
Beck’s Surplus Tic Tac Toe Game
Exposition by William Gasarch (gasarch@cs.umd.edu)

1 Introduction

Consider the following game:
Two players Mark (for Maker) and Betty (for Breaker) alternate (Mark going first) placing M ’s

and B’s on an n × n checkerboard. Mark wins if he can get n M ’s in either the same row or the
same column (getting n on the diagonal does not give him a win). Betty wins if she prevents him
from doing this.

The above game is stupid.

Exercise 1 Show that for n ≥ 3 Betty wins the above game.

Mark cannot win this game. But what if we lower our expectations? Consider the following
game

Definition 1.1 Let f : N → N. The tic-tac-toe-f(n)-surplus game (henceforth ttt-f(n) game) is
as follows. Two players Mark (for Maker) and Betty (for Breaker) alternate (Mark going first)
placing M ’s and B’s on an n × n checkerboard. Mark wins if he can get n

2 + f(n) in either the
same row or the same column (getting n

2 + f(n) on the diagonal does not give him a win). Betty
wins if she prevents him from doing this.

Question: For what value of f(n) does Mark have a winning strategy? For what value of f(n)
does Betty have a winning strategy?

We show that Ω(
√

n) ≤ f(n) ≤ O(
√

n log n). This is a result of Beck from [1]; however, we give
a self contained proof. In addition, our exposition is online and hence available to anyone.

Definition 1.2 RC is the set of rows and column. We assume that RC is ordered so that one can
refer to the least element of RC such that . . ..

2 Mark Can Achieve Surplus Ω(
√

n)

Theorem 2.1 There exists constants c ∈ R+ and n0 ∈ N such that, for all n ≥ n0, there is a
strategy by which Mark can win the ttt-c

√
n game.

Proof:
We define a potential function which will measure how well Mark is doing. Mark’s strategy will

be to (essentially)increase its value as much as possible.

Let 0 < ε < 1 be a parameter to be named later (it will be Θ
(

1√
n

)
).

A turn is a pair of moves- one by Mark and the response by Betty. We will assume that n is
even to avoid half-turns (Mark goes and there is no response from Betty since the game is over).

Let t be how many turns have already been made. Let Mt(A) be how many M ’s are in A after
t turns. Let Bt(A) be how many B’s are in A after t turns. We define the potential function:
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Φt =
∑

A∈RC

(1 + ε)Mt(A)(1− ε)Bt(A).

Here is the strategy for M . Assume that t turns have already occurred (t could be 0).
Strategy for Mark: There are two possibilities.

1. There is some A ∈ RC such that Mt(A)−Bt(A) ≥ 2c
√

n. Let A be such that Mt(A)−Bt(A)
is maximized (if this A is non unique take the least such one). Place an M in A.

2. There is no such A. Play on an element of RC such that Φt+1 − Φt is maximized. (If there
is a tie then use the least such element of RC.)

Assume Mark has played this strategy. There are two cases; however, we will show that Case
2 does not occur.
Case 1: There is a stage t such that the first possibility of the strategy occurs. Let t0 be the least
such t. Let A be the element of RC that Mark places an M in during turn t. It is easy to see that
Mark will play in A for the rest of the game. It is also easy to see that

Mn2/2(A)−Bn2/2(A) ≥ 2c
√

n.

Since

Mn2/2(A) + Bn2/2(A) = n

We have

Mn2/2(A) ≥ n

2
+ c
√

n.

Case 2: There is no such stage t. Let ∆ be defined as

∆ = max
t,A

Mt(A)−Bt(A)
2

.

Note that, for all t, for all A,

Mt(A)−Bt(A) ≤ 2∆.

We find a lower bound on Φn2/2 based on ∆. We will then find an (easy) upper bound on Φn2/2.
We will use this upper and lower bound to get a lower bound on ∆.

The potential will decrease over time, but we need to show that it does not decrease too much.
Let t + 1 ≤ n2

2 . How big can Φt+1 − Φt be?
We will need the following fact:

Fact 1:

1. If Mark puts the M on the intersection of row A1 and column A2 the potential function goes
up by

ε((1 + ε)Mt(A1)(1− ε)Bt(A1) + (1 + ε)Mt(A2)(1− ε)Bt(A2))
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2. If Mark puts the M on the intersection of row A1 and column A2, and then Betty puts the
B on the intersection of row A3 and column A4, A1 6= A3, A2 6= A4 then

(1+ε)Mt(A1)(1−ε)Bt(A1)+(1+ε)Mt(A2)(1−ε)Bt(A2)) ≥ (1+ε)Mt(A3)(1−ε)Bt(A3)+(1+ε)Mt(A4)(1−ε)Bt(A4))

3. If Mark puts the M on the intersection of row A1 and column A2, and then Betty puts the
B on the intersection of row A1 and column A4, A2 6= A4 then

+
(

ε(1 + ε)Mt(A2)(1− ε)Bt(A2) − ε(1 + ε)Mt(A4)(1− ε)Bt(A4)

)
Proof of Fact 1:
1)

Marks move only affects the potential on row A1 and column A2. The potential goes up by

(1+ε)Mt(A1)+1(1−ε)Bt(A1)+(1+ε)Mt(A2)+1(1−ε)Bt(A2)−(1+ε)Mt(A1)(1−ε)Bt(A1)−(1+ε)Mt(A2)(1−ε)Bt(A2)

=

(1 + ε)Mt(A1)(1− ε)Bt(A1)(1 + ε− 1) + (1 + ε)Mt(A2)(1− ε)Bt(A2)(1 + ε− 1)

=

ε(1 + ε)Mt(A1)(1− ε)Bt(A1)) + ε(1 + ε)Mt(A2)(1− ε)Bt(A2))

=

ε((1 + ε)Mt(A1)(1− ε)Bt(A1) + (1 + ε)Mt(A2)(1− ε)Bt(A2))

2) Since Mark’s move maximizes potential it must create a bigger change of potential then the
move that puts a marker at the intersection of row A3 and column A4. The inequality follows from
this observation and Item 1.

3) This is a calculation similar to items 1 and 2 above.
End of Proof of Fact 1

Case 1: A1 6= A4 and A2 6= A4. We look at Φt −Φt+1. We need only look at the parts of the sum
that involve A1, A2, A3, A4

Φt+1 − Φt =

(1 + ε)Mt(A1)+1(1− ε)Bt(A1) − (1 + ε)Mt(A1)(1− ε)Bt(A1)

+

(1 + ε)Mt(A2)+1(1− ε)Bt(A2) − (1 + ε)Mt(A2)(1− ε)Bt(A2)
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+

(1 + ε)Mt(A3)(1− ε)Bt(A3)+1 − (1 + ε)Mt(A3)(1− ε)Bt(A3)

+

(1 + ε)Mt(A4)(1− ε)Bt(A4)+1 − (1 + ε)Mt(A4)(1− ε)Bt(A4)

=

(1 + ε)Mt(A1)(1− ε)Bt(A1)(1 + ε− 1)

+

(1 + ε)Mt(A2)(1− ε)Bt(A2)(1 + ε− 1)

+

(1 + ε)Mt(A3)(1− ε)Bt(A3)(1− ε− 1)

+

(1 + ε)Mt(A4)(1− ε)Bt(A4)(1− ε− 1)

=

ε(1 + ε)Mt(A1)(1− ε)Bt(A1)

+

ε(1 + ε)Mt(A2)(1− ε)Bt(A2)

−ε(1 + ε)Mt(A3)(1− ε)Bt(A3)

−ε(1 + ε)Mt(A4)(1− ε)Bt(A4)

= ε

(
(1 + ε)Mt(A1)(1− ε)Bt(A1) + ε(1 + ε)Mt(A2)(1− ε)Bt(A2)

−(1 + ε)Mt(A3)(1− ε)Bt(A3) − (1 + ε)Mt(A4)(1− ε)Bt(A4))
)

This quantity is ≥ 0 by Fact 1.
Case 2: A1 = A3. Only rows A1, A3 and column A4 are affected by the turn.

Φt+1 − Φt =

(1 + ε)Mt(A1)+1(1− ε)Bt(A1)+1 − (1 + ε)Mt(A1)(1− ε)Bt(A1)

+
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(1 + ε)Mt(A2)+1(1− ε)Bt(A2) − (1 + ε)Mt(A2)(1− ε)Bt(A2)

+

(1 + ε)Mt(A4)(1− ε)Bt(A4)+1 − (1 + ε)Mt(A4)(1− ε)Bt(A4)

=

(1 + ε)Mt(A1)(1− ε)Bt(A1)((1 + ε)(1− ε)− 1)

+

(1 + ε)Mt(A2)(1− ε)Bt(A2)(1 + ε− 1)

+

(1 + ε)Mt(A4)(1− ε)Bt(A4)(1− ε− 1)

=

−ε2(1 + ε)Mt(A1)(1− ε)Bt(A1)

+
(

ε(1 + ε)Mt(A2)(1− ε)Bt(A2) − ε(1 + ε)Mt(A4)(1− ε)Bt(A4)

)
The expression in big parenthesis must be ≥ 0 by Fact 1.2.
So we have

Φt+1 − Φt ≥ −ε2(1 + ε)Mt(A1)(1− ε)Bt(A1)

Φt+1 ≥ Φt − ε2(1 + ε)Mt(A1)(1− ε)Bt(A1)

We want to get this in terms of ∆. By the definition of ∆

Mt(A1)−Bt(A1) ≤ 2∆

Let Zt = Mt(A1)+Bt(A1)
2 . Then

M(A1) ≤ Zt + ∆
B(A1) ≥ Zt −∆

Hence

Φt+1 ≥ Φt − ε2(1 + ε)Zt+∆(1− ε)Zt−∆ ≥ Φt − ε2
(

1+ε
1−ε

)∆

(1− ε2)Zt ≥ Φt − ε2
(

1+ε
1−ε

)∆

We use an approximation to simplify this expression. Note that
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1 + ε

1− ε
= 1 +

2ε

1− ε
∼ e2ε.

Hence we have

Φt+1 ≥ Φt − ε2e2ε∆

Φ0 =
∑

A∈RC

(1 + ε)M0(A)(1− ε)B0(A) =
∑

A∈RC

(1 + ε)0(1− ε)0 = 2n.

Hence

Φn2/2 ≥ 2n− ε2e2ε∆ n2

2
= 2n− e2ε∆ ε2n2

2
.

We will now pick ε though it will be in terms of another constant. Let ε =
√

2β/n where β will
be chosen later.

Hence we have

Φn2/2 ≥ 2n− e∆
√

8β/nβn.

We also have an upper bound on Φn2/2.

Φn2/2 =
∑

A∈RC

(1 + ε)Mn2/2(A)(1− ε)Bn2/2(A)

By the definition of ∆

Mn2/2(A) ≤ n
2 + ∆

Bn2/2(A) ≥ n
2 −∆

Hence

Φn2/2 =
∑

A∈RC(1 + ε)Mn2/2(A)(1− ε)Bn2/2(A) ≤
∑

A∈RC(1 + ε)n/2+∆(1− ε)n/2−∆

≤ 2n(1 + ε)n/2+∆(1− ε)n/2−∆

≤ 2n

(
1+ε
1−ε

)∆

(1− ε2)n/2

We use two approximations to simplify this expression.
From above we have

1 + ε

1− ε
= 1 +

2ε

1− ε
∼ e2ε.

We also use

1− ε2 = e−ε2

Hence we have
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Φn2/2 ≤ 2ne2ε∆e−ε2n/2

We now use the definition of ε to obtain

Φn2/2 ≤ 2ne∆
√

8β/ne−β

Combining the upper and lower bounds on Φn2/2 we obtain the following.

2n− e∆
√

8β/nβn ≤ 2ne∆
√

8β/ne−β

2− e∆
√

8β/nβ ≤ 2e∆
√

8β/ne−β

2 ≤ e∆
√

8β/nβ + 2e∆
√

8β/ne−β

2 ≤ e∆
√

8β/n(β + 2e−β)

2
β + 2e−β

≤ e
∆

q
8β
n

ln
(

2
β + 2e−β

)
≤ ∆

√
8β

n

∆ ≥
√

n

8β
ln

(
2

β + 2e−β

)

∆ ≥
√

1
8β

ln
(

2
β + 2e−β

)√
n

Pick β so that the constant in front of the
√

n is positive. The reader may want to pick β so as
to maximize the constant.

Let d be such that ∆ ≥ d
√

n. By the definition of ∆ there exists a t and an A such that

Mt(A)−Bt(A) = 2∆ ≥ 2d
√

n.

Let c = d
2 . Hence

Mt(A)−Bt(A) ≥ c
√

n.

At this stage t the first part of the strategy will happen. Hence this case, case 2, cannot occur.
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3 Betty Can Make Sure Surplus ≤ O(
√

n ln n)

(This section will only sketch the proof.)

Theorem 3.1 There exist constants c ∈ R+ and n ∈ N such that, for all n ≥ n0, there is a strategy
by which Betty can win the ttt-c

√
n lnn game.

Proof:
We let Betty go first in this game. This will only affect the constants in the asymptotics.
We define a potential function which will measure how well Mark is doing. Betty’s strategy will

be to decrease its value as much as possible.

Let 0 < ε < 1 be a parameter to be named later (it will be Θ
(√

ln n
n

)
).

A turn is a pair of moves- one by Betty and the response by Mark. We will assume that n is
even to avoid half-turns (Betty goes and there is no response from Mark since the game is over).

Let t be how many turns have already been made. Let Mt(A) be how many M ’s are in A after
t turns. Let Bt(A) be how many B’s are in A after t turns. We define the potential function:

Φt =
∑

A∈RC

(1 + ε)Mt(A)−((1+ε)n/2)(1− ε)Bt(A)−((1−ε)n/2).

Strategy for Betty: Assume that t turns have already occurred (t could be 0). Play on an
element of RC such that Φt −Φt+1 is maximized. (If there is a tie then use the least such element
of RC.)
Claim 1: If Betty plays the strategy above then the potential always either stays the same or
decreases.
Proof of Claim 1:

This is a calculation that we will omit. (This is what I meant when I said we would sketch the
proof)
End of Proof of Claim 1

Using (1 + ε) ∼ eε and (1− ε) ∼ e−ε we obtain the following.

Φ0 =
∑

A∈RC(1 + ε)−((1+ε)n/2)(1− ε)−((1−ε)n/2) = 2n(1 + ε)−((1+ε)n/2)(1− ε)−((1−ε)n/2)

∼ 2ne−ε2n

We will now set ε though it will depend on a constant. Let ε =
√

β ln n
n . Note that

2ne−ε2n = 2ne−β ln n = 2n× n−β = 2n1−β.

For the next few equations let M(A) = Mn2/2(A) and B(A) = Bn2/2(A).
Recall that

Φn2/2 =
∑

A∈RC

(1 + ε)M(A)−((1+ε)n/2)(1− ε)B(A)−((1−ε)n/2).

Also recall that Φn2/2 ≤ Φ0.
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If there is an A such that

M(A) ≥ n

2
+

1 + ε

2
=

n

2
+ Θ

(√
log n

n

)
that summand will be greater than 1. Hence if Φn2/2 < 1 then there can be no such A. Since
Φn2/2 ≤ Φ0 all we need is Φ0 < 1. We can accomplish that by taking β < 1.

4 This section has a proof of something I know is false- Help me
if you can

When I was trying to derive what ε should be I got results that did not make sense. It may be an
arithmetic mistake or I may have a fundamental misunderstanding of something. If you can tell
me whats wrong I will be enlightened.

Assume Betty has played this strategy. Let ∆ be defined as

∆ = max
A∈RC

Mn2/2(A)−Bn2/2(A).

We use the approximation (1 + x) ∼ ex on Φn2/2.

Φn2/2 =
∑

A∈RC(1 + ε)M(A)−((1+ε)n/2)(1− ε)B(A)−((1−ε)n/2)

∼
∑

A∈RC eε(M(A)−((1+ε)n/2))e−ε(B(A)−((1−ε)n/2))

∼
∑

A∈RC eε(M(A)−B(A))−ε2n

Let A be the row where M(A) = B(A) = 2∆. The sum above is greater than one of its
summands. Hence

Φn2/2 ≥ e2ε∆−ε2n

Since Φn2/2 ≤ Φ0 we have

e2ε∆−ε2n ≤ Φn2/2 ≤ Φ0 ≤ 2ne−ε2n

KEY: the e−ε2n cancel out. This leads to results that do not make sense.

e2ε∆ ≤ 2n

2ε∆ ≤ ln(2n)

∆ ≤ ln(2n)
ε

Gee, I could just take ε to be (say) 1
ln(2n) and get that

∆ ≤ O((log n)2).

This contradicts Theorem 2.1.
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One possible Fix: I cheated a bit by letting Betty go first. What if Mark goes first? The proof
would start the potential after Mark’s first move. Φ0 does start out a little bigger, but this did
not help since I still got all of the e−ε2 to cancel out. Also, for large n, the player who goes first
shouldn’t matter.

Another possible fix: The proof that the potential never increases— did that impose bounds
on ε. The proof by Beck didn’t seem to.

Another possible fix: Do the approximation more carefully. This wouldn’t help anything since
the approximation I am using is correct for large n.
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