1 Definitions

Def 1.1 Let $t(n), r(n) : \mathbb{N} \to \mathbb{N}$ and $\operatorname{err}(n) : \mathbb{N} \to \mathbb{Q} \cap (0, 1/2)$. (Think of t(n), r(n) as poly and $\operatorname{err}(n) = 1/4$.) Let BPP $(t(n), r(n), \operatorname{err}(n))$ be the set of all $A \subseteq \{0, 1\}^*$ such that there exists TM M that runs in time t(n) on inputs of the form (x, y) where |x| = n and |y| = r(n). such that the following occurs. Let $x \in \{0, 1\}^n$.

1. if $x \in A$ then, for at least 1 - err(n) of $y \in \{0, 1\}^{r(n)}$, M(x, y) = 1.

2. if $x \notin A$ then, for at least 1 - err(n) of $y \in \{0, 1\}^{r(n)}$, M(x, y) = 0.

We also define $\text{BPP} = \bigcup_{k=1}^{\infty} \text{BPP}(n^k, n^k, \frac{1}{4}).$

Def 1.2 Let $L : \mathbb{N} \to \mathbb{N}$ (think Log), $s : \mathbb{N} \to \mathbb{N}$ (think $2^{\epsilon n}$), and diff $: \mathbb{N} \to \mathbb{Q} \cap (0, 1/2)$ (think $\frac{1}{\text{poly}}$). Assume that, for all n, G maps $\{0, 1\}^{L(n)}$ into $\{0, 1\}^n$. G is (L(n), s(n), diff(n))-pseudorandom if

- 1. (Informally) For all *n* the set $\{G_{L(n)}(z) : z \in \{0,1\}^{L(n)}\}$ "looks like" $\{0,1\}^n$.
- 2. (Formally) For almost all n, for every s(n)-sized circuit C_n ,

$$|\Pr(C_n(y) = 1 : y \in \{0, 1\}^n) - \Pr(C_n(G_n(z)) = 1 : z \in \{0, 1\}^{L(n)}| < \operatorname{diff}(n).$$

(so no s(n)-sized circuit can tell the two sets apart, up to diff(n). When assuming this is not true we freely use 0 intead of 1 and/or do not use the absolute value signs.

Note 1.3 If we say that $G \in \text{DTIME}(t(n))$ we mean that it runs in time t(n) where n is the length of the *output*.

Def 1.4 Let $L : \mathbb{N} \to \mathbb{N}$ (think Log), $s : \mathbb{N} \to \mathbb{N}$ (think $2^{\epsilon n}$), and eps : $\mathbb{N} \to \mathbb{Q} \cap (0, 1/2)$ (think $\frac{1}{\text{poly}}$). Assume that, for all n, G maps $\{0, 1\}^{L(n)}$ into $\{0, 1\}^n$. G is (L(n), s(n), eps(n))-next bit predictable if, for infinitely many n, there exists $i \in \{2, \ldots, n\}$ and a circuit $C_n : \{0, 1\}^{i-1} \to \{0, 1\}$ such that

1. C_n is a deterministic circuit of size s(n).

2. For at least $\frac{1}{2} + \exp(n)$ of strings $y \in \{G_{L(n)}(x)[1:i-1] \mid x \in \{0,1\}^{L(n)}\},$ $C(y) = G_{L(n)}(x)[i].$ (Note that we interpret $\{G_{L(n)}(x)[1:i-1] \mid x \in \{0,1\}^{L(n)}\}$ as a multiset.)

Def 1.5 Let $f : \{0,1\}^* \to \{0,1\}$. Let f_n be the restriction of f to $\{0,1\}^n$. f is $(s(n), \operatorname{eps}(n))$ -hard if there does not exist an s(n)-sized circuit C_n that computes, for almost all n, f_n correctly on $\frac{1}{2} + \operatorname{eps}(n)$ of the strings in $\{0,1\}^n$.

2 Notation Used Throughout the Paper

Notation 2.1 Throughout this paper the following hold.

- 1. $L(n) : \mathbb{N} \to \mathbb{N}$ (think log). c will be a constant. cL(n) will be used alot.
- 2. $s(n), S(n) : \mathbb{N} \to \mathbb{N}$ (think poly, $2^{\epsilon n}$). Bounds on circuit size.
- 3. $r(n) : \mathbb{N} \to \mathbb{N}$ (think poly). We require $r(n) \ge n$. The random string that a BPP machine uses.
- 4. $t(n), T(n) : \mathbb{N} \to \mathbb{N}$ (think poly, 2^n). Run times.
- 5. $G: \{0,1\}^* \to \{0,1\}^*$. At different places we will also require that for all $n \{0,1\}^{cL(n)}$ maps to $\{0,1\}^n$, for some c. We denote the subfunction that maps $\{0,1\}^m$ to $\{0,1\}^n$ by G_m . (m will be L(n) or cL(n) or $c^2L(n)$). A potential psuedorandom generator.
- 6. $f : \{0,1\}^* \to \{0,1\}$. We denote the subfunction that maps $\{0,1\}^n$ to $\{0,1\}$ by f_n . A "hard" function.
- 7. $\operatorname{err}(n) : \mathbb{N} \to \mathbb{Q} \cap (0, 1/2)$ (think $\frac{1}{4}$) An error, so the smaller it is the less chance of error.
- 8. diff $(n) : \mathbb{N} \to \mathbb{Q} \cap (0, 1/2)$ (think $\frac{1}{\text{poly}}$). diff(n) is decreasing. How much two distributions differ. The smaller it is, the less they differ.
- 9. $\operatorname{eps}(n) : \mathbb{N} \to \mathbb{Q} \cap (0, 1/2)$ (think $\frac{1}{\operatorname{poly}}$). $\operatorname{eps}(n)$ is decreasing. How much more than $\frac{1}{2}$ of the elements of some domain a function is computed correctly. The larger $\operatorname{eps}(n)$ the large the domain we can compute the function on.