> Second Order Statements True in $(R,+)$ but not $(Q,+)$ Exposition by William Gasarch (gasarch@cs.umd.edu)

1 Introduction

We give a statement in the second order language of + that is true in $(R,+)$ but false in $(Q,+)$. We first give it in English.

There exists sets A, B such that both $(A,+)$ and $(B,+)$ are groups but $A \cap B=\{0\}$.
We now give this is as statement in second order + . We need some subformulas first.

1. Let $Z(x)$ be the formula

$$
(\forall y)[x+y=y] .
$$

This says that $x=0$. Note that $(\exists x)[Z(x)]$ is true in both R and Q and in both cases the x is 0 .
2. Let $Z I(A, B)$ be the formula

$$
(\forall x)[(x \in A \wedge x \in B) \Longrightarrow Z(x)]
$$

This says that the only element in $A \cup B$ is 0 .
3. Let $C L(A)$ be the formula

$$
(\forall x)(\forall y)[(x \in A \wedge y \in A) \Longrightarrow x+y \in A] .
$$

This says that A is closed under addition.
4. Let $I(A)$ be the formula

$$
(\forall x)(\exists y)[x \in A \Longrightarrow Z(x+y)]
$$

This says that A is closed under additive inverses.
5. Let $G R(A)$ be the formula

$$
C L(A) \wedge I(A) .
$$

This says that A is a group.

Theorem 1.1 Let ψ be the following sentence in the second order language of + .

$$
\psi=(\exists A)(\exists B)[G R(A) \wedge G R(B) \wedge Z I(A, B)] .
$$

Then

1. $(\mathrm{R},+) \models \phi$,
2. $(\mathrm{Q},+) \models \neg \phi$.

Proof:

We first show that the statement is true in R.
Let

$$
\begin{gathered}
A=\{q \pi \mid q \in \mathrm{Q}\} . \\
B=\mathrm{Q} .
\end{gathered}
$$

Clearly both A and B are groups. One can easily show that if $x \in A \cap B$ then $x=0$ (else $\pi \in \mathrm{Q})$.
We now show that the statement is false in Q. Assume, by way of contradiction, that the statement is true in Q . Let $\frac{p_{1}}{q_{1}} \in A \cap \mathrm{Q}^{+}$and $\frac{p_{2}}{q_{q}} \in B \cap \mathrm{Q}^{+}$.

Since A is closed under addition, for all $n_{1} \in \mathrm{~N}, \frac{n_{1} p_{1}}{q_{1}} \in A$. Since B is closed under addition, for all $n_{2} \in \mathrm{~N}, \frac{n_{2} p_{2}}{q_{2}} \in B$. Let $n_{1}=q_{1} p_{2}$ and $n_{2}=q_{2} p_{1}$. This yields that $p_{1} p_{2} \in A$ and $p_{1} p_{2} \in B$. Hence there is a nonzero element in $A \cap B$. This is a contradiction.

2 Acknowledgments

I would like to thank Chris Lastowski and James Pinkerton for helpful discussion.

