Roth's Theorem: If $A \subseteq[n]$ is large then it has a 3-AP
 Szemeredi's Proof by William Gasarch (gasarch@cs.umd.edu)

1 Roth's Theorem

Notation 1.1 Let $[n]=\{1, \ldots, n\}$. If $k \in \mathrm{~N}$ then k-AP means an arithmetic progression of size k.
Consider the following statement:
If $A \subseteq[n]$ and $|A|$ is 'big' then A must have a 3-AP.
This statement, made rigorous, is true. In particular, the following is true and easy:
Let $n \geq 3$. If $A \subseteq[n]$ and $|A| \geq 0.7 n$ then A must have a 3 -AP.
Can we lower the constant 0.7 ? We can lower it as far as we like if we allow n to start later: Roth $[2,4,5]$ proved the following using analytic means.

$$
(\forall \lambda>0)\left(\exists n_{0} \in \mathrm{~N}\right)\left(\forall n \geq n_{0}\right)(\forall A \subseteq[n])[|A| \geq \lambda n \Rightarrow A \text { has a } 3-\mathrm{AP}] .
$$

The analogous theorem for 4-APs was later proven by Szemeredi [2,6] by a combinatorial proof. Szemeredi [7] later (with a much harder proof) generalized from 4 to any k.

We prove the $k=3$ case using the combinatorial techniques of Szemeredi. Our proof is essentially the same as in the book Ramsey Theory by Graham, Rothchild, and Spencer [2].

More is known. A summary of what else is known will be presented in the next section.
Definition 1.2 Let $s z(n)$ be the least number such that, for all $A \subseteq[n]$, if $|A| \geq s z(n)$ then A has a 3-AP. Note that if $A \subseteq[a, a+n-1]$ and $|A| \geq s z(n)$ then A has a 3-AP. Note also that if $A \subseteq\{a, 2 a, 3 a, \ldots, n a\}$ and $|A| \geq s z(n)$ then A has a 3 -AP. More generally, if A is a subset of any equally spaced set of size n, and $|A| \geq s z(n)$, then A has a 3-AP.

We will need the following Definition and Lemma.
Definition 1.3 Let $k, e, d_{1}, \ldots, d_{k} \in \mathrm{~N}$. The cube on $\left(e, d_{1}, \ldots, d_{k}\right)$, denoted $C\left(e, d_{1}, \ldots, d_{k}\right)$, is the set $\left\{e+b_{1} d_{1}+\cdots+b_{k} d_{k} \mid b_{1}, \ldots, b_{k} \in\{0,1\}\right\}$. A k-cube is a cube with $k d$'s.

Lemma 1.4 Let I be an interval of $[1, n]$ of length L. If $|B| \subseteq I$ then there is a cube $\left(e, d_{1}, \ldots, d_{k}\right)$ contained in B with $k=\Omega(\log \log |B|)$ and $(\forall i)\left[d_{i} \leq L\right]$.

Proof:

The following procedure produces the desired cube.

1. Let $B_{1}=B$ and $\beta_{1}=\left|B_{1}\right|$.
2. Let D_{1} be all $\binom{\beta_{1}}{2}$ positive differences of elements of B_{1}. Since $B_{1} \subseteq[n]$ all of the differences are in $[n]$. Hence some difference must occur $\binom{\beta_{1}}{2} / n \sim \beta_{1}^{2} / 2 n$ times. Let that difference be d_{1}. Note that $d_{1} \leq L$.
3. Let $B_{2}=\left\{x \in B_{1}: x+d_{1} \in B_{1}\right\}$. Note that $\left|B_{2}\right| \geq \beta_{1}^{2} / 2 n$. Let $\left|B_{2}\right|=\beta_{2}$. Note the trivial fact that
$x \in B_{1} \Rightarrow x+d_{1} \in B$.
4. Let D_{2} be all $\binom{\beta_{2}}{2}$ positive differences of elements of B_{2}. Since $B_{2} \subseteq[n]$ all of the differences are in $[n]$. Hence some difference must occur $\binom{\beta_{1}}{2} / n \sim \beta_{2}^{2} / 2 n$ times. Let that difference be d_{2}. Note that $d_{2} \leq L$.
5. Let $B_{3}=\left\{x \in B_{2}: x+d_{2} \in B_{2}\right\}$. Note that $\left|B_{3}\right| \geq \beta_{2}^{2} / 2 n$. Let $\left|B_{3}\right|=\beta_{3}$. Note that
$x \in B_{3} \Rightarrow x+d_{2} \in B$
$x \in B_{3} \Rightarrow x \in B_{2} \Rightarrow x+d_{1} \in B$
$x \in B_{3} \Rightarrow x+d_{2} \in B_{2} \Rightarrow x+d_{1}+d_{2} \in B$
6. Keep repeating this procedure until $B_{k+2}=\emptyset$. (We leave the details of the definition to the reader.) Note that if $i \leq k+1$ then $x \in B_{i} \Rightarrow x+b_{1} d_{1}+\cdots+b_{i-1} d_{i-1} \in B$ for any $b_{1}, \ldots, b_{i-1} \in\{0,1\}$.
7. Let e be any element of B_{k+1}. Note that we have $e+b_{1} d_{1}+\cdots+b_{k} d_{k} \in B$ for any $b_{1}, \ldots, b_{k} \in$ $\{0,1\}$.

We leave it as an exercise to formally show that $C\left(e, d_{1}, \ldots, d_{k}\right)$ is contained in B and that $k=\Omega(\log \log |B|)$.

We now note that the above gives a good upper bound on the Hilbert Cube Numbers.
Corollary 1.5 For k, c let $H(k, c)$ be the least H such that for any c-coloring of $\{1, \ldots, H\}$ there is a monochromatic k-cube. Then $H(k, c) \leq c 2^{2^{O(k)}}$.

Proof: Let $H=c 2^{2^{A k}}$ where we define A later. Let $C O L$ be a c-coloring of $\{1, \ldots, H\}$. Some color appears $H / c=2^{2^{A k}}$ times. Let B be the set of integers with that color, so $|B|=2^{2^{A k}}$. By Lemma 1.4 there is a monochromatic cube of size $\Omega\left(\log _{2}\left(\log _{2}(|B|)\right)\right)=\Omega(A k)$. Pick A big enough so that this term is $\geq k$.

The next lemma states that if A is 'big' and 3 -free then it is somewhat uniform. There cannot be sparse intervals of A. The intuition is that if A has a sparse interval then the rest of A has to be dense to make up for it, and it might have to be so dense that it has a 3 -AP.

Lemma 1.6 Let $n, n_{0} \in \mathrm{~N} ; \lambda, \lambda_{0} \in(0,1)$. Assume $\lambda<\lambda_{0}$ and $\left(\forall m \geq n_{0}\right)\left[s z(m) \leq \lambda_{0} m\right]$. Let $A \subseteq[n]$ be a 3-free set such that $|A| \geq \lambda n$.

1. Let a, b be such that $a<b, a>n_{0}$, and $n-b>n_{0}$. Then $\lambda_{0}(b-a)-n\left(\lambda_{0}-\lambda\right) \leq|A \cap[a, b]|$.
2. Let a be such that $n-a>n_{0}$. Then $\lambda_{0} a-n\left(\lambda_{0}-\lambda\right) \leq|A \cap[1, a]|$.

Proof:

1) Since A is 3 -free and $a \geq n_{0}$ and $n-b \geq n_{0}$ we have $|A \cap[1, a-1]|<\lambda_{0}(a-1)<\lambda_{0} a$ and $|A \cap[b+1, n]|<\lambda_{0}(n-b)$. Hence

$$
\begin{aligned}
& \lambda n \leq|A|=|A \cap[1, a-1]|+|A \cap[a, b]|+|A \cap[b+1, n]| \\
& \lambda n \leq \lambda_{0} a+|A \cap[a, b]|+\lambda_{0}(n-b) \\
& \lambda n-\lambda_{0} n+\lambda_{0} b-\lambda_{0} a \leq|A \cap[a, b]| \\
& \lambda_{0}(b-a)-n\left(\lambda_{0}-\lambda\right) \leq|A \cap[a, b]| .
\end{aligned}
$$

2) Since A is 3 -free and $n-a>n_{0}$ we have $|A \cap[a+1, n]| \leq \lambda_{0}(n-a)$. Hence

$$
\begin{aligned}
& \lambda n \leq|A|=|A \cap[1, a]|+|A \cap[a+1, n]| \\
& \lambda n \leq|A \cap[1, a]|+\lambda_{0}(n-a) \\
& \lambda n-\lambda_{0} n+\lambda_{0} a \leq|A \cap[1, a]| \\
& \lambda_{0} a-\left(\lambda_{0}-\lambda\right) n \leq|A \cap[1, a]| .
\end{aligned}
$$

Lemma 1.7 Let $n, n_{0} \in \mathrm{~N}$ and $\lambda, \lambda_{0} \in(0,1)$. Assume that $\lambda<\lambda_{0}$ and that $\left(\forall m \geq n_{0}\right)[s z(m) \leq$ $\left.\lambda_{0} m\right]$. Assume that $\frac{n}{2} \geq n_{0}$. Let $a, L \in \mathrm{~N}$ such that $a \leq \frac{n}{2}, L<\frac{n}{2}-a$, and $a \geq n_{0}$. Let $A \subseteq[n]$ be a 3-free set such that $|A| \geq \lambda n$.

1. There is an interval $I \subseteq\left[a, \frac{n}{2}\right]$ of length $\leq L$ such that

$$
|A \cap I| \geq\left\lfloor\frac{2 L}{n-2 a}\left(\lambda_{0}\left(\frac{n}{2}-a\right)-n\left(\lambda_{0}-\lambda\right)\right)\right\rfloor .
$$

2. Let α be such that $0<\alpha<\frac{1}{2}$. If $a=\alpha n$ and $\sqrt{n} \ll \frac{n}{2}-\alpha n$ then there is an interval $I \subseteq\left[a, \frac{n}{2}\right]$ of length $\leq O(\sqrt{n})$ such that

$$
|A \cap I| \geq\left\lfloor\frac{2 \sqrt{n}}{(1-2 \alpha)}\left(\lambda_{0}\left(\frac{1}{2}-\left(\lambda_{0}-\lambda\right)-\alpha\right)\right)\right\rfloor=\Omega(\sqrt{n}) .
$$

Proof: By Lemma 1.6 with $b=\frac{n}{2},\left|A \cap\left[a, \frac{n}{2}\right]\right| \geq \lambda_{0}\left(\frac{n}{2}-a-n\left(\lambda_{0}-\lambda\right)\right.$. Divide $\left[a, \frac{n}{2}\right]$ into $\left\lceil\frac{n-2 a}{2 L}\right\rceil$ intervals of size $\leq L$. There must exist an interval I such that

$$
|A \cap I| \geq\left\lfloor\frac{2 L}{n-2 a}\left(\lambda_{0}\left(\frac{n}{2}-a\right)-n\left(\lambda_{0}-\lambda\right)\right)\right\rfloor .
$$

If $L=\lceil\sqrt{n}\rceil$ and $a=\alpha n$ then

$$
\begin{aligned}
|A \cap I| & \left.\geq \left\lvert\, \frac{2 L}{n-2 a}\left(\lambda_{0}\left(\frac{n}{2}-a\right)-n\left(\lambda_{0}-\lambda\right)\right)\right.\right\rfloor \\
& \left.\left.\geq-\frac{2 \sqrt{n}}{n(1-2 \alpha)}\left(\lambda_{0}\left(\frac{n}{2}-\alpha n\right)-n\left(\lambda_{0}-\lambda\right)\right)\right)\right\rfloor \\
& \geq\left\lfloor\frac{2 \sqrt{n}}{(1-2 \alpha)}\left(\lambda_{0}\left(\frac{1}{2}-\alpha\right)-\left(\lambda_{0}-\lambda\right)\right)\right\rfloor=\Omega(\sqrt{n}) .
\end{aligned}
$$

Theorem 1.8 For all $\lambda, 0<\lambda<1$, there exists $n_{0} \in \mathbf{N}$ such that for all $n \geq n_{0}, s z(n) \leq \lambda n$.

Proof:

Let $S(\lambda)$ be the statement
there exists n_{0} such that, for all $n \geq n_{0}, s z(n) \leq \lambda n$.
It is a trivial exercise to show that $S(0.7)$ is true.
Let

$$
C=\{\lambda \mid S(\lambda)\} .
$$

C is closed upwards. Since $0.7 \in C$ we know $C \neq \emptyset$. Assume, by way of contradiction, that $C \neq(0,1)$. Then there exists $\lambda<\lambda_{0}$ such that $\lambda \notin C$ and $\lambda_{0} \in C$. We can take $\lambda_{0}-\lambda$ to be as small as we like. Let n_{0} be such that $S\left(\lambda_{0}\right)$ is true via n_{0}. Let $n \geq n_{0}$ and let $A \subseteq[n]$ such that $|A| \geq \lambda n$ but A is 3 -free. At the end we will fix values for the parameters that (a) allow the proof to go through, and (b) imply $|A|<\lambda n$, a contradiction.
PLAN : We will obtain a $T \subseteq \bar{A}$ that will help us. We will soon see what properties T needs to help us. Consider the bit string in $\{0,1\}^{n}$ that represents $T \subseteq[n]$. Say its first 30 bits looks like this:
$T(0) T(1) T(2) T(3) \cdots T(29)=000111111100001110010111100000$
The set A lives in the blocks of 0 's of T (henceforth 0 -blocks). We will bound $|A|$ by looking at A on the 'small' and on the 'large' 0 -blocks of T. Assume there are $t 1$-blocks. Then there are $t+1$ 0 -blocks. We call a 0 -block small if it has $<n_{0}$ elements, and big otherwise. Assume there are $t^{\text {small }}$ small 0 -blocks and $t^{\text {big }}$ big 0 -blocks. Note that $t^{\text {small }}+t^{\text {big }}=t+1$ so $t^{\text {small }}, t^{\text {big }} \leq t+1$. Let the small 0 -blocks be $B_{1}^{\text {small }}, \ldots, B_{t^{\text {small }}}^{\text {small }}$, let their union be $B^{\text {small }}$, let the big 0 -blocks be $B_{1}^{\text {big }}, \ldots, B_{t^{\text {big }}}^{\text {big }}$, and let their union be $B^{\text {big. It is easy to see that }}$

$$
\left|A \cap B^{\text {small }}\right| \leq t^{\text {small }} n_{0} \leq(t+1) n_{0} .
$$

Since each B_{i}^{big} is bigger than n_{0} we must have, for all $i,\left|A \cap B_{i}^{\mathrm{big}}\right|<\lambda_{0}\left|B_{i}^{\mathrm{big}}\right|$ (else $A \cap B_{i}^{\text {big }}$ has a 3 - AP and hence A does). It is easy to see that

$$
\left|A \cap B^{\mathrm{big}}\right|=\sum_{i=1}^{t^{\mathrm{big}}}\left|A \cap B_{i}^{\mathrm{big}}\right| \leq \sum_{i=1}^{t^{\mathrm{big}}} \lambda_{0}\left|B_{i}^{\mathrm{big}}\right| \leq \lambda_{0} \sum_{i=1}^{t^{\mathrm{big}}}\left|B_{i}^{\mathrm{big}}\right| \leq \lambda_{0}(n-|T|) .
$$

Since A can only live in the (big and small) 0 -blocks of T we have

$$
|A|=\left|A \cap B^{\text {small }}\right|+\left|A \cap B^{\mathrm{big}}\right| \leq(t+1) n_{0}+\lambda_{0}(n-|T|) .
$$

In order to use this inequality to bound $|A|$ we will need T to be big and t to be small, so we want T to be a big set that has few blocks.

If only it was that simple. Actually we can now reveal the
REAL PLAN: The real plan is similar to the easy version given above. We obtain a set $T \subseteq \bar{A}$ and a parameter d. A 1 -block is a maximal AP with difference d that is contained in T (that is, if $F I R S T$ and LAST are the first and last elements of the 1-block then FIRST $-d \notin T$ and
$L A S T+d \notin T)$. A 0 -block is a maximal AP with difference d that is contained in \bar{T}. Partition T into 1-blocks. Assume there are t of them.

Let $[n]$ be partitioned into $N^{0} \cup \cdots \cup N^{d-1}$ where $N_{j}=\{x \mid x \leq n \wedge x \equiv j(\bmod d)\}$.
Fix $j, 0 \leq j \leq d-1$. Consider the bit string in $\{0,1\}^{[n / d]}$ that represents $T \cap N_{j}$ Say the first 30 bits of $T \cap N_{j}$ look like
$T(j) T(d+j) T(2 d+j) T(3 d+j) \cdots T(29 d+j)=00011111110000111001011111100$
During PLAN we had an intuitive notion of what a 0 -block or 1-block was. Note that if we restrict to N_{j} then that intuitive notion is still valid. For example the first block of 1's in the above example represents $T(3 d+j), T(4 d+j), T(5 d+j), \ldots, T(9 d+j)$ which is a 1 -block as defined formally.

Each 1-block is contained in a particular N_{j}. Let t_{j} be the number of 1-blocks that are contained in N_{j}. Note that $\sum_{j=0}^{d-1} t_{j}=t$. The number of 0 -blocks that are in N_{j} is at most $t_{j}+1$.

Let j be such that $0 \leq j \leq d-1$. By reasoning similar to that in the above PLAN we obtain

$$
\left|A \cap N_{j}\right| \leq\left(t_{j}+1\right) n_{0}+\lambda_{0}\left(N_{j}-|T|\right) .
$$

We sum both sides over all $j=0$ to $d-1$ to obtain

$$
|A| \leq(t+d) n_{0}+\lambda_{0}(n-|T|)
$$

In order to use this inequality to bound $|A|$ we need T to be big and t, d to be small. Hence we want a big set T which when looked at $\bmod d$, for some small d, decomposes into a small number of blocks.

What is a 1 -block within N_{j} ? For example, lets look at $d=3$ and the bits sequence for T is

$$
\begin{array}{ccccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 ; \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 .
\end{array}
$$

Note that T looked at on $N_{2} \cup T$ has bit sequence

$$
\begin{array}{cccccc}
2 & 5 & 8 & 11 & 14 & 17 ; \\
0 & 1 & 1 & 1 & 1 & 0
\end{array}
$$

The numbers $5,8,11,14$ are all in T and form a 1-block in the N_{2} part. Note that they also from an arithmetic progression with spacing $d=3$. Also note that this is a maximal arithmetic progression with spacing $d=3$ since $0 \notin T$ and $17 \notin T$. More generally 1-blocks of T within N_{j} are maximal arithmetic progressions with spacing d. With that in mind we can restate the kind of set T that we want.

We want a set $T \subseteq \bar{A}$ and a parameter d such that

1. T is big (so that $\lambda_{0}(n-|T|)$ is small),
2. d is small (see next item), and
3. the number of maximal arithmetic progressions of length d within T, which is the parameter t above, is small (so that $(t+d) n_{0}$ is small).

How do we obtain a big subset of \bar{A} ? We will obtain many pairs $x, y \in A$ such that $2 y-x \leq n$. Note that since $x, y, 2 y-x$ is a 3 -AP and $x, y \in A$ we must have $2 y-x \in \bar{A}$.

Let $\alpha, 0<\alpha<\frac{1}{2}$, be a parameter to be determined later. (For those keeping track, the parameters to be determined later are now λ_{0}, λ, n, and α. The parameter n_{0} depends on λ_{0} so is not included in this list.)

We want to apply Lemma 1.7.2.b to $n, n_{0}, a=\alpha n$. Hence we need the following conditions.

$$
\begin{aligned}
\alpha n & \geq n_{0} \\
\frac{n}{2} & \geq n_{0} \\
\frac{n}{2}-\alpha n & \geq \sqrt{n}
\end{aligned}
$$

Assuming these conditions hold, we proceed. By Lemma 1.7.b there is an interval $I \subseteq\left[\alpha n, \frac{n}{2}\right]$ of length $O(\sqrt{n})$ such that

$$
|A \cap I| \geq\left\lfloor\frac{2 \sqrt{n}}{(1-2 \alpha)}\left(\lambda_{0}\left(\frac{1}{2}-\alpha\right)-\left(\lambda_{0}-\lambda\right)\right)\right\rfloor=\Omega(\sqrt{n})
$$

By Lemma 1.4 there is a cube $C\left(e, d_{1}, \ldots, d_{k}\right)$ contained in $|A \cap I|$ with $k=\Omega(\log \log |A \cap I|)=$ $\Omega(\log \log \sqrt{n})=\Omega(\log \log n)$ and $d \geq \sqrt{n}$.

For i such that $1 \leq i \leq k$ we define the following.

1. Define $C_{0}=\{e\}$ and, for $1 \leq i \leq k$, define $C_{i}=C\left(e, d_{1}, \ldots, d_{i}\right)$.
2. T_{i} is the third terms of AP's with the first term in $A \cap[1, e-1]$ and the second term in C_{i}. Formally $T_{i}=\left\{2 m-x \mid x \in A \cap[1, e-1] \wedge m \in C_{i}\right\}$.

Note that, for all $i, T_{i} \cap A=\emptyset$. Hence we look for a large T_{i} that can be decomposed into a small number of blocks. We will end up using $d=2 d_{i+1}$.

Note that $T_{0} \subseteq T_{1} \subseteq T_{2} \subseteq \cdots \subseteq T_{k}$. Hence to obtain a large T_{i} it suffices to show that T_{0} is large and then any of the T_{i} will be large (though not necessarily consist of a small number of blocks).

Since $C_{0}=\{e\}$ we have
$T_{0}=\left\{2 m-x \mid x \in A \cap[1, e-1] \wedge m \in C_{0}\right\}=\{2 e-x \mid x \in A \cap[1, e-1]\}$.
Clearly there is a bijection from $A \cap[1, e-1]$ to T_{0}, hence $\left|T_{0}\right|=|A \cap[1, e-1]|$. Since $e \in\left[\alpha n, \frac{n}{2}\right]$ we have $|A \cap[1, e]| \geq|A \cap[1, \alpha n]|$.

We want to use Lemma 1.6.2 on $A \cap[1, \alpha n]$. Hence we need the condition

$$
n-\alpha n \geq n_{0} .
$$

By Lemma 1.6

$$
\left|T_{0}\right| \geq|A \cap[1, \alpha n]| \geq \lambda_{0} \alpha n-n\left(\lambda_{0}-\lambda\right)=n\left(\lambda_{0} \alpha-\left(\lambda_{0}-\lambda\right)\right) .
$$

In order for this to be useful we need the following condition

$$
\begin{aligned}
\lambda-\lambda_{0}+\lambda_{0} \alpha & >0 \\
\lambda_{0} \alpha & >\lambda_{0}-\lambda
\end{aligned}
$$

We now show that some T_{i} has a small number of blocks. Since $\left|T_{k}\right| \leq n$ (a rather generous estimate) there must exist an i such that $\left|T_{i+1}-T_{i}\right| \leq \frac{n}{k}$. Let $t=\frac{n}{k}$ (t will end up bounding the number of 1-blocks).

Partition T_{i} into maximal AP's with difference $2 d_{i+1}$. We call these maximal AP's 1-blocks. We will show that there are $\leq t 1$-blocks by showing a bijection between the blocks and $T_{i+1}-T_{i}$.

If $z \in T_{i}$ then $z=2 m-x$ where $x \in A \cap[1, \alpha n-1]$ and $m \in C_{i}$. By the definitions of C_{i} and C_{i+1} we know $m+d_{i+1} \in C_{i+1}$. Hence $2\left(m+d_{i+1}\right)-x \in T_{i+1}$. Note that $2\left(m+d_{i+1}\right)-x=z+2 d_{i+1}$. In short we have

$$
z \in T_{i} \Rightarrow z+2 d_{i+1} \in T_{i+1}
$$

NEED PICTURE

We can now state the bijection. Let z_{1}, \ldots, z_{m} be a block in T_{i}. We know that $z_{m}+2 d_{i+1} \notin T_{i}$ since if it was the block would have been extended to include it. However, since $z_{m} \in T_{i}$ we know $z_{m}+2 d_{i+1} \in T_{i+1}$. Hence $z_{m}+2 d_{i+1} \in T_{i+1}-T_{i}$. This is the bijection: map a block to what would be the next element if it was extended. This is clearly a bijection. Hence the number of 1-blocks is at most $t=\left|T_{i+1}-T_{i}\right| \leq n / k$.

To recap, we have

$$
|A| \leq(t+d) n_{0}+\lambda_{0}(n-|T|)
$$

with $t \leq \frac{n}{k}=O\left(\frac{n}{\log \log n}\right), d=O(\sqrt{n})$, and $|T| \geq n\left(\lambda_{0} \alpha-\left(\lambda_{0}-\lambda\right)\right)$. Hence we have

$$
|A| \leq O\left(\left(\frac{n}{\log \log n}+\sqrt{n}\right) n_{0}\right)+n \lambda_{0}\left(1-\lambda+\lambda_{0}-\lambda_{0} \alpha\right)
$$

We want this to be $<\lambda n$. The term $O\left(\left(\frac{n}{\log \log n}+\sqrt{n}\right) n_{0}\right)$ can be ignored since for n large enough this is less than any fraction of n. For the second term we need

$$
\lambda_{0}\left(1-\lambda+\lambda_{0}-\lambda_{0} \alpha\right)<\lambda
$$

We now gather together all of the conditions and see how to satisfy them all at the same time.

$$
\begin{aligned}
\alpha n & \geq n_{0} \\
\frac{n}{2} & \geq n_{0} \\
\frac{n}{2}-\alpha n & \geq \sqrt{n} \\
n-\alpha n & \geq n_{0} \\
\lambda_{0} \alpha & >\lambda_{0}-\lambda \\
\lambda_{0}\left(1-\lambda+\lambda_{0}-\lambda_{0} \alpha\right) & <\lambda
\end{aligned}
$$

We first choose λ and λ_{0} such that $\lambda_{0}-\lambda<10^{-1} \lambda_{0}^{2}$. This is possible by first picking an initial $\left(\lambda^{\prime}, \lambda_{0}^{\prime}\right)$ pair and then picking $\left(\lambda, \lambda_{0}\right)$ such that $\lambda^{\prime}<\lambda<\lambda_{0}<\lambda_{0}^{\prime}$ and $\lambda_{0}-\lambda<10^{-1}\left(\lambda^{\prime}\right)^{2}<10^{-1} \lambda_{0}^{2}$. The choice of λ_{0} determines n_{0}. We then chose $\alpha=10^{-1}$. The last two conditions are satisfied:
$\lambda_{0} \alpha>\lambda_{0}-\lambda$ becomes

$$
\begin{aligned}
10^{-1} \lambda_{0} & >10^{-1} \lambda_{0}^{2} \\
1 & >\lambda_{0}
\end{aligned}
$$

which is clearly true.

$$
\lambda_{0}\left(1-\lambda+\lambda_{0}-\lambda_{0} \alpha\right)<\lambda \text { becomes }
$$

$$
\begin{aligned}
\lambda_{0}\left(1-10^{-1} \lambda_{0}^{2}-10^{-1} \lambda_{0}\right) & <\lambda \\
\lambda_{0}-10^{-1} \lambda_{0}^{3}-10^{-1} \lambda_{0}^{2} & <\lambda \\
\lambda_{0}-\lambda-10^{-1} \lambda_{0}^{3}-10^{-1} \lambda_{0}^{2} & <0 \\
10^{-1} \lambda_{0}^{2}-10^{-1} \lambda_{0}^{3}-10^{-1} \lambda_{0}^{2} & <0 \\
-10^{-1} \lambda_{0}^{3} & <0
\end{aligned}
$$

which is clearly true.
Once $\lambda, \lambda_{0}, n_{0}$ are picked, you can easily pick n large enough to make the other inequalities hold.

2 What more is known?

The following is known.
Theorem 2.1 For every $\lambda>0$ there exists n_{0} such that for all $n \geq n_{0}, s z(n) \leq \lambda n$.
This has been improved by Heath-Brown [3] and Szemeredi [8]
Theorem 2.2 There exists c such that $s z(n)=\Omega\left(n \frac{1}{(\log n)^{c}}\right)$. (Szemeredi estimates $\left.c \leq 1 / 20\right)$.
Bourgain [1] improved this further to obtain the following.
Theorem $2.3 s z(n)=\Omega\left(n \sqrt{\frac{\log \log n}{\log n}}\right)$.

References

[1] J. Bourgain. On triples in arithmetic progression. Geometric and Functional Analysis, 9:968-984, 1999. http://www.springer.com/new+\%26+forthcoming+titles+\(default\% 29/journal/493.
[2] R. Graham, B. Rothschild, and J. Spencer. Ramsey Theory. Wiley, New York, 1990.
[3] D. Heath-Brown. Integer sets containing no arithmetic progressions. Proceedings of the London Mathematical Society, 35(2):385-394, 1987. http://www.cs.umd.edu/~gasarch/vdw/ heathbrown.pdf.
[4] K. Roth. Sur quelques ensembles d' entiers. C.R. Acad. Sci Paris, 234:388-3901, 1952.
[5] K. Roth. On certain sets of integers. Journal of the London Mathematical Society, 28:104-109, 1953. http://jlms.oxfordjournals.org/. For exposition see http://www.math.missouri. edu/~iosevich/expositorypapers.html.
[6] E. Szeméredi. On sets of integers containing no four elements in arithmetic progression. Acta Math. Sci. Hung., 20:89-104, 1974. http://www.cs.umd.edu/~gasarch/vdw.
[7] E. Szeméredi. On sets of integers containing no k elements in arithmetic progression. Acta Arith., 27:299-345, 1975. http://www.cs.umd.edu/~gasarch/vdw/szdensity.pdf.
[8] E. Szemerédi. Integer sets containing no arithmetic progressions. Acta Math. Sci. Hung., 56:155-158, 1990. http://www.cs.umd.edu/~gasarch/vdw/szlog.pdf.

