of the axioms are taut ${ }^{+}$and Modus Ponens preserves this, any formula that can be derived is a tautalogy+. Since $(p \vee \neg p)$ is not a taut ${ }^{+}$, it cannot be derived.

## 4 The Axioms are taut ${ }^{+}$

We show each axioms is a taut+ by trying to find a setting where it evaluates to 0 or $\frac{1}{2}$ and failing. The case where if evaluates to $\frac{1}{2}$ often splits into two cases since there are 2 ways that $(p \Rightarrow q)$ can evaluate to $\frac{1}{2}$.

Often we will find we are forced to have the variables be in $\{0,1\}$. In this case we will stop since it is already known that the axioms are tautologies in the usual sense.

1. $(q \Rightarrow(p \Rightarrow q))$
(a) Evaluates to 0 . Then $q=1$ and $(p \Rightarrow q)=0$. Hence $p=1$ and $q=0$, so $p, q \in\{0,1\}$.
(b) Evaluates to $\frac{1}{2}$. There are two cases.
i. $q=\frac{1}{2}$ and $(p \Rightarrow q)=0$. Since $(p \Rightarrow q)=0$ we have $q=0$ which contradicts $q=\frac{1}{2}$ )
ii. $q=1$ and $(p \Rightarrow q)=\frac{1}{2}$ In order for $(p \Rightarrow q)=\frac{1}{2}$ you must have $q \in\left\{0, \frac{1}{2}\right\}$, which contradicts $q=1$.
2. $(p \Rightarrow(q \Rightarrow r)) \Rightarrow((p \Rightarrow q) \Rightarrow(p \Rightarrow r))$.
(a) Evaluates to 0. Then $((p \Rightarrow q) \Rightarrow(p \Rightarrow r))=0$. Hence $(p \Rightarrow r)=0$. Hence $p=1$ and $r=0$. Since the expression evaluates to 1 we must have $(p \Rightarrow(q \Rightarrow r))=1$. Since $p=1$ we must have $(q \Rightarrow r)=1$. Since $r=0$ we must have $q=0$. We have $p, q, r \in\{0,1\}$.
(b) Evaulates to $\frac{1}{2}$. There are two cases.
i. $(p \Rightarrow(q \Rightarrow r))=\frac{1}{2}$ and $((p \Rightarrow q) \Rightarrow(p \Rightarrow r))=0$. The later forces $p=1$, $r=0$, and from $p=1$ we get $q=1$. We have $p, q, r \in\{0,1\}$.
ii. $(p \Rightarrow(q \Rightarrow r))=1$ and $((p \Rightarrow q) \Rightarrow(p \Rightarrow r))=\frac{1}{2}$. We have two cases based on why $((p \Rightarrow q) \Rightarrow(p \Rightarrow r))=\frac{1}{2}$.
A. $(p \Rightarrow q)=\frac{1}{2}$ and $(p \Rightarrow r)=0$. The latter implies that $r=0$ and $p=1$. With this, the former implies $q=\frac{1}{2}$. With these values $(p \Rightarrow(q \Rightarrow r))$ is $\left(1 \Rightarrow\left(\frac{1}{2} \Rightarrow 0\right)\right)$ which is $\left(1 \Rightarrow \frac{1}{2}\right)=\frac{1}{2} \neq 1$ So we're done.
B. $(p \Rightarrow q)=1$ and $(p \Rightarrow r)=\frac{1}{2}$. Since $(p \Rightarrow r)=\frac{1}{2}$ we have $p>r$.
(c) $(p \wedge q) \Rightarrow p$.
(d) $(p \wedge q) \Rightarrow q$.
(e) $p \Rightarrow(q \Rightarrow(p \wedge q))$.
(f) $p \Rightarrow(p \vee q)$.
$(\mathrm{g}) ~ q \Rightarrow(p \vee q)$.
(h) $(p \Rightarrow q) \Rightarrow((r \Rightarrow q) \Rightarrow((p \vee r) \Rightarrow q))$.
(i) $(p \Rightarrow q) \Rightarrow((p \Rightarrow \neg q) \Rightarrow(\neg p))$.
