Showing that a Propositional Logic is Incomplete

1 Kleene's System

Kleene proposed the following set of axioms and rule of inference for Propositional Logic. AXIOMS

For any formulas p, q, r the following are axioms.

1.
$$p \Rightarrow (q \Rightarrow p)$$
.
2. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$.
3. $(p \land q) \Rightarrow p$.
4. $(p \land q) \Rightarrow q$.
5. $p \Rightarrow (q \Rightarrow (p \land q))$.
6. $p \Rightarrow (p \lor q)$.
7. $q \Rightarrow (p \lor q)$.
8. $(p \Rightarrow q) \Rightarrow ((r \Rightarrow q) \Rightarrow ((p \lor r) \Rightarrow q))$.
9. $(p \Rightarrow q) \Rightarrow ((p \Rightarrow \neg q) \Rightarrow (\neg p))$.
10. $\neg \neg p \Rightarrow p$

RULES OF INFERENCE

Modus Ponens. That is, if you have $p \Rightarrow q$ and p then you get q. COMPLETENESS It is known that Kleene's system is complete— any tautology is provable.

2 Heyting's System

Heyting was an intuitionist. Roughly speaking this means that he didn't believe that $(p \lor \neg p)$ is true.

Hence he *wanted* a system that was NOT complete. He wanted a system where you COULD NOT prove $(p \lor \neg p)$.

His system is just like Kleene's except that he replaced the last axiom with $\neg p \Rightarrow (p \Rightarrow q)$.

3 How to Prove Incompleteness?

We will show that Heyting's system cannot prove $(p \lor \neg p)$ by using INVARIANTS— we will show that the AXIOMS have a certain property, the Rules of inference preserve that property but the statement $(p \lor \neg p)$ does not have that property.

Def 3.1 We define truth tables for \land, \lor, \neg that allow the truth values $0, \frac{1}{2}, 1$.

- 1. $p \wedge q$ evaluates to min $\{p, q\}$.
- 2. $p \lor q$ evaluates to $\max\{p, q\}$.
- 3. $\neg p$ evalutes to 1 p.
- 4. $p \Rightarrow q$ is evaluated by the following table which is a natural extrapolation of the usual rules.

p	q	$p \Rightarrow q$
_	_	_
0	0	1
0	$\frac{1}{2}$	1
0	1	1
$\frac{1}{2}$	0	$\frac{1}{2}$
$\frac{1}{2}$	$\frac{1}{2}$	$rac{1}{2}$
$\begin{array}{c} 0 \\ 0 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 1 \\ 1 \\ \end{array}$		1
1	0	0
1	$\frac{1}{2}$	$\begin{array}{c} 0\\ \frac{1}{2}\\ 1 \end{array}$
1	$\tilde{1}$	$\tilde{1}$

Def 3.2 A formula is a taut⁺ + if, for any truth setting of 0's, $\frac{1}{2}$'s, and 1's, we get 1.

Theorem 3.3

- 1. All of the axioms of Heyting's system are taut⁺.
- 2. If p is a taut⁺ and $p \Rightarrow q$ is a taut⁺ then q is a taut⁺ (so Modus Ponens preserves taut⁺).
- 3. $(p \lor \neg p)$ is not a taut⁺.
- 4. $(p \lor \neg p)$ cannot be derived in Heyting's system.

Proof:

1) This is a case analysis which we defer to the next section.

2) Assume p is a taut⁺ and $p \Rightarrow q$ is a taut⁺. We assume that p, q use the same set of vars. We show that q is a taut⁺. Let s be any setting of the vars in q to $\{0, \frac{1}{2}, 1\}$. Under this setting p evaluates to 1 and $p \Rightarrow q$ evaluates to 1. Since $p \Rightarrow q$ evaluates to 1 we must have $p \leq q$. Since p evaluates to 1, q evaluates to 1.

3) In $(p \vee \neg p)$ look at the setting $p = \frac{1}{2}$. Then $\neg p$ evaluates to $\frac{1}{2}$, and the \vee of two $\frac{1}{2}$ is $\frac{1}{2}$. Hence there is a setting where $(p \vee \neg p)$ evaluates to $\frac{1}{2} \neq 1$.

4) Since all of the axioms are taut⁺ and Modus Ponens preserves this, any formula that can be derived is a tautalogy+. Since $(p \lor \neg p)$ is not a taut⁺, it cannot be derived.

4 The Axioms are $taut^+$

We show each axioms is a taut+ by trying to find a setting where it evaluates to 0 or $\frac{1}{2}$ and failing. The case where if evaluates to $\frac{1}{2}$ often splits into two cases since there are 2 ways that $(p \Rightarrow q)$ can evaluate to $\frac{1}{2}$.

Often we will find we are forced to have the variables be in $\{0, 1\}$. In this case we will stop since it is already known that the axioms are tautologies in the usual sense.

1. $(q \Rightarrow (p \Rightarrow q))$

- (a) Evaluates to 0. Then q = 1 and $(p \Rightarrow q) = 0$. Hence p = 1 and q = 0, so $p, q \in \{0, 1\}$.
- (b) Evaluates to $\frac{1}{2}$. There are two cases.
 - i. $q = \frac{1}{2}$ and $(p \Rightarrow q) = 0$. Since $(p \Rightarrow q) = 0$ we have q = 0 which contradicts $q = \frac{1}{2}$)
 - ii. q = 1 and $(p \Rightarrow q) = \frac{1}{2}$ In order for $(p \Rightarrow q) = \frac{1}{2}$ you must have $q \in \{0, \frac{1}{2}\}$, which contradicts q = 1.
- $2. \ (p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r)).$
 - (a) Evaluates to 0. Then $((p \Rightarrow q) \Rightarrow (p \Rightarrow r)) = 0$. Hence $(p \Rightarrow r) = 0$. Hence p = 1and r = 0. Since the expression evaluates to 1 we must have $(p \Rightarrow (q \Rightarrow r)) = 1$. Since p = 1 we must have $(q \Rightarrow r) = 1$. Since r = 0 we must have q = 0. We have $p, q, r \in \{0, 1\}$.
 - (b) Evaluates to $\frac{1}{2}$. There are two cases.
 - i. $(p \Rightarrow (q \Rightarrow r)) = \frac{1}{2}$ and $((p \Rightarrow q) \Rightarrow (p \Rightarrow r)) = 0$. The later forces p = 1, r = 0, and from p = 1 we get q = 1. We have $p, q, r \in \{0, 1\}$.
 - ii. $(p \Rightarrow (q \Rightarrow r)) = 1$ and $((p \Rightarrow q) \Rightarrow (p \Rightarrow r)) = \frac{1}{2}$. We have two cases based on why $((p \Rightarrow q) \Rightarrow (p \Rightarrow r)) = \frac{1}{2}$.
 - A. $(p \Rightarrow q) = \frac{1}{2}$ and $(p \Rightarrow r) = 0$. The latter implies that r = 0 and p = 1. With this, the former implies $q = \frac{1}{2}$. With these values $(p \Rightarrow (q \Rightarrow r))$ is $(1 \Rightarrow (\frac{1}{2} \Rightarrow 0))$ which is $(1 \Rightarrow \frac{1}{2}) = \frac{1}{2} \neq 1$ So we're done.

B.
$$(p \Rightarrow q) = 1$$
 and $(p \Rightarrow r) = \frac{1}{2}$. Since $(p \Rightarrow r) = \frac{1}{2}$ we have $p > r$.

- (c) $(p \land q) \Rightarrow p$.
- (d) $(p \land q) \Rightarrow q$.
- (e) $p \Rightarrow (q \Rightarrow (p \land q)).$
- (f) $p \Rightarrow (p \lor q)$.
- (g) $q \Rightarrow (p \lor q)$.
- (h) $(p \Rightarrow q) \Rightarrow ((r \Rightarrow q) \Rightarrow ((p \lor r) \Rightarrow q)).$
- (i) $(p \Rightarrow q) \Rightarrow ((p \Rightarrow \neg q) \Rightarrow (\neg p)).$