A Problem in Combinatorics that is Independent of ZFC by Stephen Fenner and William Gasarch

1 Introduction

There are some statements that are independent of Zermelo-Frankl Set Theory. This indicates that such statements cannot be proven or disproven by conventional mathematics. The Continuum Hypothesis is one such statement (is there a cardinality between that of N and R.) There are few such statements. Many of them require specialized knowledge or are somewhat obscure.

We present a problem in combinatorics that is independent of ZFC. Granted, it is in infinite combinatorics. Nevertheless, we regard this problem as natural. The result is due to Erdös.

2 Rado's Theorem over Z

The following is a known theorem in combinatorics, known as (abridged) Rado's Theorem.
Definition 2.1 $\left(b_{1}, \ldots, b_{n}\right) \in \mathrm{Z}^{n}$ is regular if the following holds: For all c, for all c colorings $C O L: \mathrm{N} \rightarrow[c]$, there exists $e_{1}, \ldots, e_{n} \in \mathrm{~N}$ such that

$$
\begin{gathered}
C O L\left(e_{1}\right)=\cdots=C O L\left(e_{n}\right), \\
\sum_{i=1}^{n} b_{i} e_{i}=0
\end{gathered}
$$

Theorem $2.2\left(b_{1}, \ldots, b_{n}\right)$ is regular iff there exists some nonempty subset of $\left\{b_{1}, \ldots, b_{n}\right\}$ that sums to 0 .

In particular, the following holds:
Corollary 2.3 For all c, for any c-coloring of N , there exists $e_{1}, e_{2}, e_{3}, e_{4}$ such that

$$
\begin{gathered}
C O L\left(e_{1}\right)=C O L\left(e_{2}\right)=C O L\left(e_{3}\right)=C O L\left(e_{4}\right) \\
e_{1}+e_{2}=e_{3}+e_{4}
\end{gathered}
$$

3 Infinite Rado's Theorem

What is we color R? Rado's theorem will still hold since we can just restrict the coloring to N . What if we allow α_{0} colors? We focus on Corollary 2.3

Is the following true?:

For any \aleph_{0}-coloring of the reals, $C O L: \mathrm{R} \rightarrow \mathrm{N}$ there exist distinct $e_{1}, e_{2}, e_{3}, e_{4}$ such that

$$
\begin{gathered}
C O L\left(e_{1}\right)=C O L\left(e_{2}\right)=C O L\left(e_{3}\right)=C O L\left(e_{4}\right) \\
e_{1}+e_{2}=e_{3}+e_{4}
\end{gathered}
$$

It turns out that this question is equivalent to the negation of CH. Komjáth (3) claims that Erdős proved this result. The prove we give is due to Davies (1).

Definition 3.1 The Continuum Hypothesis (CH) is the statement that there is no order of infinity between that of N and R . It is known to be independent of Zermelo-Frankel Set Theory with Choice (ZFC).

Definition $3.2 \omega_{1}$ is the first uncountable ordinal. ω_{2} is the second uncountable ordinal.

Fact 3.3

1. If $C H$ is true, then there is a bijection between R and ω_{1}. This has the counter-intuitive consequence: there is a way to list the reals:

$$
x_{0}, x_{1}, x_{2}, \ldots, x_{\alpha}, \ldots
$$

as $\alpha \in \omega_{1}$ such that, for all $\alpha \in \omega_{1}$, the set $\left\{x_{\beta} \mid \beta<\alpha\right\}$ is countable.
2. If $C H$ is false, then there is an injection from ω_{2} to R . This has the consequence that there is a list of distinct reals:

$$
x_{0}, x_{1}, x_{2}, \ldots, x_{\alpha}, \ldots, x_{\omega_{1}}, x_{\omega_{1}+1}, \ldots, x_{\beta}, \ldots
$$

where $\alpha \in \omega_{1}$ and $\beta \in\left[\omega_{1}, \omega_{2}\right)$.

$4 \quad \mathrm{CH} \Rightarrow$ FALSE

Definition 4.1 Let $X \subseteq \mathrm{R}$. Then $C L(X)$ is the smallest set $Y \supseteq X$ of reals such that

$$
a, b, c \in Y \Rightarrow a+b-c \in Y
$$

Lemma 4.2

1. If X is countable then $C L(X)$ is countable.
2. If $X_{1} \subseteq X_{2}$ then $C L\left(X_{1}\right) \subseteq C L\left(X_{2}\right)$.

Proof:

1) Assume X is countable. $C L(X)$ can be defined with an ω-induction (that is, an induction just through ω).

$$
\begin{aligned}
C_{0} & =X \\
C_{n+1} & =C_{n} \cup\left\{a+b-c \mid a, b, c \in C_{n}\right\}
\end{aligned}
$$

One can easily show that $C L(X)=\cup_{i=0}^{\infty} C_{i}$ and that this set is countable.
2) This is an easy exercise.

Theorem 4.3 Assume CH is true. There exists an \aleph_{0}-coloring of R such that there are no distinct $e_{1}, e_{2}, e_{3}, e_{4}$ such that

$$
\begin{gathered}
C O L\left(e_{1}\right)=C O L\left(e_{2}\right)=C O L\left(e_{3}\right)=C O L\left(e_{4}\right) \\
e_{1}+e_{2}=e_{3}+e_{4}
\end{gathered}
$$

Proof: Since we are assuming CH is true, we have, by Fact 3.3.1, there is a bijection between R and ω_{1}. If $\alpha \in \omega_{1}$ then x_{α} is the real associated to it. We can picture the reals as being listed out via

$$
x_{0}, x_{1}, x_{2}, x_{3}, \ldots, x_{\alpha}, \ldots
$$

where $\alpha<\omega_{1}$.
Note that every number has only countably many numbers less than it in this ordering.
For $\alpha<\omega_{1}$ let

$$
X_{\alpha}=\left\{x_{\beta} \mid \beta<\alpha\right\}
$$

Note the following:

1. For all α, X_{α} is countable.
2. $X_{0} \subset X_{1} \subset X_{2} \subset X_{3} \subset \cdots \subset X_{\alpha} \subset \cdots$
3. $\bigcup_{\alpha<\omega_{1}} X_{\alpha}=\mathrm{R}$.

We define another increasing sequence of sets Y_{α} by letting

$$
Y_{\alpha}=C L\left(X_{\alpha}\right)
$$

Note the following:

1. For all α, Y_{α} is countable. This is from Lemma 4.2.1.
2. $Y_{0} \subset Y_{1} \subset Y_{2} \subset Y_{3} \subset \cdots \subset Y_{\alpha} \subset \cdots$. This is from Lemma 4.2.2.
3. $\bigcup_{\alpha<\omega_{1}} Y_{\alpha}=\mathrm{R}$.

We now define our last sequence of sets:
For all $\alpha<\omega_{1}$,

$$
Z_{\alpha}=Y_{\alpha}-\left(\bigcup_{\beta<\alpha} Y_{\beta}\right)
$$

Note the following:

1. Each Z_{α} is finite or countable.
2. The Z_{α} form a partition of R .

We will now define an \aleph_{0}-coloring of R . For each Z_{α}, which is countable, assign colors from ω to Z_{α} 's elements in some way so that no two elements of Z_{α} have the same color.

Assume, by way of contradiction, that there are distinct $e_{1}, e_{2}, e_{3}, e_{4}$ such that

$$
C O L\left(e_{1}\right)=C O L\left(e_{2}\right)=C O L\left(e_{3}\right)=C O L\left(e_{4}\right)
$$

and

$$
e_{1}+e_{2}=e_{3}+e_{4}
$$

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ be such that $e_{i} \in Z_{\alpha_{i}}$. Since all of the elements in any Z_{α} are colored differently, all of the α_{i} 's are different. We will assume $\alpha_{1}<\alpha_{2}<\alpha_{3}<\alpha_{4}$. The other cases are similar. Note that

$$
e_{4}=e_{1}+e_{2}-e_{3}
$$

and

$$
e_{1}, e_{2}, e_{3} \in Z_{\alpha_{1}} \cup Z_{\alpha_{2}} \cup Z_{\alpha_{3}} \subseteq Y_{\alpha_{1}} \cup Y_{\alpha_{2}} \cup Y_{\alpha_{3}}=Y_{\alpha_{3}}
$$

Since $Y_{\alpha_{3}}=C L\left(X_{\alpha_{3}}\right)$ and $e_{1}, e_{2}, e_{3} \in Y_{\alpha_{3}}$, we have $e_{4} \in Y_{\alpha_{3}}$. Hence $e_{4} \notin Z_{\alpha_{4}}$. This is a contradiction.

What was it about the equation

$$
e_{1}+e_{2}=e_{3}+e_{4}
$$

that made the proof of Theorem 4.3 work? Absolutely nothing:
Theorem 4.4 Let $n \geq 2$. Let $a_{1}, \ldots, a_{n} \in \mathrm{R}$ be nonzero. Assume $C H$ is true. There exists an \aleph_{0}-coloring of R such that there are no distinct e_{1}, \ldots, e_{n} such that

$$
\begin{gathered}
C O L\left(e_{1}\right)=\cdots=C O L\left(e_{n}\right), \\
\sum_{i=1}^{n} a_{i} e_{i}=0
\end{gathered}
$$

Proof sketch: Since this prove is similar to the last one we just sketch it.

Definition 4.5 Let $X \subseteq R . C L(X)$ is the smallest superset of X such that the following holds:

For all $m \in\{1, \ldots, n\}$ and for all $e_{1}, \ldots, e_{m-1}, e_{m+1}, \ldots, e_{n}$,

$$
e_{1}, \ldots, e_{m-1}, e_{m+1}, \ldots, e_{n} \in C L(X) \Rightarrow-\left(1 / a_{m}\right) \sum_{i \in\{1, \ldots, n\}-\{m\}} a_{i} e_{i} \in C L(X)
$$

Let $X_{\alpha}, Y_{\alpha}, Z_{\alpha}$ be defined as in Theorem 4.3 using this new defintion of $C L$. Let $C O L$ be defined as in Theorem 4.3.

Assume, by way of contradiction, that there are distinct e_{1}, \ldots, e_{n} such that

$$
C O L\left(e_{1}\right)=\cdots=C O L\left(e_{n}\right)
$$

and

$$
\sum_{i=1}^{n} a_{i} e_{i}=0
$$

Let $\alpha_{1}, \ldots, \alpha_{n}$ be such that $e_{i} \in Z_{\alpha_{i}}$. Since all of the elements in any Z_{α} are colored differently, all of the α_{i} 's are different. We will assume $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}$. The other cases are similar. Note that

$$
e_{n}=-\left(1 / a_{n}\right) \sum_{i=1}^{n-1} a_{i} e_{i} \in C L(X)
$$

and

$$
e_{1}, \ldots, e_{n-1} \in Z_{\alpha_{1}} \cup \cdots \cup Z_{\alpha_{n-1}} \subseteq Y_{\alpha_{n-1}}
$$

Since $Y_{\alpha_{n-1}}=C L\left(X_{\alpha_{n-1}}\right)$ and $e_{1}, \ldots, e_{n-1} \in Y_{\alpha_{n-1}}$, we have $e_{n} \in Y_{\alpha_{n-1}}$. Hence $e_{n} \notin$ $Z_{\alpha_{n}}$. This is a contradiction.

Note 4.6 For most linear equations, CH is not needed to get a counterexample.

$5 \neg \mathrm{CH} \Rightarrow$ TRUE

Theorem 5.1 Assume $C H$ is false. Let $C O L$ be an \aleph_{0}-coloring of R . There exist distinct $e_{1}, e_{2}, e_{3}, e_{4}$ such that

$$
\begin{gathered}
C O L\left(e_{1}\right)=C O L\left(e_{2}\right)=C O L\left(e_{3}\right)=C O L\left(e_{4}\right) \\
e_{1}+e_{2}=e_{3}+e_{4}
\end{gathered}
$$

Proof: By Fact 3.3 there is an injection of ω_{2} into R. If $\alpha \in \omega_{2}$, then x_{α} is the real associated to it.

Let $C O L$ be an \aleph_{0}-coloring of R . We show that there exist distinct $e_{1}, e_{2}, e_{3}, e_{4}$ of the same color such that $e_{1}+e_{2}=e_{3}+e_{4}$.

We define a map F from ω_{2} to $\omega_{1} \times \omega_{1} \times \omega_{1} \times \omega$.

1. Let $\beta \in \omega_{2}$.
2. Define a map from ω_{1} to ω by

$$
\alpha \mapsto C O L\left(x_{\alpha}+x_{\beta}\right) .
$$

3. Let $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \omega_{1}$ be distinct elements of ω_{1}, and $i \in \omega$, such that $\alpha_{1}, \alpha_{2}, \alpha_{3}$ all map to i. Such $\alpha_{1}, \alpha_{2}, \alpha_{3}, i$ clearly exist since $\aleph_{0}+\aleph_{0}=\aleph_{0}<\aleph_{1}$. (There are \aleph_{1} many elements that map to the same element of ω, but we do not need that.)

4. Map β to $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, i\right)$.

Since F maps a set of cardinality \aleph_{2} to a set of cardinality \aleph_{1}, there exists some element that is mapped to twice by F (actually there is an element that is mapped to \aleph_{2} times, but we do not need this). Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \beta^{\prime}, i$ be such that $\beta \neq \beta^{\prime}$ and

$$
F(\beta)=F\left(\beta^{\prime}\right)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, i\right)
$$

Choose distinct $\alpha, \alpha^{\prime} \in\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ such that $x_{\alpha}-x_{\alpha^{\prime}} \notin\left\{x_{\beta}-x_{\beta^{\prime}}, x_{\beta^{\prime}}-x_{\beta}\right\}$. We can do this because there are at least three possible values for $x_{\alpha}-x_{\alpha^{\prime}}$.

Since $F(\beta)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, i\right)$, we have

$$
C O L\left(x_{\alpha}+x_{\beta}\right)=C O L\left(x_{\alpha^{\prime}}+x_{\beta}\right)=i
$$

Since $F\left(\beta^{\prime}\right)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, i\right)$, we have

$$
\operatorname{COL}\left(x_{\alpha}+x_{\beta^{\prime}}\right)=\operatorname{COL}\left(x_{\alpha^{\prime}}+x_{\beta^{\prime}}\right)=i
$$

Let

$$
\begin{aligned}
e_{1} & =x_{\alpha}+x_{\beta} \\
e_{2} & =x_{\alpha^{\prime}}+x_{\beta^{\prime}} \\
e_{3} & =x_{\alpha^{\prime}}+x_{\beta} \\
e_{4} & =x_{\alpha}+x_{\beta^{\prime}} .
\end{aligned}
$$

Then

$$
C O L\left(e_{1}\right)=C O L\left(e_{2}\right)=C O L\left(e_{3}\right)=C O L\left(e_{4}\right)
$$

and

$$
e_{1}+e_{2}=e_{3}+e_{4}
$$

Since $x_{\alpha} \neq x_{\alpha^{\prime}}$ and $x_{\beta} \neq x_{\beta^{\prime}}$, we have $\left\{e_{1}, e_{2}\right\} \cap\left\{e_{3}, e_{4}\right\}=\emptyset$.
Moreover, the equation $e_{1}=e_{2}$ is equivalent to

$$
x_{\alpha}-x_{\alpha^{\prime}}=x_{\beta^{\prime}}-x_{\beta}
$$

which is ruled out by our choice of α, α^{\prime}, and so $e_{1} \neq e_{2}$.
Similarly, $e_{3} \neq e_{4}$.
Thus $e_{1}, e_{2}, e_{3}, e_{4}$ are all distinct.

Remark. All the results above hold practically verbatim with R replaced by R^{k}, for any fixed integer $k \geq 1$. In this more geometrical context, $e_{1}, e_{2}, e_{3}, e_{4}$ are vectors in k dimensional Euclidean space, and the equation $e_{1}+e_{2}=e_{3}+e_{4}$ says that $e_{1}, e_{2}, e_{3}, e_{4}$ are the vertices of a parallelogram (whose area may be zero).

6 More is Known

To state the generalization of this theorem we need a definition.
Definition 6.1 An equation $E\left(e_{1}, \ldots, e_{n}\right)$ (e.g., $\left.e_{1}+e_{2}=e_{3}+e_{4}\right)$ is regular if the following holds: for all colorings COL: $\mathrm{R} \rightarrow \mathrm{N}$ there exists $\vec{e}=\left(e_{1}, \ldots, e_{n}\right)$ such that

$$
\begin{gathered}
\operatorname{COL}\left(e_{1}\right)=\cdots=\operatorname{COL}\left(e_{n}\right), \\
E\left(e_{1}, \ldots, e_{n}\right),
\end{gathered}
$$

and e_{1}, \ldots, e_{n} are all distinct.
If we combine Theorems 4.3 and 5.1 we obtain the following.
Theorem 6.2 $e_{1}+e_{2}=e_{3}+e_{4}$ is regular iff $2^{\aleph_{0}}>\aleph_{1}$.
Jacob Fox (2) has generalized this to prove the following.
Theorem 6.3 Let $s \in N$. The equation

$$
\begin{equation*}
e_{1}+s e_{2}=e_{3}+\cdots+e_{s+3} \tag{1}
\end{equation*}
$$

is regular iff $2^{\aleph_{0}}>\aleph_{s}$.
Fox's result also holds in higher dimensional Euclidean space, where it relates to the vertices of $(s+1)$-dimensional parallelepipeds. Subtracting $(s+1) e_{2}$ from both sides of (1) and rearranging, we get

$$
e_{1}-e_{2}=\left(e_{3}-e_{2}\right)+\cdots+\left(e_{s+3}-e_{2}\right),
$$

which says that e_{1} and e_{2} are opposite corners of some $(s+1)$-dimensional parallelepiped P where e_{3}, \ldots, e_{s+3} are the corners of P adjacent to e_{2}. Of course, there are other vertices of P besides these, and Fox's proof actually shows that if $2^{\aleph_{0}}>\aleph_{s}$ then all the 2^{s+1} vertices of some such P must have the same color.

7 Acknowledgments

We would like to thank Jacob Fox for references and for writing the paper that pointed us to this material.

References

[1] R. O. Davies. Partioning the plane into denumerably many sets without repeated differences. Proceedings of the Cambridge Philosophical Society, 72:179-183, 1972.
[2] J. Fox. An infinite color analogue of Rado's theorem. www.princeton.edu/~jacobfox/ \sim publications.html.
[3] P. Komjáth. Partitions of vector spaces. Periodica Mathematica Hungarica, 28:187-193, 1994.

