Beck's Surplus Tic Tac Toe Game Exposition by William Gasarch (gasarch@cs.umd.edu)

1 Introduction

Consider the following game:
Two players Mark (for Maker) and Betty (for Breaker) alternate (Mark going first) placing M's and B 's on an $n \times n$ checkerboard. Mark wins if he can get $n M$'s in either the same row or the same column (getting n on the diagonal does not give him a win). Betty wins if she prevents him from doing this.

The above game is stupid.
Exercise 1 Show that for $n \geq 3$ Betty wins the above game.
Mark cannot win this game. But what if we lower our expectations? Consider the following game

Definition 1.1 Let $f: \mathrm{N} \rightarrow \mathrm{N}$. The tic-tac-toe- $f(n)$-surplus game (henceforth ttt- $f(n)$ game) is as follows. Two players Mark (for Maker) and Betty (for Breaker) alternate (Mark going first) placing M 's and B 's on an $n \times n$ checkerboard. Mark wins if he can get $\frac{n}{2}+f(n)$ in either the same row or the same column (getting $\frac{n}{2}+f(n)$ on the diagonal does not give him a win). Betty wins if she prevents him from doing this.

Question: For what value of $f(n)$ does Mark have a winning strategy? For what value of $f(n)$ does Betty have a winning strategy?

We show that $\Omega(\sqrt{n}) \leq f(n) \leq O(\sqrt{n \log n})$. This is a result of Beck from [1]; however, we give a self contained proof. In addition, our exposition is online and hence available to anyone.

Definition 1.2 $R C$ is the set of rows and column. We assume that $R C$ is ordered so that one can refer to the least element of $R C$ such that

2 Mark Can Achieve Surplus $\Omega(\sqrt{n})$

Theorem 2.1 There exists constants $c \in \mathbf{R}^{+}$and $n_{0} \in \mathbf{N}$ such that, for all $n \geq n_{0}$, there is a strategy by which Mark can win the $t t t-c \sqrt{n}$ game.

Proof:

We define a potential function which will measure how well Mark is doing. Mark's strategy will be to (essentially)increase its value as much as possible.

Let $0<\epsilon<1$ be a parameter to be named later (it will be $\Theta\left(\frac{1}{\sqrt{n}}\right)$).
A turn is a pair of moves- one by Mark and the response by Betty. We will assume that n is even to avoid half-turns (Mark goes and there is no response from Betty since the game is over).

Let t be how many turns have already been made. Let $M_{t}(A)$ be how many M 's are in A after t turns. Let $B_{t}(A)$ be how many B 's are in A after t turns. We define the potential function:

$$
\Phi_{t}=\sum_{A \in R C}(1+\epsilon)^{M_{t}(A)}(1-\epsilon)^{B_{t}(A)}
$$

Here is the strategy for M. Assume that t turns have already occurred (t could be 0).
Strategy for Mark: There are two possibilities.

1. There is some $A \in R C$ such that $M_{t}(A)-B_{t}(A) \geq 2 c \sqrt{n}$. Let A be such that $M_{t}(A)-B_{t}(A)$ is maximized (if this A is non unique take the least such one). Place an M in A.
2. There is no such A. Play on an element of $R C$ such that $\Phi_{t+1}-\Phi_{t}$ is maximized. (If there is a tie then use the least such element of $R C$.)

Assume Mark has played this strategy. There are two cases; however, we will show that Case 2 does not occur.
Case 1: There is a stage t such that the first possibility of the strategy occurs. Let t_{0} be the least such t. Let A be the element of $R C$ that Mark places an M in during turn t. It is easy to see that Mark will play in A for the rest of the game. It is also easy to see that

$$
M_{n^{2} / 2}(A)-B_{n^{2} / 2}(A) \geq 2 c \sqrt{n}
$$

Since

$$
M_{n^{2} / 2}(A)+B_{n^{2} / 2}(A)=n
$$

We have

$$
M_{n^{2} / 2}(A) \geq \frac{n}{2}+c \sqrt{n}
$$

Case 2: There is no such stage t. Let Δ be defined as

$$
\Delta=\max _{t, A} \frac{M_{t}(A)-B_{t}(A)}{2}
$$

Note that, for all t, for all A,

$$
M_{t}(A)-B_{t}(A) \leq 2 \Delta
$$

We find a lower bound on $\Phi_{n^{2} / 2}$ based on Δ. We will then find an (easy) upper bound on $\Phi_{n^{2} / 2}$. We will use this upper and lower bound to get a lower bound on Δ.

The potential will decrease over time, but we need to show that it does not decrease too much.
Let $t+1 \leq \frac{n^{2}}{2}$. How big can $\Phi_{t+1}-\Phi_{t}$ be?
We will need the following fact:

Fact 1:

1. If Mark puts the M on the intersection of row A_{1} and column A_{2} the potential function goes up by

$$
\epsilon\left((1+\epsilon)^{M_{t}\left(A_{1}\right)}(1-\epsilon)^{B_{t}\left(A_{1}\right)}+(1+\epsilon)^{M_{t}\left(A_{2}\right)}(1-\epsilon)^{B_{t}\left(A_{2}\right)}\right)
$$

2. If Mark puts the M on the intersection of row A_{1} and column A_{2}, and then Betty puts the B on the intersection of row A_{3} and column $A_{4}, A_{1} \neq A_{3}, A_{2} \neq A_{4}$ then

$$
\left.\left.(1+\epsilon)^{M_{t}\left(A_{1}\right)}(1-\epsilon)^{B_{t}\left(A_{1}\right)}+(1+\epsilon)^{M_{t}\left(A_{2}\right)}(1-\epsilon)^{B_{t}\left(A_{2}\right)}\right) \geq(1+\epsilon)^{M_{t}\left(A_{3}\right)}(1-\epsilon)^{B_{t}\left(A_{3}\right)}+(1+\epsilon)^{M_{t}\left(A_{4}\right)}(1-\epsilon)^{B_{t}\left(A_{4}\right)}\right)
$$

3. If Mark puts the M on the intersection of row A_{1} and column A_{2}, and then Betty puts the B on the intersection of row A_{1} and column $A_{4}, A_{2} \neq A_{4}$ then

$$
+\left(\epsilon(1+\epsilon)^{M_{t}\left(A_{2}\right)}(1-\epsilon)^{B_{t}\left(A_{2}\right)}-\epsilon(1+\epsilon)^{M_{t}\left(A_{4}\right)}(1-\epsilon)^{B_{t}\left(A_{4}\right)}\right)
$$

Proof of Fact 1:

1)

Marks move only affects the potential on row A_{1} and column A_{2}. The potential goes up by

$$
\begin{gathered}
(1+\epsilon)^{M_{t}\left(A_{1}\right)+1}(1-\epsilon)^{B_{t}\left(A_{1}\right)}+(1+\epsilon)^{M_{t}\left(A_{2}\right)+1}(1-\epsilon)^{B_{t}\left(A_{2}\right)}-(1+\epsilon)^{M_{t}\left(A_{1}\right)}(1-\epsilon)^{B_{t}\left(A_{1}\right)}-(1+\epsilon)^{M_{t}\left(A_{2}\right)}(1-\epsilon)^{B_{t}\left(A_{2}\right)} \\
= \\
= \\
= \\
= \\
\\
= \\
\\
\end{gathered}
$$

2) Since Mark's move maximizes potential it must create a bigger change of potential then the move that puts a marker at the intersection of row A_{3} and column A_{4}. The inequality follows from this observation and Item 1.
3) This is a calculation similar to items 1 and 2 above.

End of Proof of Fact 1

Case 1: $A_{1} \neq A_{4}$ and $A_{2} \neq A_{4}$. We look at $\Phi_{t}-\Phi_{t+1}$. We need only look at the parts of the sum that involve $A_{1}, A_{2}, A_{3}, A_{4}$

$$
\begin{aligned}
& \Phi_{t+1}-\Phi_{t}= \\
& + \\
& (1+\epsilon)^{M_{t}\left(A_{1}\right)+1}(1-\epsilon)^{B_{t}\left(A_{1}\right)}-(1+\epsilon)^{M_{t}\left(A_{1}\right)}(1-\epsilon)^{B_{t}\left(A_{1}\right)} \\
& (1+\epsilon)^{M_{t}\left(A_{2}\right)+1}(1-\epsilon)^{B_{t}\left(A_{2}\right)}-(1+\epsilon)^{M_{t}\left(A_{2}\right)}(1-\epsilon)^{B_{t}\left(A_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& + \\
& (1+\epsilon)^{M_{t}\left(A_{3}\right)}(1-\epsilon)^{B_{t}\left(A_{3}\right)+1}-(1+\epsilon)^{M_{t}\left(A_{3}\right)}(1-\epsilon)^{B_{t}\left(A_{3}\right)} \\
& + \\
& (1+\epsilon)^{M_{t}\left(A_{4}\right)}(1-\epsilon)^{B_{t}\left(A_{4}\right)+1}-(1+\epsilon)^{M_{t}\left(A_{4}\right)}(1-\epsilon)^{B_{t}\left(A_{4}\right)} \\
& = \\
& (1+\epsilon)^{M_{t}\left(A_{1}\right)}(1-\epsilon)^{B_{t}\left(A_{1}\right)}(1+\epsilon-1) \\
& + \\
& (1+\epsilon)^{M_{t}\left(A_{2}\right)}(1-\epsilon)^{B_{t}\left(A_{2}\right)}(1+\epsilon-1) \\
& + \\
& (1+\epsilon)^{M_{t}\left(A_{3}\right)}(1-\epsilon)^{B_{t}\left(A_{3}\right)}(1-\epsilon-1) \\
& + \\
& (1+\epsilon)^{M_{t}\left(A_{4}\right)}(1-\epsilon)^{B_{t}\left(A_{4}\right)}(1-\epsilon-1) \\
& = \\
& \epsilon(1+\epsilon)^{M_{t}\left(A_{1}\right)}(1-\epsilon)^{B_{t}\left(A_{1}\right)} \\
& + \\
& \epsilon(1+\epsilon)^{M_{t}\left(A_{2}\right)}(1-\epsilon)^{B_{t}\left(A_{2}\right)} \\
& -\epsilon(1+\epsilon)^{M_{t}\left(A_{3}\right)}(1-\epsilon)^{B_{t}\left(A_{3}\right)} \\
& -\epsilon(1+\epsilon)^{M_{t}\left(A_{4}\right)}(1-\epsilon)^{B_{t}\left(A_{4}\right)} \\
& =\epsilon\left((1+\epsilon)^{M_{t}\left(A_{1}\right)}(1-\epsilon)^{B_{t}\left(A_{1}\right)}+\epsilon(1+\epsilon)^{M_{t}\left(A_{2}\right)}(1-\epsilon)^{B_{t}\left(A_{2}\right.}\right) \\
& \left.\left.-(1+\epsilon)^{M_{t}\left(A_{3}\right)}(1-\epsilon)^{B_{t}\left(A_{3}\right)}-(1+\epsilon)^{M_{t}\left(A_{4}\right)}(1-\epsilon)^{B_{t}\left(A_{4}\right)}\right)\right)
\end{aligned}
$$

This quantity is ≥ 0 by Fact 1 .
Case 2: $A_{1}=A_{3}$. Only rows A_{1}, A_{3} and column A_{4} are affected by the turn. $\Phi_{t+1}-\Phi_{t}=$

$$
(1+\epsilon)^{M_{t}\left(A_{1}\right)+1}(1-\epsilon)^{B_{t}\left(A_{1}\right)+1}-(1+\epsilon)^{M_{t}\left(A_{1}\right)}(1-\epsilon)^{B_{t}\left(A_{1}\right)}
$$

$+$

$$
(1+\epsilon)^{M_{t}\left(A_{2}\right)+1}(1-\epsilon)^{B_{t}\left(A_{2}\right)}-(1+\epsilon)^{M_{t}\left(A_{2}\right)}(1-\epsilon)^{B_{t}\left(A_{2}\right)}
$$

$+$

$$
(1+\epsilon)^{M_{t}\left(A_{4}\right)}(1-\epsilon)^{B_{t}\left(A_{4}\right)+1}-(1+\epsilon)^{M_{t}\left(A_{4}\right)}(1-\epsilon)^{B_{t}\left(A_{4}\right)}
$$

$=$

$$
(1+\epsilon)^{M_{t}\left(A_{1}\right)}(1-\epsilon)^{B_{t}\left(A_{1}\right)}((1+\epsilon)(1-\epsilon)-1)
$$

$+$

$$
(1+\epsilon)^{M_{t}\left(A_{2}\right)}(1-\epsilon)^{B_{t}\left(A_{2}\right)}(1+\epsilon-1)
$$

$+$

$$
(1+\epsilon)^{M_{t}\left(A_{4}\right)}(1-\epsilon)^{B_{t}\left(A_{4}\right)}(1-\epsilon-1)
$$

$=$

$$
\begin{gathered}
-\epsilon^{2}(1+\epsilon)^{M_{t}\left(A_{1}\right)}(1-\epsilon)^{B_{t}\left(A_{1}\right)} \\
+\left(\epsilon(1+\epsilon)^{M_{t}\left(A_{2}\right)}(1-\epsilon)^{B_{t}\left(A_{2}\right)}-\epsilon(1+\epsilon)^{M_{t}\left(A_{4}\right)}(1-\epsilon)^{B_{t}\left(A_{4}\right)}\right)
\end{gathered}
$$

The expression in big parenthesis must be ≥ 0 by Fact 1.2.
So we have

$$
\begin{gathered}
\Phi_{t+1}-\Phi_{t} \geq-\epsilon^{2}(1+\epsilon)^{M_{t}\left(A_{1}\right)}(1-\epsilon)^{B_{t}\left(A_{1}\right)} \\
\Phi_{t+1} \geq \Phi_{t}-\epsilon^{2}(1+\epsilon)^{M_{t}\left(A_{1}\right)}(1-\epsilon)^{B_{t}\left(A_{1}\right)}
\end{gathered}
$$

We want to get this in terms of Δ. By the definition of Δ

$$
M_{t}\left(A_{1}\right)-B_{t}\left(A_{1}\right) \leq 2 \Delta
$$

Let $Z_{t}=\frac{M_{t}\left(A_{1}\right)+B_{t}\left(A_{1}\right)}{2}$. Then

$$
\begin{aligned}
M\left(A_{1}\right) & \leq Z_{t}+\Delta \\
B\left(A_{1}\right) & \geq Z_{t}-\Delta
\end{aligned}
$$

Hence

$$
\Phi_{t+1} \geq \Phi_{t}-\epsilon^{2}(1+\epsilon)^{Z_{t}+\Delta}(1-\epsilon)^{Z_{t}-\Delta} \geq \Phi_{t}-\epsilon^{2}\left(\frac{1+\epsilon}{1-\epsilon}\right)^{\Delta}\left(1-\epsilon^{2}\right)^{Z_{t}} \geq \Phi_{t}-\epsilon^{2}\left(\frac{1+\epsilon}{1-\epsilon}\right)^{\Delta}
$$

We use an approximation to simplify this expression. Note that

$$
\frac{1+\epsilon}{1-\epsilon}=1+\frac{2 \epsilon}{1-\epsilon} \sim e^{2 \epsilon} .
$$

Hence we have

$$
\begin{gathered}
\Phi_{t+1} \geq \Phi_{t}-\epsilon^{2} e^{2 \epsilon \Delta} \\
\Phi_{0}=\sum_{A \in R C}(1+\epsilon)^{M_{0}(A)}(1-\epsilon)^{B_{0}(A)}=\sum_{A \in R C}(1+\epsilon)^{0}(1-\epsilon)^{0}=2 n .
\end{gathered}
$$

Hence

$$
\Phi_{n^{2} / 2} \geq 2 n-\epsilon^{2} e^{2 \epsilon \Delta} \frac{n^{2}}{2}=2 n-e^{2 \epsilon \Delta} \frac{\epsilon^{2} n^{2}}{2}
$$

We will now pick ϵ though it will be in terms of another constant. Let $\epsilon=\sqrt{2 \beta / n}$ where β will be chosen later.

Hence we have

$$
\Phi_{n^{2} / 2} \geq 2 n-e^{\Delta \sqrt{8 \beta / n}} \beta n
$$

We also have an upper bound on $\Phi_{n^{2} / 2}$.

$$
\Phi_{n^{2} / 2}=\sum_{A \in R C}(1+\epsilon)^{M_{n^{2} / 2}(A)}(1-\epsilon)^{B_{n^{2} / 2}(A)}
$$

By the definition of Δ

$$
\begin{aligned}
M_{n^{2} / 2}(A) & \leq \frac{n}{2}+\Delta \\
B_{n^{2} / 2}(A) & \geq \frac{n}{2}-\Delta
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Phi_{n^{2} / 2} & =\sum_{A \in R C}(1+\epsilon)^{M_{n^{2} / 2}(A)}(1-\epsilon)^{B_{n^{2} / 2}(A)} \leq \sum_{A \in R C}(1+\epsilon)^{n / 2+\Delta}(1-\epsilon)^{n / 2-\Delta} \\
& \leq 2 n(1+\epsilon)^{n / 2+\Delta}(1-\epsilon)^{n / 2-\Delta} \\
& \leq 2 n\left(\frac{1+\epsilon}{1-\epsilon}\right)^{\Delta}\left(1-\epsilon^{2}\right)^{n / 2}
\end{aligned}
$$

We use two approximations to simplify this expression.
From above we have

$$
\frac{1+\epsilon}{1-\epsilon}=1+\frac{2 \epsilon}{1-\epsilon} \sim e^{2 \epsilon}
$$

We also use

$$
1-\epsilon^{2}=e^{-\epsilon^{2}}
$$

Hence we have

$$
\Phi_{n^{2} / 2} \leq 2 n e^{2 \epsilon \Delta} e^{-\epsilon^{2} n / 2}
$$

We now use the definition of ϵ to obtain

$$
\Phi_{n^{2} / 2} \leq 2 n e^{\Delta \sqrt{8 \beta / n}} e^{-\beta}
$$

Combining the upper and lower bounds on $\Phi_{n^{2} / 2}$ we obtain the following.

$$
\begin{gathered}
2 n-e^{\Delta \sqrt{8 \beta / n}} \beta n \leq 2 n e^{\Delta \sqrt{8 \beta / n}} e^{-\beta} \\
2-e^{\Delta \sqrt{8 \beta / n}} \beta \leq 2 e^{\Delta \sqrt{8 \beta / n}} e^{-\beta} \\
2 \leq e^{\Delta \sqrt{8 \beta / n}} \beta+2 e^{\Delta \sqrt{8 \beta / n}} e^{-\beta} \\
2 \leq e^{\Delta \sqrt{8 \beta / n}}\left(\beta+2 e^{-\beta}\right) \\
\frac{2}{\beta+2 e^{-\beta}} \leq e^{\Delta \sqrt{\frac{8 \beta}{n}}} \\
\ln \left(\frac{2}{\beta+2 e^{-\beta}}\right) \leq \Delta \sqrt{\frac{8 \beta}{n}} \\
\Delta \geq \sqrt{\frac{n}{8 \beta}} \ln \left(\frac{2}{\beta+2 e^{-\beta}}\right) \\
\Delta \geq \sqrt{\frac{1}{8 \beta}} \ln \left(\frac{2}{\beta+2 e^{-\beta}}\right) \sqrt{n}
\end{gathered}
$$

Pick β so that the constant in front of the \sqrt{n} is positive. The reader may want to pick β so as to maximize the constant.

Let d be such that $\Delta \geq d \sqrt{n}$. By the definition of Δ there exists a t and an A such that

$$
M_{t}(A)-B_{t}(A)=2 \Delta \geq 2 d \sqrt{n}
$$

Let $c=\frac{d}{2}$. Hence

$$
M_{t}(A)-B_{t}(A) \geq c \sqrt{n}
$$

At this stage t the first part of the strategy will happen. Hence this case, case 2, cannot occur.

3 Betty Can Make Sure Surplus $\leq O(\sqrt{n \ln n})$

(This section will only sketch the proof.)

Theorem 3.1 There exist constants $c \in \mathrm{R}^{+}$and $n \in \mathrm{~N}$ such that, for all $n \geq n_{0}$, there is a strategy by which Betty can win the $t t t-c \sqrt{n \ln n}$ game.

Proof:

We let Betty go first in this game. This will only affect the constants in the asymptotics.
We define a potential function which will measure how well Mark is doing. Betty's strategy will be to decrease its value as much as possible.

Let $0<\epsilon<1$ be a parameter to be named later (it will be $\Theta\left(\sqrt{\frac{\ln n}{n}}\right)$).
A turn is a pair of moves- one by Betty and the response by Mark. We will assume that n is even to avoid half-turns (Betty goes and there is no response from Mark since the game is over).

Let t be how many turns have already been made. Let $M_{t}(A)$ be how many M 's are in A after t turns. Let $B_{t}(A)$ be how many B 's are in A after t turns. We define the potential function:

$$
\Phi_{t}=\sum_{A \in R C}(1+\epsilon)^{M_{t}(A)-((1+\epsilon) n / 2)}(1-\epsilon)^{B_{t}(A)-((1-\epsilon) n / 2)}
$$

Strategy for Betty: Assume that t turns have already occurred (t could be 0). Play on an element of $R C$ such that $\Phi_{t}-\Phi_{t+1}$ is maximized. (If there is a tie then use the least such element of $R C$.)
Claim 1: If Betty plays the strategy above then the potential always either stays the same or decreases.

Proof of Claim 1:

This is a calculation that we will omit. (This is what I meant when I said we would sketch the proof)

End of Proof of Claim 1

Using $(1+\epsilon) \sim e^{\epsilon}$ and $(1-\epsilon) \sim e^{-\epsilon}$ we obtain the following.

$$
\Phi_{0}=\sum_{A \in R C}(1+\epsilon)^{-((1+\epsilon) n / 2)}(1-\epsilon)^{-((1-\epsilon) n / 2)}=\underset{2 n(1+\epsilon)^{-((1+\epsilon) n / 2)}(1-\epsilon)^{-((1-\epsilon) n / 2)}}{\substack{-\rho_{n}-\epsilon^{2} n}}
$$

We will now set ϵ though it will depend on a constant. Let $\epsilon=\sqrt{\frac{\beta \ln n}{n}}$. Note that

$$
2 n e^{-\epsilon^{2} n}=2 n e^{-\beta \ln n}=2 n \times n^{-\beta}=2 n^{1-\beta}
$$

For the next few equations let $M(A)=M_{n^{2} / 2}(A)$ and $B(A)=B_{n^{2} / 2}(A)$.
Recall that

$$
\Phi_{n^{2} / 2}=\sum_{A \in R C}(1+\epsilon)^{M(A)-((1+\epsilon) n / 2)}(1-\epsilon)^{B(A)-((1-\epsilon) n / 2)} .
$$

Also recall that $\Phi_{n^{2} / 2} \leq \Phi_{0}$.

If there is an A such that

$$
M(A) \geq \frac{n}{2}+\frac{1+\epsilon}{2}=\frac{n}{2}+\Theta\left(\sqrt{\frac{\log n}{n}}\right)
$$

that summand will be greater than 1. Hence if $\Phi_{n^{2} / 2}<1$ then there can be no such A. Since $\Phi_{n^{2} / 2} \leq \Phi_{0}$ all we need is $\Phi_{0}<1$. We can accomplish that by taking $\beta<1$.

4 This section has a proof of something I know is false- Help me if you can

When I was trying to derive what ϵ should be I got results that did not make sense. It may be an arithmetic mistake or I may have a fundamental misunderstanding of something. If you can tell me whats wrong I will be enlightened.

Assume Betty has played this strategy. Let Δ be defined as

$$
\Delta=\max _{A \in R C} M_{n^{2} / 2}(A)-B_{n^{2} / 2}(A) .
$$

We use the approximation $(1+x) \sim e^{x}$ on $\Phi_{n^{2} / 2}$.

$$
\begin{aligned}
\Phi_{n^{2} / 2} & =\sum_{A \in R C}\left(1+\epsilon \epsilon^{M(A)-((1+\epsilon) n / 2)}(1-\epsilon)^{B(A)-((1-\epsilon) n / 2)}\right. \\
& \sim \sum_{A \in R C} e^{\epsilon(M(A)-((1+\epsilon) n / 2))} e^{-\epsilon(B(A)-((1-\epsilon) n / 2))} \\
& \sim \sum_{A \in R C} e^{\epsilon(M(A)-B(A))-\epsilon^{\epsilon} n}
\end{aligned}
$$

Let A be the row where $M(A)=B(A)=2 \Delta$. The sum above is greater than one of its summands. Hence

$$
\Phi_{n^{2} / 2} \geq e^{2 \epsilon \Delta-\epsilon^{2} n}
$$

Since $\Phi_{n^{2} / 2} \leq \Phi_{0}$ we have

$$
e^{2 \epsilon \Delta-\epsilon^{2} n} \leq \Phi_{n^{2} / 2} \leq \Phi_{0} \leq 2 n e^{-\epsilon^{2} n}
$$

KEY: the $e^{-\epsilon^{2} n}$ cancel out. This leads to results that do not make sense.

$$
\begin{gathered}
e^{2 \epsilon \Delta} \leq 2 n \\
2 \epsilon \Delta \leq \ln (2 n) \\
\Delta \leq \frac{\ln (2 n)}{\epsilon}
\end{gathered}
$$

Gee, I could just take ϵ to be (say) $\frac{1}{\ln (2 n)}$ and get that

$$
\Delta \leq O\left((\log n)^{2}\right)
$$

This contradicts Theorem 2.1.

One possible Fix: I cheated a bit by letting Betty go first. What if Mark goes first? The proof would start the potential after Mark's first move. Φ_{0} does start out a little bigger, but this did not help since I still got all of the $e^{-\epsilon^{2}}$ to cancel out. Also, for large n, the player who goes first shouldn't matter.

Another possible fix: The proof that the potential never increases - did that impose bounds on ϵ. The proof by Beck didn't seem to.

Another possible fix: Do the approximation more carefully. This wouldn't help anything since the approximation I am using is correct for large n.

References

[1] J. Beck. Surplus of graphs and the local Lovasz lemma. In Building bridges between math and computer science, pages 47-103, New York, 2008. Springer. Bolyai society mathematical studies number 19.

