## 1 Definitions

Def 1.1 Let $t(n), r(n): \mathrm{N} \rightarrow \mathrm{N}$ and $\operatorname{err}(n): \mathrm{N} \rightarrow \mathrm{Q} \cap(0,1 / 2)$. (Think of $t(n), r(n)$ as poly and $\operatorname{err}(n)=1 / 4$.) Let $\operatorname{BPP}(t(n), r(n), \operatorname{err}(n))$ be the set of all $A \subseteq\{0,1\}^{*}$ such that there exists TM $M$ that runs in time $t(n)$ on inputs of the form $(x, y)$ where $|x|=n$ and $|y|=r(n)$. such that the following occurs. Let $x \in\{0,1\}^{n}$.

1. if $x \in A$ then, for at least $1-\operatorname{err}(n)$ of $y \in\{0,1\}^{r(n)}, M(x, y)=1$.
2. if $x \notin A$ then, for at least $1-\operatorname{err}(n)$ of $y \in\{0,1\}^{r(n)}, M(x, y)=0$.

We also define $\operatorname{BPP}=\bigcup_{k=1}^{\infty} \operatorname{BPP}\left(n^{k}, n^{k}, \frac{1}{4}\right)$.

Def 1.2 Let $L: \mathrm{N} \rightarrow \mathrm{N}($ think $\log ), s: \mathrm{N} \rightarrow \mathrm{N}\left(\right.$ think $\left.2^{\epsilon n}\right)$, and diff: $\mathrm{N} \rightarrow$ $\mathrm{Q} \cap(0,1 / 2)$ (think $\left.\frac{1}{\text { poly }}\right)$. Assume that, for all $n, G$ maps $\{0,1\}^{L(n)}$ into $\{0,1\}^{n}$. $G$ is $(L(n), s(n), \operatorname{diff}(n))$-pseudorandom if

1. (Informally) For all $n$ the set $\left\{G_{L(n)}(z): z \in\{0,1\}^{L(n)}\right\}$ "looks like" $\{0,1\}^{n}$.
2. (Formally) For almost all $n$, for every $s(n)$-sized circuit $C_{n}$,

$$
\mid \operatorname{Pr}\left(C_{n}(y)=1: y \in\{0,1\}^{n}\right)-\operatorname{Pr}\left(C_{n}\left(G_{n}(z)\right)=1: z \in\{0,1\}^{L(n)} \mid<\operatorname{diff}(n) .\right.
$$

(so no $s(n)$-sized circuit can tell the two sets apart, up to $\operatorname{diff}(n)$. When assuming this is not true we freely use 0 intead of 1 and/or do not use the absolute value signs.

Note 1.3 If we say that $G \in \operatorname{DTIME}(t(n))$ we mean that it runs in time $t(n)$ where $n$ is the length of the output.

Def 1.4 Let $L: \mathrm{N} \rightarrow \mathrm{N}$ (think Log), $s: \mathrm{N} \rightarrow \mathrm{N}\left(\right.$ think $\left.2^{\epsilon n}\right)$, and eps : $\mathrm{N} \rightarrow \mathrm{Q} \cap(0,1 / 2)$ (think $\left.\frac{1}{\text { poly }}\right)$. Assume that, for all $n, G$ maps $\{0,1\}^{L(n)}$ into $\{0,1\}^{n} . G$ is $(L(n), s(n), \operatorname{eps}(n))$-next bit predictable if, for infinitely many $n$, there exists $i \in\{2, \ldots, n\}$ and a circuit $C_{n}:\{0,1\}^{i-1} \rightarrow\{0,1\}$ such that

1. $C_{n}$ is a deterministic circuit of size $s(n)$.
2. For at least $\frac{1}{2}+\operatorname{eps}(n)$ of strings $y \in\left\{G_{L(n)}(x)[1: i-1] \mid x \in\{0,1\}^{L(n)}\right\}$, $C(y)=G_{L(n)}(x)[i]$. (Note that we interpret $\left\{G_{L(n)}(x)[1: i-1] \mid x \in\right.$ $\left.\{0,1\}^{L(n)}\right\}$ as a multiset.)

Def 1.5 Let $f:\{0,1\}^{*} \rightarrow\{0,1\}$. Let $f_{n}$ be the restriction of $f$ to $\{0,1\}^{n}$. $f$ is $(s(n), \operatorname{eps}(n))$-hard if there does not exist an $s(n)$-sized circuit $C_{n}$ that computes, for almost all $n$, $f_{n}$ correctly on $\frac{1}{2}+\operatorname{eps}(n)$ of the strings in $\{0,1\}^{n}$.

## 2 Notation Used Throughout the Paper

Notation 2.1 Throughout this paper the following hold.

1. $L(n): \mathrm{N} \rightarrow \mathrm{N}$ (think log). $c$ will be a constant. $c L(n)$ will be used alot.
2. $s(n), S(n): \mathrm{N} \rightarrow \mathrm{N}$ (think poly, $2^{\epsilon n}$ ). Bounds on circuit size.
3. $r(n): \mathrm{N} \rightarrow \mathrm{N}$ (think poly). We require $r(n) \geq n$. The random string that a BPP machine uses.
4. $t(n), T(n): \mathrm{N} \rightarrow \mathrm{N}$ (think poly, $\left.2^{n}\right)$. Run times.
5. $G:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$. At different places we will also require that for all $n\{0,1\}^{c L(n)}$ maps to $\{0,1\}^{n}$, for some $c$. We denote the subfunction that maps $\{0,1\}^{m}$ to $\{0,1\}^{n}$ by $G_{m}$. ( $m$ will be $L(n)$ or $c L(n)$ or $c^{2} L(n)$ ). A potential psuedorandom generator.
6. $f:\{0,1\}^{*} \rightarrow\{0,1\}$. We denote the subfunction that maps $\{0,1\}^{n}$ to $\{0,1\}$ by $f_{n}$. A "hard" function.
7. $\operatorname{err}(n): \mathrm{N} \rightarrow \mathrm{Q} \cap(0,1 / 2)$ (think $\frac{1}{4}$ ) An error, so the smaller it is the less chance of error.
8. $\operatorname{diff}(n): N \rightarrow Q \cap(0,1 / 2)$ (think $\left.\frac{1}{\text { poly }}\right)$. $\operatorname{diff}(n)$ is decreasing. How much two distributions differ. The smaller it is, the less they differ.
9. $\operatorname{eps}(n): \mathrm{N} \rightarrow \mathrm{Q} \cap(0,1 / 2)$ (think $\left.\frac{1}{\text { poly }}\right)$. $\operatorname{eps}(n)$ is decreasing. How much more than $\frac{1}{2}$ of the elements of some domain a function is computed correctly. The larger eps $(n)$ the large the domain we can compute the function on.
