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1 Roth’s Theorem

Notation 1.1 Let [n] = {1, . . . , n}. If k ∈ N then k-AP means an arithmetic progression of size k.

Consider the following statement:
If A ⊆ [n] and #(A) is ‘big’ then A must have a 3-AP.

This statement, made rigorous, is true. In particular, the following is true and easy:
Let n ≥ 3. If A ⊆ [n] and #(A) ≥ 0.7n then A must have a 3-AP.

Can we lower the constant 0.7? We can lower it as far as we like if we allow n to start later:
Roth [3, 4, 5] proved the following using analytic means.

(∀λ > 0)(∃n0 ∈ N)(∀n ≥ n0)(∀A ⊆ [n])[#(A) ≥ λn ⇒ A has a 3-AP].

The analogous theorem for 4-APs was later proven by Szemeredi [3, 6] by a combinatorial proof.
Szemeredi [7] later (with a much harder proof) generalized from 4 to any k.

We prove the k = 3 case using the analytic techniques of Roth; however, we rely heavily on
Gowers [2, 1]

Definition 1.2 Let sz(n) be the least number such that, for all A ⊆ [n], if #(A) ≥ sz(n) then A
has a 3-AP. Note that if A ⊆ [a, a + n − 1] and #(A) ≥ sz(n) then A has a 3-AP. Note also that
if A ⊆ {a, 2a, 3a, . . . , na} and #(A) ≥ sz(n) then A has a 3-AP. More generally, if A is a subset of
any equally spaced set of size n, and #(A) ≥ sz(n), then A has a 3-AP.

2 Sparse Intervals

The next lemma states that if A is ‘big’ and 3-free then it is somewhat uniform. There cannot be
sparse intervals of A. The intuition is that if A has a sparse interval then the rest of A has to be
dense to make up for it, and it might have to be so dense that it has a 3-AP.

Lemma 2.1 Let n, n0 ∈ N;λ, λ0 ∈ (0, 1). Assume λ < λ0 and (∀m ≥ n0)[sz(m) ≤ λ0m]. Let
A ⊆ [n] be a 3-free set such that #(A) ≥ λn. Let a, b be such that a < b, a > n0, and n− b > n0.
Then λ0(b− a)− n(λ0 − λ) ≤ #(A ∩ [a, b]).

Proof:
Since A is 3-free and a ≥ n0 and n − b ≥ n0 we have #(A ∩ [1, a − 1]) < λ0(a − 1) < λ0a and

#(A ∩ [b + 1, n]) < λ0(n− b). Hence

λn ≤ #(A) = #(A ∩ [1, a− 1]) + #(A ∩ [a, b]) + #(A ∩ [b + 1, n])
λn ≤ λ0a + #(A ∩ [a, b]) + λ0(n− b)

λn− λ0n + λ0b− λ0a ≤ #(A ∩ [a, b])
λ0(b− a)− n(λ0 − λ) ≤ #(A ∩ [a, b]).
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3 Notation

Throughout this paper the following hold.

1. n ∈ N is a fixed large prime.

2. Zn = {1, . . . , n} with modular arithmetic.

3. ω = e2πi/n.

4. If a is a complex number then |a| is its length.

5. If A is a set then |A| is its cardinality.

4 Counting 3-AP’s

Lemma 4.1 Let A,B, C ⊆ [n]. The number of (x, y, z) ∈ A×B×C such that x+z ≡ 2y (mod n)
is

1
n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z).

Proof:
We break the sum into two parts:

Part 1:

1
n

∑
x,y,z∈[n],x+z≡2y (mod n)

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z).

Note that we can replace ω−r(x−2y+z) with ω0 = 1. We can then replace
∑n

r=1 1 with n. Hence
we have

1
n

∑
x,y,z∈[n],x+z≡2y (mod n)

A(x)B(y)C(z)n =
∑

x,y,z∈[n],x+z≡2y (mod n)

A(x)B(y)C(z)

This is the number of (x, y, z) ∈ A×B × C such that x + z ≡ 2y (mod n).
Part 2:

1
n

∑
x,y,z∈[n],x+z 6≡2y (mod n)

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z).

We break this sum up depending on what the (nonzero) value of w = x+ z− 2y (mod n). Let

Su =
∑

x,y,z∈[n],x−2y+z=2

A(x)B(y)C(z)
n∑

r=1

ω−ru.

Since u 6= 0,
∑n

r=1 ω−ru =
∑n

r=1 ω−r = 0. Hence Su = 0.
Note that
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1
n

∑
x,y,z∈[n],x+z 6≡2y (mod n)

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z) =
1
n

n−1∑
u=1

Su = 0

The lemma follows from Part 1 and Part 2.

Lemma 4.2 Let A ⊆ [n]. Let B = C = A∩ [n/3, 2n/3]. The number of (x, y, z) ∈ A×B×C such
that x, y, z forms a 3-AP is at least

1
2n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z) −O(n).

Proof: By Lemma 4.1

1
n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z)

is the number of (x, y, z) ∈ A×B ×C such that x + z ≡ 2y (mod n). This counts three types of
triples:

• Those that have x = y = z. There are n/3 of them.

• Those that have x + z = 2y + n. There are O(1) of them.

• Those that have x 6= y, y 6= z, x 6= z, and x + z = 2y.

Hence

#({(x, y, z) : (x+z = 2y)∧x 6= y∧y 6= z∧x 6= z}) =
1
n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z)−O(n).

We are not done yet. Note that (5, 10, 15) may show up as (15, 10, 5). Every triple appears at
most twice. Hence

#({(x, y, z) : (x + z = 2y) ∧ x 6= y ∧ y 6= z ∧ x 6= z})
≤ 2#({(x, y, z) : (x < y < z) ∧ (x + z = 2y) ∧ x 6= y ∧ y 6= z ∧ x 6= z}).
Therefore

1
2n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z)−O(n) ≤ the number of 3-AP’s with x ∈ A, y ∈ B, z ∈ C .

We will need to re-express this sum. For that we will use Fourier Analysis.
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5 Fourier Analysis

Definition 5.1 If f : Zn → N then f̂ : Zn → C is

f̂(r) =
∑
s∈[n]

f(s)ω−rs.

f̂ is called the Fourier Transform of f .

What does f̂ tell us? We look at the case where f is the characteristic function of a set A ⊆ [n].
Henceforth we will use A(x) instead of f(x).

We will need the followng facts.

Lemma 5.2 Let A ⊆ {1, . . . , n}.

1. Â(n) = #(A).

2. maxr∈[n] |Â(r)| = #(A).

3. A(s) = 1
n

∑n
r=1 Â(r)ω−rs. DO WE NEED THIS?

4.
∑n

r=1 |Â(r)|2 = n#(A).

5.
∑n

s=1 A(s) = 1
n

∑n
r=1 Â(r).

Proof:
Note that ωn = 1. Hence

Â(n) =
∑
s∈[n]

A(s)ω−ns =
∑
s∈[n]

A(s) = #(A).

Also note that

|Â(r)| = |
∑
s∈[n]

A(s)ω−rs| ≤
∑
s∈[n]

|A(s)ω−rs| ≤
∑
s∈[n]

|A(s)||ω−rs| ≤
∑
s∈[n]

|A(s)| = #(A).

Informal Claim: If Â(r) is large then there is an arithmetic sequence P with difference r−1

(mod n) such that #(A ∩ P ) is large.
We need a lemma before we can proof the claim.

Lemma 5.3 Let n, m ∈ N, s1, . . . , sm, and 0 < λ,α, ε < 1 be given (no order on λ, α, ε is implied).
Assume that (λ − m−1

m (λ + ε)) ≥ 0. Let f(x1, . . . , xm) = |
∑m

j=1 xjω
sj |. The maximum value

that f(x1, . . . , xm) can achieve subject to the following two constraints (1)
∑m

j=1 xj ≥ λn, and (2)
(∀j)[0 ≤ xi ≤ (λ + ε) n

m ] is bounded above by εmn + (λ + ε) n
m |

∑m
j=1 ωsj |
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Proof:
Assume that the maximum value of f , subject to the constraints, is achieved at (x1, . . . , xm).

Let MIN be the minimum value that any variable xi takes on (there may be several variables that
take this value). What is the smallest that MIN could be? By the contraints this would occur
when all but one of the variables is (λ + ε) n

m and the remaining variable has value MIN . Since∑
xi
≥ λn we have

MIN + (m− 1)(λ + ε) n
m ≥ λn

MIN + m−1
m (λ + ε)n ≥ λn

MIN ≥ λn− m−1
m (λ + ε)n

MIN ≥ (λ− m−1
m (λ + ε))n

Hence note that, for all j,
xj −MIN ≤ xj − (λ− m−1

m (λ + ε))n
Using the bound on xj from constraint (2) we obtain

xj −MIN ≤ (λ + ε) n
m − (λ− m−1

m (λ + ε))n
≤ ((λ + ε) 1

m − (λ− m−1
m (λ + ε)))n

≤ ((λ + ε) 1
m − λ + m−1

m (λ + ε))n
≤ εn

Note that

|
∑m

j=1 xjω
sj | = |

∑m
j=1(xj −MIN)ωsj +

∑m
j=1 MINωsj |

≤ |
∑m

j=1(xj −MIN)ωsj |+ |
∑m

j=1 MINωsj |
≤

∑m
j=1 |(xj −MIN)||ωsj |+ MIN |

∑m
j=1 ωsj |

≤
∑m

j=1 εn + MIN |
∑m

j=1 ωsj |
≤ εmn + MIN |

∑m
j=1 ωsj |

≤ εmn + (λ + ε) n
m |

∑m
j=1 ωsj |

Lemma 5.4 Let A ⊆ [n], r ∈ [n], and 0 < α < 1. If |Â(r)| ≥ αn and |A| ≥ λn then there
exists m ∈ N, 0 < ε < 1, and an arithmetic sequence P within Zn, of length n

m ± O(1) such that
#(A ∩ P ) ≥ (λ + ε) n

m . The parameters ε and m will depend on λ and α but not n.

Proof: Let m and ε be parameters to be picked later. We will note constraints on them as we
go along. (Note that ε will not be used for a while.)

Let 1 = a1 < a2 < · · · < am+1 = n be picked so that
a2 − a1 = a3 − a2 = · · · = am − am−1 and am+1 − am is as close to a2 − a1 as possible.
For 1 ≤ j ≤ m let

Pj = {s ∈ [n] : aj ≤ rs (mod n) < aj+1}.

Let us look at the elements of Pj . Let r−1 be the inverse of r mod n.

1. s such that aj ≡ rs (mod n), that is, s ≡ ajr
−1 (mod n).

2. s such that aj + 1 ≡ rs (mod n), that is s ≡ (aj + 1)r−1 ≡ ajr
−1 + r−1 (mod n).
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3. s such that aj + 2 ≡ rs (mod n), that is s ≡ (aj + 2)r−1 ≡ ajr
−1 + 2r−1 (mod n).

4.
....

Hence Pj is an arithmetic sequence within Zn which has difference r−1. Also note that P1, . . . , Pm

form a partition of Zn into m parts of size n
m + O(1) each.

Recall that

Â(r) =
∑
s∈[n]

A(s)ω−rs.

Lets look at s ∈ Pj . We have that aj ≤ rs (mod n) < aj+1. Therefore the values of {ωrs : s ∈
Pj} are all very close together. We will pick sj ∈ Pj carefully. In particular we will constrain m so
that it is possible to pick sj ∈ Pj such that

∑m
j=1 ω−rsj = 0. For s ∈ Pj we will approximate ω−rs

by ω−rsj . We skip the details of how good the approximation is.
We break up the sum over s via Pj .

Â(r) =
∑

s∈[n] A(s)ω−rs

=
∑m

j=1

∑
s∈Pj

A(s)ω−rs

∼
∑m

j=1

∑
s∈Pj

A(s)ω−rsj

=
∑m

j=1 ω−rsj
∑

s∈Pj
A(s)

=
∑m

j=1 ω−rsj#(A ∩ Pj)
=

∑m
j=1 #(A ∩ Pj)ω−rsj

αn ≤ |Â(r)| = |
∑m

j=1 #(A ∩ Pj)ω−rsj |

We will not use ε. We intend to use Lemma 5.3; therefore we have the contraint (λ− m−1
m (λ +

ε)) ≥ 0.
Assume, by way of contradiction, that (∀j)[|A∩Pj | ≤ (λ+ε) n

m . Applying Lemma 5.3 we obtain

|
m∑

j=1

#(A ∩ Pj)ω−rsj | ≤ εmn + (λ + ε)
n

m
|

m∑
j=1

ω−rsj | = εmn.

Hence we have
αn ≤ εmn
α ≤ εm.
In order to get a contradiction we pick ε and m such that α > εm.
Having done that we now have that (∃j)[|A ∩ Pj | ≥ (λ + ε) n

m ].
We now list all of the constraints introduced and say how to satisfy them.

1. m is such that there exists s1 ∈ P1, . . ., sm ∈ Pm such that
∑m

j=1 ω−rsj = 0, and

2. (λ− m−1
m (λ + ε)) ≥ 0.

3. εm < α.

First pick m to satisfy item 1. Then pick ε small enough to satisfy items 2,3.
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Lemma 5.5 Let A,B, C ⊆ [n]. The number of 3-AP’s (x, y, z) ∈ A×B × C is bounded below by

1
2n

n∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n).

Proof:
The number of 3-AP’s is bounded below by

1
2n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z) −O(n) =

We look at the inner sum.

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z) =

n∑
r=1

∑
x,y,z∈[n]

A(x)ω−rxB(y)ω2yrC(z)ω−rz =

n∑
r=1

∑
x∈[n]

A(x)ω−rx
∑

y∈[n]

B(y)ω2yr
∑
z∈Zr

C(z)ω−rz =

n∑
r=1

Â(r)B̂(−2r)Ĉ(r).

The Lemma follows.

6 Main Theorem

Theorem 6.1 For all λ, 0 < λ < 1, there exists n0 ∈ N such that for all n ≥ n0, sz(n) ≤ λn.

Proof:
Let S(λ) be the statement

there exists n0 such that, for all n ≥ n0, sz(n) ≤ λn.

It is a trivial exercise to show that S(0.7) is true.
Let

C = {λ : S(λ)}.

C is closed upwards. Since 0.7 ∈ C we know C 6= ∅. Assume, by way of contradiction, that
C 6= (0, 1). Then there exists λ < λ0 such that λ /∈ C and λ0 ∈ C. We can take λ0 − λ to be as
small as we like. Let n0 be such that S(λ0) is true via n0. Let n ≥ n0 and let A ⊆ [n] such that
#(A) ≥ λn but A is 3-free.

Let B = C = A ∩ [n/3, 2n/3].
By Lemma 5.5 the number of 3-AP’s of A is bounded below by
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1
2n

n∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n).

We will show that either this is positive or there exists a set P ⊆ [n] that is an AP of length
XXX and has density larger than λ. Hence P will have a 3-AP.

By Lemma 5.2 we have Â(n) = #(A), B̂(n) = #(B), and Ĉ(n) = #(C). Hence

1
2n

Â(n)B̂(n)Ĉ(n) +
1
2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n) =

1
2n

#(A)#(B)#(C) +
1
2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n).

By Lemma 2.1 we can take #(B),#(C) ≥ nλ/4. We already have #(A) ≥ λn. This makes the
lead term Ω(n3); hence we can omit the O(n) term. More precisely we have that the number of
3-AP’s in A is bounded below by

λ3n2

32
+

1
2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)).

We are assuming that this quantity is ≤ 0.

λ3n2

32
+

1
2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)) < 0.

λ3n2

16
+

1
n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)) < 0.

λ3n2

16
< − 1

n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)).

Since the left hand side is positive we have

λ3n2

16 < | 1n
∑n−1

r=1 Â(r)B̂(−2r)Ĉ(r)|
< 1

n(max rÂ(r))
∑n−1

r=1 |B̂(−2r)||Ĉ(r)|

By the Cauchy Schwartz inequality we know that

n−1∑
i=1

|B̂(−2r)||Ĉ(r)| ≤ (
n−1∑
i=1

|B̂(−2r)|2)1/2)(
n−1∑
i=1

|Ĉ(r)|2)1/2).

Hence
λ3n2

16
< | 1

n
max

1≤r≤n−1
|Â(r)|(

n−1∑
i=1

|B̂(−2r)|2)1/2)(
n−1∑
i=1

|Ĉ(r)|2)1/2).

By Parsaval’s inequality and the definition of B and C we have
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n−1∑
i=1

|B̂(−2r)|2)1/2 ≤ n#(B) =
λn2

3

and

n−1∑
i=1

|Ĉ(r)|2)1/2 ≤ n#(C) =
λn2

3

Hence
λ3n2

16
< ( max

1≤r≤n−1
|Â(r)|) 1

n

λn2

3
= ( max

1≤r≤n−1
|Â(r)|)λn

3
.

Therefore
|Â(r) ≥ 3λ2n

16 .
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