Roth's Theorem: If $A \subseteq [n]$ is large then it has a 3-AP Szemeredi's Proof by William Gasarch (gasarch@cs.umd.edu)

1 Roth's Theorem

Notation 1.1 Let $[n] = \{1, \ldots, n\}$. If $k \in \mathbb{N}$ then k-AP means an arithmetic progression of size k.

Consider the following statement:

If $A \subseteq [n]$ and |A| is 'big' then A must have a 3-AP.

This statement, made rigorous, is true. In particular, the following is true and easy: Let $n \ge 3$. If $A \subseteq [n]$ and $|A| \ge 0.7n$ then A must have a 3-AP.

Can we lower the constant 0.7? We can lower it as far as we like if we allow n to start later: Roth [2, 4, 5] proved the following using analytic means.

 $(\forall \lambda > 0)(\exists n_0 \in \mathsf{N})(\forall n \ge n_0)(\forall A \subseteq [n])[|A| \ge \lambda n \Rightarrow A \text{ has a 3-AP}].$

The analogous theorem for 4-APs was later proven by Szemeredi [2, 6] by a combinatorial proof. Szemeredi [7] later (with a much harder proof) generalized from 4 to any k.

We prove the k = 3 case using the combinatorial techniques of Szemeredi. Our proof is essentially the same as in the book *Ramsey Theory* by Graham, Rothchild, and Spencer [2].

More is known. A summary of what else is known will be presented in the next section.

Definition 1.2 Let sz(n) be the least number such that, for all $A \subseteq [n]$, if $|A| \ge sz(n)$ then A has a 3-AP. Note that if $A \subseteq [a, a + n - 1]$ and $|A| \ge sz(n)$ then A has a 3-AP. Note also that if $A \subseteq \{a, 2a, 3a, \ldots, na\}$ and $|A| \ge sz(n)$ then A has a 3-AP. More generally, if A is a subset of any equally spaced set of size n, and $|A| \ge sz(n)$, then A has a 3-AP.

We will need the following Definition and Lemma.

Definition 1.3 Let $k, e, d_1, \ldots, d_k \in \mathbb{N}$. The cube on (e, d_1, \ldots, d_k) , denoted $C(e, d_1, \ldots, d_k)$, is the set $\{e + b_1d_1 + \cdots + b_kd_k \mid b_1, \ldots, b_k \in \{0, 1\}\}$. A k-cube is a cube with k d's.

Lemma 1.4 Let I be an interval of [1, n] of length L. If $|B| \subseteq I$ then there is a cube (e, d_1, \ldots, d_k) contained in B with $k = \Omega(\log \log |B|)$ and $(\forall i)[d_i \leq L]$.

Proof:

The following procedure produces the desired cube.

- 1. Let $B_1 = B$ and $\beta_1 = |B_1|$.
- 2. Let D_1 be all $\binom{\beta_1}{2}$ positive differences of elements of B_1 . Since $B_1 \subseteq [n]$ all of the differences are in [n]. Hence some difference must occur $\binom{\beta_1}{2}/n \sim \frac{\beta_1^2}{2n}$ times. Let that difference be d_1 . Note that $d_1 \leq L$.

- 3. Let $B_2 = \{x \in B_1 : x + d_1 \in B_1\}$. Note that $|B_2| \ge \beta_1^2/2n$. Let $|B_2| = \beta_2$. Note the trivial fact that $x \in B_1 \Rightarrow x + d_1 \in B$.
- 4. Let D_2 be all $\binom{\beta_2}{2}$ positive differences of elements of B_2 . Since $B_2 \subseteq [n]$ all of the differences are in [n]. Hence some difference must occur $\binom{\beta_1}{2}/n \sim \frac{\beta_2^2}{2n}$ times. Let that difference be d_2 . Note that $d_2 \leq L$.
- 5. Let $B_3 = \{x \in B_2 : x + d_2 \in B_2\}$. Note that $|B_3| \ge \beta_2^2/2n$. Let $|B_3| = \beta_3$. Note that $x \in B_3 \Rightarrow x + d_2 \in B$ $x \in B_3 \Rightarrow x \in B_2 \Rightarrow x + d_1 \in B$ $x \in B_3 \Rightarrow x + d_2 \in B_2 \Rightarrow x + d_1 + d_2 \in B$
- 6. Keep repeating this procedure until $B_{k+2} = \emptyset$. (We leave the details of the definition to the reader.) Note that if $i \le k+1$ then

 $x \in B_i \Rightarrow x + b_1 d_1 + \dots + b_{i-1} d_{i-1} \in B$ for any $b_1, \dots, b_{i-1} \in \{0, 1\}$.

7. Let e be any element of B_{k+1} . Note that we have $e+b_1d_1+\cdots+b_kd_k \in B$ for any $b_1,\ldots,b_k \in \{0,1\}$.

We leave it as an exercise to formally show that $C(e, d_1, \ldots, d_k)$ is contained in B and that $k = \Omega(\log \log |B|)$.

We now note that the above gives a good upper bound on the Hilbert Cube Numbers.

Corollary 1.5 For k, c let H(k, c) be the least H such that for any c-coloring of $\{1, \ldots, H\}$ there is a monochromatic k-cube. Then $H(k, c) \leq c2^{2^{O(k)}}$.

Proof: Let $H = c2^{2^{Ak}}$ where we define A later. Let COL be a c-coloring of $\{1, \ldots, H\}$. Some color appears $H/c = 2^{2^{Ak}}$ times. Let B be the set of integers with that color, so $|B| = 2^{2^{Ak}}$. By Lemma 1.4 there is a monochromatic cube of size $\Omega(\log_2(\log_2(|B|))) = \Omega(Ak)$. Pick A big enough so that this term is $\geq k$.

The next lemma states that if A is 'big' and 3-free then it is somewhat uniform. There cannot be sparse intervals of A. The intuition is that if A has a sparse interval then the rest of A has to be dense to make up for it, and it might have to be so dense that it has a 3-AP.

Lemma 1.6 Let $n, n_0 \in \mathbb{N}; \lambda, \lambda_0 \in (0, 1)$. Assume $\lambda < \lambda_0$ and $(\forall m \ge n_0)[sz(m) \le \lambda_0 m]$. Let $A \subseteq [n]$ be a 3-free set such that $|A| \ge \lambda n$.

- 1. Let a, b be such that $a < b, a > n_0$, and $n b > n_0$. Then $\lambda_0(b a) n(\lambda_0 \lambda) \le |A \cap [a, b]|$.
- 2. Let a be such that $n a > n_0$. Then $\lambda_0 a n(\lambda_0 \lambda) \le |A \cap [1, a]|$.

Proof:

1) Since A is 3-free and $a \ge n_0$ and $n-b \ge n_0$ we have $|A \cap [1, a-1]| < \lambda_0(a-1) < \lambda_0 a$ and $|A \cap [b+1, n]| < \lambda_0(n-b)$. Hence

$$\begin{split} \lambda n &\leq |A| = |A \cap [1, a - 1]| + |A \cap [a, b]| + |A \cap [b + 1, n]| \\ \lambda n &\leq \lambda_0 a + |A \cap [a, b]| + \lambda_0 (n - b) \\ \lambda n - \lambda_0 n + \lambda_0 b - \lambda_0 a &\leq |A \cap [a, b]| \\ \lambda_0 (b - a) - n(\lambda_0 - \lambda) &\leq |A \cap [a, b]|. \end{split}$$

2) Since A is 3-free and $n-a > n_0$ we have $|A \cap [a+1,n]| \le \lambda_0(n-a)$. Hence

$$\begin{split} \lambda n &\leq |A| = |A \cap [1,a]| + |A \cap [a+1,n]| \\ \lambda n &\leq |A \cap [1,a]| + \lambda_0 (n-a) \\ \lambda n - \lambda_0 n + \lambda_0 a &\leq |A \cap [1,a]| \\ \lambda_0 a - (\lambda_0 - \lambda) n &\leq |A \cap [1,a]|. \end{split}$$

Lemma 1.7 Let $n, n_0 \in \mathbb{N}$ and $\lambda, \lambda_0 \in (0, 1)$. Assume that $\lambda < \lambda_0$ and that $(\forall m \ge n_0)[sz(m) \le \lambda_0 m]$. Assume that $\frac{n}{2} \ge n_0$. Let $a, L \in \mathbb{N}$ such that $a \le \frac{n}{2}$, $L < \frac{n}{2} - a$, and $a \ge n_0$. Let $A \subseteq [n]$ be a 3-free set such that $|A| \ge \lambda n$.

1. There is an interval $I \subseteq [a, \frac{n}{2}]$ of length $\leq L$ such that

$$|A \cap I| \ge \left\lfloor \frac{2L}{n-2a} (\lambda_0(\frac{n}{2}-a) - n(\lambda_0 - \lambda)) \right\rfloor.$$

2. Let α be such that $0 < \alpha < \frac{1}{2}$. If $a = \alpha n$ and $\sqrt{n} << \frac{n}{2} - \alpha n$ then there is an interval $I \subseteq [a, \frac{n}{2}]$ of length $\leq O(\sqrt{n})$ such that

$$|A \cap I| \ge \left\lfloor \frac{2\sqrt{n}}{(1-2\alpha)} (\lambda_0(\frac{1}{2} - (\lambda_0 - \lambda) - \alpha)) \right\rfloor = \Omega(\sqrt{n}).$$

Proof: By Lemma 1.6 with $b = \frac{n}{2}$, $|A \cap [a, \frac{n}{2}]| \ge \lambda_0(\frac{n}{2} - a - n(\lambda_0 - \lambda))$. Divide $[a, \frac{n}{2}]$ into $\left|\frac{n-2a}{2L}\right|$ intervals of size $\le L$. There must exist an interval I such that

$$|A \cap I| \ge \left\lfloor \frac{2L}{n-2a} (\lambda_0(\frac{n}{2}-a) - n(\lambda_0 - \lambda)) \right\rfloor$$

If $L = \lceil \sqrt{n} \rceil$ and $a = \alpha n$ then

$$\begin{aligned} |A \cap I| &\geq \left\lfloor \frac{2L}{n-2a} (\lambda_0(\frac{n}{2}-a) - n(\lambda_0 - \lambda)) \right\rfloor \\ &\geq \left\lfloor \frac{2\sqrt{n}}{n(1-2\alpha)} (\lambda_0(\frac{n}{2}-\alpha n) - n(\lambda_0 - \lambda))) \right\rfloor \\ &\geq \left\lfloor \frac{2\sqrt{n}}{(1-2\alpha)} (\lambda_0(\frac{1}{2}-\alpha) - (\lambda_0 - \lambda)) \right\rfloor = \Omega(\sqrt{n}). \end{aligned}$$

Theorem 1.8 For all λ , $0 < \lambda < 1$, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, $sz(n) \le \lambda n$.

Proof:

Let $S(\lambda)$ be the statement

there exists n_0 such that, for all $n \ge n_0$, $sz(n) \le \lambda n$.

It is a trivial exercise to show that S(0.7) is true. Let

$$C = \{\lambda \mid S(\lambda)\}.$$

C is closed upwards. Since $0.7 \in C$ we know $C \neq \emptyset$. Assume, by way of contradiction, that $C \neq (0, 1)$. Then there exists $\lambda < \lambda_0$ such that $\lambda \notin C$ and $\lambda_0 \in C$. We can take $\lambda_0 - \lambda$ to be as small as we like. Let n_0 be such that $S(\lambda_0)$ is true via n_0 . Let $n \geq n_0$ and let $A \subseteq [n]$ such that $|A| \geq \lambda n$ but A is 3-free. At the end we will fix values for the parameters that (a) allow the proof to go through, and (b) imply $|A| < \lambda n$, a contradiction.

PLAN: We will obtain a $T \subseteq \overline{A}$ that will help us. We will soon see what properties T needs to help us. Consider the bit string in $\{0,1\}^n$ that represents $T \subseteq [n]$. Say its first 30 bits looks like this:

 $T(0)T(1)T(2)T(3)\cdots T(29) = 000111111100001110010111100000$

The set A lives in the blocks of 0's of T (henceforth 0-blocks). We will bound |A| by looking at A on the 'small' and on the 'large' 0-blocks of T. Assume there are t 1-blocks. Then there are t+1 0-blocks. We call a 0-block *small* if it has $< n_0$ elements, and *big* otherwise. Assume there are t^{small} small 0-blocks and t^{big} big 0-blocks. Note that $t^{\text{small}} + t^{\text{big}} = t + 1$ so $t^{\text{small}}, t^{\text{big}} \leq t + 1$. Let the small 0-blocks be $B_1^{\text{small}}, \ldots, B_{t^{\text{small}}}^{\text{small}}$, let their union be B^{small} , let the big 0-blocks be $B_1^{\text{big}}, \ldots, B_{t^{\text{big}}}^{\text{small}}$, and let their union be B^{big} . It is easy to see that

$$|A \cap B^{\text{small}}| \le t^{\text{small}} n_0 \le (t+1)n_0.$$

Since each B_i^{big} is bigger than n_0 we must have, for all $i, |A \cap B_i^{\text{big}}| < \lambda_0 |B_i^{\text{big}}|$ (else $A \cap B_i^{\text{big}}$) has a 3-AP and hence A does). It is easy to see that

$$|A \cap B^{\mathrm{big}}| = \sum_{i=1}^{t^{\mathrm{big}}} |A \cap B_i^{\mathrm{big}}| \le \sum_{i=1}^{t^{\mathrm{big}}} \lambda_0 |B_i^{\mathrm{big}}| \le \lambda_0 \sum_{i=1}^{t^{\mathrm{big}}} |B_i^{\mathrm{big}}| \le \lambda_0 (n-|T|).$$

Since A can only live in the (big and small) 0-blocks of T we have

$$|A| = |A \cap B^{\text{small}}| + |A \cap B^{\text{big}}| \le (t+1)n_0 + \lambda_0(n-|T|).$$

In order to use this inequality to bound |A| we will need T to be big and t to be small, so we want T to be a big set that has few blocks.

If only it was that simple. Actually we can now reveal the

REAL PLAN: The real plan is similar to the easy version given above. We obtain a set $T \subseteq \overline{A}$ and *a parameter d*. A *1-block* is a maximal AP with difference *d* that is contained in *T* (that is, if *FIRST* and *LAST* are the first and last elements of the 1-block then *FIRST* – $d \notin T$ and

 $LAST + d \notin T$). A 0-block is a maximal AP with difference d that is contained in \overline{T} . Partition T into 1-blocks. Assume there are t of them.

Let [n] be partitioned into $N^0 \cup \cdots \cup N^{d-1}$ where $N_j = \{x \mid x \le n \land x \equiv j \pmod{d}\}$. Fix $j, 0 \le j \le d-1$. Consider the bit string in $\{0,1\}^{\lfloor n/d \rfloor}$ that represents $T \cap N_j$ Say the first 30 bits of $T \cap N_i$ look like

$$T(j)T(d+j)T(2d+j)T(3d+j)\cdots T(29d+j) = 00011111110000111001011111100$$

During PLAN we had an intuitive notion of what a 0-block or 1-block was. Note that if we restrict to N_j then that intuitive notion is still valid. For example the first block of 1's in the above example represents T(3d+j), T(4d+j), T(5d+j), ..., T(9d+j) which is a 1-block as defined formally.

Each 1-block is contained in a particular N_j . Let t_j be the number of 1-blocks that are contained in N_j . Note that $\sum_{j=0}^{d-1} t_j = t$. The number of 0-blocks that are in N_j is at most $t_j + 1$.

Let j be such that $0 \le j \le d-1$. By reasoning similar to that in the above PLAN we obtain

$$|A \cap N_j| \le (t_j + 1)n_0 + \lambda_0(N_j - |T|).$$

We sum both sides over all j = 0 to d - 1 to obtain

$$|A| \le (t+d)n_0 + \lambda_0(n-|T|)$$

In order to use this inequality to bound |A| we need T to be big and t, d to be small. Hence we want a big set T which when looked at mod d, for some small d, decomposes into a small number of blocks.

What is a 1-block within N_i ? For example, lets look at d = 3 and the bits sequence for T is

15 $1 \ 2 \ 3 \ 4 \ 5$ 6 7 1011 1213141617;8 9 $0 \ 0 \ 1 \ 1 \ 1 \ 1$ $0 \ 1 \ 1$ 0 1 1 1 0 1 0 0.

Note that T looked at on $N_2 \cup T$ has bit sequence

The numbers 5, 8, 11, 14 are all in T and form a 1-block in the N_2 part. Note that they also from an arithmetic progression with spacing d = 3. Also note that this is a maximal arithmetic progression with spacing d = 3 since $0 \notin T$ and $17 \notin T$. More generally 1-blocks of T within N_i are maximal arithmetic progressions with spacing d. With that in mind we can restate the kind of set T that we want.

We want a set $T \subseteq \overline{A}$ and a parameter d such that

- 1. T is big (so that $\lambda_0(n-|T|)$ is small),
- 2. d is small (see next item), and
- 3. the number of maximal arithmetic progressions of length d within T, which is the parameter t above, is small (so that $(t+d)n_0$ is small).

How do we obtain a big subset of \overline{A} ? We will obtain many pairs $x, y \in A$ such that $2y - x \leq n$. Note that since x, y, 2y - x is a 3-AP and $x, y \in A$ we must have $2y - x \in \overline{A}$.

Let α , $0 < \alpha < \frac{1}{2}$, be a parameter to be determined later. (For those keeping track, the parameters to be determined later are now λ_0 , λ , n, and α . The parameter n_0 depends on λ_0 so is not included in this list.)

We want to apply Lemma 1.7.2.b to $n, n_0, a = \alpha n$. Hence we need the following conditions.

$$\begin{array}{rcl} \alpha n & \geq n_0 \\ \frac{n}{2} & \geq n_0 \\ \frac{n}{2} - \alpha n & \geq \sqrt{n} \end{array}$$

Assuming these conditions hold, we proceed. By Lemma 1.7.b there is an interval $I \subseteq [\alpha n, \frac{n}{2}]$ of length $O(\sqrt{n})$ such that

$$|A \cap I| \ge \left\lfloor \frac{2\sqrt{n}}{(1-2\alpha)} (\lambda_0(\frac{1}{2}-\alpha) - (\lambda_0-\lambda)) \right\rfloor = \Omega(\sqrt{n}).$$

By Lemma 1.4 there is a cube $C(e, d_1, \ldots, d_k)$ contained in $|A \cap I|$ with $k = \Omega(\log \log |A \cap I|) = \Omega(\log \log \sqrt{n}) = \Omega(\log \log n)$ and $d \ge \sqrt{n}$.

For i such that $1 \leq i \leq k$ we define the following.

- 1. Define $C_0 = \{e\}$ and, for $1 \le i \le k$, define $C_i = C(e, d_1, ..., d_i)$.
- 2. T_i is the third terms of AP's with the first term in $A \cap [1, e-1]$ and the second term in C_i . Formally $T_i = \{2m - x \mid x \in A \cap [1, e-1] \land m \in C_i\}$.

Note that, for all $i, T_i \cap A = \emptyset$. Hence we look for a large T_i that can be decomposed into a small number of blocks. We will end up using $d = 2d_{i+1}$.

Note that $T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_k$. Hence to obtain a large T_i it suffices to show that T_0 is large and then any of the T_i will be large (though not necessarily consist of a small number of blocks).

Since $C_0 = \{e\}$ we have

 $T_0 = \{2m - x \mid x \in A \cap [1, e - 1] \land m \in C_0\} = \{2e - x \mid x \in A \cap [1, e - 1]\}.$

Clearly there is a bijection from $A \cap [1, e-1]$ to T_0 , hence $|T_0| = |A \cap [1, e-1]|$. Since $e \in [\alpha n, \frac{n}{2}]$ we have $|A \cap [1, e]| \ge |A \cap [1, \alpha n]|$.

We want to use Lemma 1.6.2 on $A \cap [1, \alpha n]$. Hence we need the condition

$$n - \alpha n \ge n_0.$$

By Lemma 1.6

$$|T_0| \ge |A \cap [1, \alpha n]| \ge \lambda_0 \alpha n - n(\lambda_0 - \lambda) = n(\lambda_0 \alpha - (\lambda_0 - \lambda)).$$

In order for this to be useful we need the following condition

$$\begin{array}{ll} \lambda - \lambda_0 + \lambda_0 \alpha &> 0\\ \lambda_0 \alpha &> \lambda_0 - \lambda \end{array}$$

We now show that some T_i has a small number of blocks. Since $|T_k| \leq n$ (a rather generous estimate) there must exist an *i* such that $|T_{i+1} - T_i| \leq \frac{n}{k}$. Let $t = \frac{n}{k}$ (*t* will end up bounding the number of 1-blocks).

Partition T_i into maximal AP's with difference $2d_{i+1}$. We call these maximal AP's 1-blocks. We will show that there are $\leq t$ 1-blocks by showing a bijection between the blocks and $T_{i+1} - T_i$.

If $z \in T_i$ then z = 2m - x where $x \in A \cap [1, \alpha n - 1]$ and $m \in C_i$. By the definitions of C_i and C_{i+1} we know $m + d_{i+1} \in C_{i+1}$. Hence $2(m + d_{i+1}) - x \in T_{i+1}$. Note that $2(m + d_{i+1}) - x = z + 2d_{i+1}$. In short we have

$$z \in T_i \Rightarrow z + 2d_{i+1} \in T_{i+1}.$$

NEED PICTURE

We can now state the bijection. Let z_1, \ldots, z_m be a block in T_i . We know that $z_m + 2d_{i+1} \notin T_i$ since if it was the block would have been extended to include it. However, since $z_m \in T_i$ we know $z_m + 2d_{i+1} \in T_{i+1}$. Hence $z_m + 2d_{i+1} \in T_{i+1} - T_i$. This is the bijection: map a block to what would be the next element if it was extended. This is clearly a bijection. Hence the number of 1-blocks is at most $t = |T_{i+1} - T_i| \le n/k$.

To recap, we have

$$|A| \le (t+d)n_0 + \lambda_0(n-|T|)$$

with $t \le \frac{n}{k} = O(\frac{n}{\log \log n}), d = O(\sqrt{n}),$ and $|T| \ge n(\lambda_0 \alpha - (\lambda_0 - \lambda)).$ Hence we have

$$|A| \le O((\frac{n}{\log \log n} + \sqrt{n})n_0) + n\lambda_0(1 - \lambda + \lambda_0 - \lambda_0\alpha).$$

We want this to be $\langle \lambda n$. The term $O((\frac{n}{\log \log n} + \sqrt{n})n_0)$ can be ignored since for n large enough this is less than any fraction of n. For the second term we need

$$\lambda_0(1 - \lambda + \lambda_0 - \lambda_0 \alpha) < \lambda$$

We now gather together all of the conditions and see how to satisfy them all at the same time.

$$\begin{array}{rcl} \alpha n & \geq n_{0} \\ & \frac{n}{2} & \geq n_{0} \\ & \frac{n}{2} - \alpha n & \geq \sqrt{n} \\ & n - \alpha n & \geq n_{0} \\ & \lambda_{0} \alpha & > \lambda_{0} - \lambda \\ & \lambda_{0} (1 - \lambda + \lambda_{0} - \lambda_{0} \alpha) & < \lambda \end{array}$$

We first choose λ and λ_0 such that $\lambda_0 - \lambda < 10^{-1}\lambda_0^2$. This is possible by first picking an initial (λ', λ'_0) pair and then picking (λ, λ_0) such that $\lambda' < \lambda < \lambda_0 < \lambda'_0$ and $\lambda_0 - \lambda < 10^{-1}(\lambda')^2 < 10^{-1}\lambda_0^2$. The choice of λ_0 determines n_0 . We then chose $\alpha = 10^{-1}$. The last two conditions are satisfied:

 $\lambda_0 \alpha > \lambda_0 - \lambda$ becomes

$$\begin{array}{rcl} 10^{-1}\lambda_0 &> 10^{-1}\lambda_0^2 \\ 1 &> \lambda_0 \end{array}$$

which is clearly true.

 $\lambda_0(1-\lambda+\lambda_0-\lambda_0\alpha) < \lambda$ becomes

$$\begin{array}{rcl} \lambda_0 (1 - 10^{-1}\lambda_0^2 - 10^{-1}\lambda_0) &< \lambda \\ \lambda_0 - 10^{-1}\lambda_0^3 - 10^{-1}\lambda_0^2 &< \lambda \\ \lambda_0 - \lambda - 10^{-1}\lambda_0^3 - 10^{-1}\lambda_0^2 &< 0 \\ 10^{-1}\lambda_0^2 - 10^{-1}\lambda_0^3 - 10^{-1}\lambda_0^2 &< 0 \\ &- 10^{-1}\lambda_0^3 &< 0 \end{array}$$

which is clearly true.

Once λ, λ_0, n_0 are picked, you can easily pick n large enough to make the other inequalities hold.

2 What more is known?

The following is known.

Theorem 2.1 For every $\lambda > 0$ there exists n_0 such that for all $n \ge n_0$, $sz(n) \le \lambda n$.

This has been improved by Heath-Brown [3] and Szemeredi [8]

Theorem 2.2 There exists c such that $sz(n) = \Omega(n \frac{1}{(\log n)^c})$. (Szemeredi estimates $c \leq 1/20$).

Bourgain [1] improved this further to obtain the following.

Theorem 2.3 $sz(n) = \Omega(n\sqrt{\frac{\log \log n}{\log n}}).$

References

- J. Bourgain. On triples in arithmetic progression. Geometric and Functional Analysis, 9:968-984, 1999. http://www.springer.com/new+%26+forthcoming+titles+%28default% 29/journal/493.
- [2] R. Graham, B. Rothschild, and J. Spencer. Ramsey Theory. Wiley, New York, 1990.
- [3] D. Heath-Brown. Integer sets containing no arithmetic progressions. Proceedings of the London Mathematical Society, 35(2):385-394, 1987. http://www.cs.umd.edu/~gasarch/vdw/ heathbrown.pdf.
- [4] K. Roth. Sur quelques ensembles d'entiers. C.R. Acad. Sci Paris, 234:388-3901, 1952.
- [5] K. Roth. On certain sets of integers. Journal of the London Mathematical Society, 28:104-109, 1953. http://jlms.oxfordjournals.org/. For exposition see http://www.math.missouri.edu/~iosevich/expositorypapers.html.
- [6] E. Szeméredi. On sets of integers containing no four elements in arithmetic progression. Acta Math. Sci. Hung., 20:89-104, 1974. http://www.cs.umd.edu/~gasarch/vdw.

- [7] E. Szeméredi. On sets of integers containing no k elements in arithmetic progression. Acta Arith., 27:299-345, 1975. http://www.cs.umd.edu/~gasarch/vdw/szdensity.pdf.
- [8] E. Szemerédi. Integer sets containing no arithmetic progressions. Acta Math. Sci. Hung., 56:155-158, 1990. http://www.cs.umd.edu/~gasarch/vdw/szlog.pdf.