
Van Der Waerden’s Theorem: Exposition and Generalizations
By William Gasarch

1 Introduction

In this paper we will present and prove van der Waerden’s theorem and several generaliza-
tions of it.

Notation 1.1 If m ∈ N then [m] is {1, . . . ,m}.

Definition 1.2 If k ∈ N then a k-AP is an arithmetic progression of length k. Henceforth
we abbreviate “arithmetic progression’ by AP and “arithmetic progression of length k” by
k-AP.

The following statement is the original van der Waerden’s Theorem:

Theorem 1.3 [6] For every k ≥ 1 and c ≥ 1 there exists W = W (k, c) such that for every
c-coloring COL : [W ] → [c] there exists a monochromatic k-AP. In other words there exists
a, d such that

• a, a + d, a + 2d, . . . , a + (k − 1)d ∈ [W ], and

• COL(a) = COL(a + d) = · · · = COL(a + (k − 1)d).

Note 1.4 When we speak of a c-coloring of [W ] we mean a mapping from [W ] to [c]. In
particular, we always color with numbers.

The following is equivalent to van der Waerden’s Theorem by a simple compactness
argument.

Theorem 1.5 For every k ≥ 1 and c ≥ 1 for every c-coloring COL : Z → [c] there exists
a, d ∈ Z such that

COL(a) = COL(a + d) = · · · = COL(a + (k − 1)d).

In Theorem 1.5 we can think of

a, a + d, . . . , a + (k − 1)d.

as
a, a + p1(d), a + p2(d), . . . , a + pk−1(d)

where pi(d) = id. Why these functions? We ponder replacing pi with other functions.
The following remarkable theorem was first proved by Bergelson and Leibman [1]. They

proved it by first proving the polynomial version of the Hales-Jewitt Theorem [2] (see
Section 4 for a statement and proof of the original Hales-Jewitt Theorem), from which The-
orem 1.8 follows easily. Their proof of the polynomial version of the Hales-Jewitt Theorem
used ergodic methods. A later proof by Walters [7] uses combinatorial techniques. Hence,
putting all of this together, there is a combinatorial proof of Theorem 1.8. The purpose of
this note is to put all of this together in a self-contained way.
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Theorem 1.6 For any natural number c and any polynomials p1(x), . . . , pk(x) ∈ Z[x] such
that (∀i)[pi(0) = 0], for any c-coloring COL :: Z → [c] there exists a a, d ∈ Z such that

COL(a) = COL(a + p1(d)) = COL(a + p2(d)) = · · · = COL(a + pk(d)).

Note 1.7 This was proved for k = 1 by Furstenberg [3] and (independently) Sarkozy [5].

What if Z is replaced by another integral domain? Bergelson and Leibman [2] proved
the following theorem.

Theorem 1.8 Let S be any integral domain. Let c ∈ N. Let p1(x), . . . , pk(x) ∈ S[x] be
such that (∀i)[pi(0) = 0]. For any c-coloring COL of S there exists a, d ∈ S such that

COL(a) = COL(a + p1(d)) = COL(a + p2(d)) = · · · = COL(pk(d)).

Henceforth VDW means van der Waerden’s Theorem, PVDW means the polynomial van
der Warden’s Theorem, HJ means the Hales-Jewitt Theorem, and PHJ means Polynomial
Hales-Jewitt Theorem.

This exposition will contain the following:

1. The original proof of VDW. (Theorem 1.5)

2. The combinatorial proof of PVDW. (Theorem 1.6)

3. The original proof of HJ.

4. Shelah’s proof of HJ which provides better bounds on the VDW numbers.

5. The combinatorial proof of PHJ.

6. The combinatorial proof of the generalized PVDW. (Theorem 1.8)

Since this is an exposition there will be more figures, examples, and detailed proofs than
is common in a mathematics paper.

2 The Original Proof of Van Der Waerden’s Theorem

We present the original proof of van der Waerden’s Theorem. Our treatment is based on
that of [4] but is more detailed.

2.1 Van Der Waerden’s Theorem: Easy Cases

We present some easy cases of VDW theorem which we leave to the reader to prove.

1. If k = 1 and c is anything then W (k, c) = 1.

2. If k = 2 and c is anything then W (k, c) = c + 1. This is by the Pigeonhole Principle
which we will be using over and over again.

3. If k is anything and c = 1 then W (k, c) = k.
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2.2 The First Interesting Case: W (3, 2)

We show that there exists a W such that any 2-coloring of [W ] has a monochromatic 3-AP.
Assume W is a multiple of 5, say W = 5U . View [W ] as being U blocks of 5 consecutive

numbers each. We denote these blocks

B1B2 · · ·BU .

KEY insight: a 2-coloring of [W ] can be viewed as a 25-coloring of the blocks.
(This will be a recurring theme in later proofs: If W = bU then we think of W as U

blocks of b each, and we can think of a c-coloring of W as a cb-coloring of the blocks.)
We leave the proofs of the following facts to the reader.

Fact 2.1 Let c ∈ N.

1. Let B be a block of 2c + 1. Let COL : B → [c] be a c-coloring of B. Then there exists
a, d such that

a, a + d, a + 2d ∈ B

COL(a) = COL(a + d)

We make no comment on COL(a + 2d). (See Picture)

2. Let W = b(2cb + 1). We view W as 2cb + 1 blocks of size b which we denote

B1B2 · · ·B2cb+1.

Let COL : [W ] → [c] be a c-coloring of [W ] and let COL∗ be the induced cb-coloring
of the blocks. Then there exists A,D such that

A,A + D,A + 2D ∈ [2cb + 1]

COL∗(BA) = COL∗(BA+D).

We make no comment on COL∗(BA+2D). (See Picture)

Theorem 2.2 Let W = 5(2× 32 + 1). Let COL : [W ] → [2] be a 2-coloring of [W ]. Then
there a, d such that such that

a, d ∈ BA

COL(a) = COL(a + d) = COL(a + 2d).

Proof: We take the colors to be RED and BLUE.
View [W ] as being in (2× 32 + 1) blocks of 5. We denote the blocks

B1B2 · · ·B2×32+1.

Let COL∗ be the induced 32-coloring of the blocks. By Fact 2.1.2 there exists A,D such
that

A,A + D,A + 2D ∈ [2× 32 + 1]

3



COL∗(BA) = COL∗(BA+D).

By Fact 2.1.1 there exists a, d such that a ∈ BA, d 6= 0, and a + d ∈ BA.

COL(a) = COL(a + d).

We will assume the color is RED. Since COL(a) = COL(a+d) and COL∗(BA) = COL∗(BA+D)
we have

COL(a) = COL(a + d) = COL(a + D) = COL(a + d + D) = RED.

Since COL∗(BA) = COL∗(BA+D)

COL(a + 2d) = COL(a + 2d + D).

We make no claim as to what COL(a + 2d) is.
NEED PICTURE
There are two cases.

1. If COL(a + 2d) = RED then a, a + d, a + 2d are a RED 3-AP.

2. If COL(a + 2d) = BLUE then COL(a + 2d + D) = BLUE.

(a) If COL(a+2d+2D) = BLUE then a+2d, a+2d+D, a+2d+2D are a BLUE
3-AP.

(b) If COL(a + 2d + 2D) = RED then a, a + d + D, a + 2d + 2D are a RED 3-AP.

Note 2.3 The proof of Theorem 2.2 yields W (3, 2) ≤ 5× 65. One can show by cases that
W (3, 2) = 9. This can be done by hand and we urge the reader to try.

2.3 Van Der Waerden’s Theorem for k = 3

Theorem 2.4 For every c ≥ 1 there exists W = W (3, c) such that for every c-coloring
COL of [W ] there exists a monochromatic 3-AP.

The following lemma will easily yield Theorem 2.4.

Lemma 2.5 If c ≥ 1 and 1 ≤ r ≤ c then there exists U = U(c, r) such that for any
c-coloring COL of [U ] either

1. there exists a monochromatic 3-AP, or

2. there exists a w ∈ [U ] and a set C ⊆ [c] such that

(a) |C| = r,

(b) COL(w) /∈ C, and

(c) if w is recolored with any color in C then there would be a monochromatic 3-AP.
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Proof: We do an induction on r, 1 ≤ r ≤ c.
Base Case: We show that if r = 1 then U(c, 1) = 2c+1 suffices. Let COL be any c-coloring
of [2c + 1]. By Fact 2.1.1 there exists a a, d such that

a, a + d, a + 2d ∈ [2c + 1]

COL(a) = COL(a + d).

If COL(a + 2d) = COL(a) then (a, a + d, a + 2d) form a monochromatic 3-AP and we are
done. If not then let w be a + 2d and let C = {COL(a)}. Clearly |C| = 1, COL(w) /∈ C,
and if w is recolored with any element of C then there will be a monochromatic 3-AP. Hence
we are done.

r=2 Case: We do the r = 2 case even though it is not needed for the proof. We show that
U(c, 2) = U = 2(2c + 1)(c2c+1 + 1) + (2c + 1) suffices. Let COL be any c-coloring of [U ].
Break [U ] into 2c2c+1 + 1 consecutive blocks of size 2c + 1 each. Let the blocks be

B1B2 · · ·B2(c2c+1)+1.

Let COL∗ be the induced c2c+1-coloring on the blocks. By Fact 2.1.2 there exists A,D such
that

A,A + D,A + 2D ∈ [2c2c+1 + 1]

COL∗(BA) = COL∗(BA+D).

By Fact 2.1.1 there exists a, d such that

a, a + d, a + 2d ∈ BA

COL(a) = COL(a + d).

We know the following

• COL(a) = COL(a + d) = COL(a + D) = COL(a + d + D)

• COL(a + 2d) = COL(a + 2d + D).

There are several cases.

1. COL(a + 2d) = COL(a). Then a, a + d, a + 2d forms a monochromatic 3-AP. NEED
PICTURE

2. COL(a + 2d) = COL(a + 2d + 2D). Then (a + 2d, a + 2d + D, a + 2d + 2D) forms a
monochromatic 3-AP.

3. NEED PICTURE COL(a + 2d) 6= COL(a) and COL(a + 2d) 6= COL(a + 2d + 2D).
Let w = a + 2d + 2D. Note that w ∈ BA+2D so, in particular, w ∈ [U ].

COL(a) = COL(a + d) = COL(a + D) = COL(a + d + D) = RED,
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COL(a + 2d) = COL(a + 2d + D) = BLUE.

Let C = {RED,BLUE}. Clearly |C| = 2, COL(w) /∈ C. If w is recolored RED then
(a, a + d + D,w) is a monochromatic 3-AP. If w is recolored BLUE then (a + d, a +
d + D,w) is a monochromatic 3-AP. NEED PICTURE

Induction Hypothesis: U(c, r) exists.

Induction Step: We show that

U = U(c, r + 1) = (2U(c, r) + 1)cU(c,r)

suffices. Let COL be any c-coloring of [U ]. Break [U ] into 2cU(c,r) + 1 consecutive blocks
of size U(c, r) each. Let the blocks be

B1B2 · · ·B2cU(c,r)+1.

Let COL∗ be the induced cU(c,r) coloring of the blocks. By Fact 2.1.2 there exists A,D
such that

A,A + D,A + 2D ∈ [2cU(c,r) + 1].

COL∗(BA) = COL∗(BA+D).

By the induction hypothesis applied to BA we know that either BA has a monochromatic
3-AP (in which case we are done, so we will ignore this case) or there exists w0 ∈ BA and
C0 ⊆ [c] such that the following hold.

1. |C0| = r.

2. COL(w0) /∈ C0.

3. If w0 is recolored with any element of C0 then there will be a monochromatic 3-AP
in BA.

By renumbering we assume C0 = [r] and w0 is colored r + 1. By the definition of C0 we
know that there exist a1, . . . , ar, d1, . . . , dr such that the following hold.

0) a1, . . . , ar, a1 + d1, . . . , ar + dr ∈ BA,

1) COL(a1) = COL(a1 + d1) = 1, w0 = a1 + 2d1, and COL(w0) 6= 1.

2) COL(a2) = COL(a2 + d2) = 2, w0 = a2 + 2d2, and COL(w0) 6= 2.
...

r) COL(ar) = COL(ar + dr) = r, w0 = ar + 2dr, and COL(w0) 6= r.

Since COL∗(BA) = COL∗(BA+D) we have the following.
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1) COL(a1+D) = COL(a1+D+d1) = 1, w0+D = a1+D+2d1, and COL(w0+D) 6= 1.

2) COL(a2+D) = COL(a2+D+d2) = 2, w0+D = a2+D+2d2, and COL(w0+D) 6= 2.
...

r) COL(ar +D) = COL(ar +D+dr) = r, w0+D = ar +D+2dr, and COL(w0+D) 6= r.

Let w = w0 + 2D. Since w ∈ BA+2D, w ∈ [U ]. There are several cases
Case 0: COL(w) ∈ C. Then we have a monochromatic 3-AP. Details left to the reader.
Case 1: COL(w) = COL(w0). Then

(w0, w0 + D,w) = (w0, w0 + D,w0 + 2D)

form a monochromatic 3-AP.
Case 2: COL(w) 6= COL(w0). Let C = C0 ∪ {r + 1} = [r + 1]. Clearly |C| = r + 1 and
COL(w) /∈ C. If w is recolored to any of 1 ≤ i ≤ r then

(ai, ai + di + D,w) = (ai, ai + di + D,w0 + 2D)(ai, ai + D + di, ai + 2di + 2D)

form a monochromatic 3-AP. If w is recolored with r + 1 then (w0, w0 + D,w0 + 2D) forms
a monochromatic 3-AP. Hence we have our desired number w and set C.

Note 2.6 How fast does U(c, r) grow?

1. U(c, 1) = 2c + 1.

2. U(c, 2) = 2(2c + 1)c2c+1 = cO(c).

3. U(c, 3) = 2U(c, 2)cU(c,2) = cO(c)ccO(c)
= ccO(c)

.

How to properly express this? Let TOW (c, r) be cc...
where the tower of exponents is r-high.

We know that U(c, r) ≤ TOW (c,O(k)). Hence W (3, c) ≤ TOW (c,O(c)).

BILL- CHECK ON THE TOWER

Theorem 2.7 If c ≥ 2 then there exists W = W (3, c) such that for any c-coloring COL of
[W ] there exists a, d such that

COL(a) = COL(a + d) = COL(a + 2d).

Moreover W (3, c) ≤ TOW (c,O(c)).

Proof: Let W (3, c) = U(c, c) where U was defined in Lemma 2.5. Let COL be any
c-coloring of [W ]. By Lemma 2.5 either there is a monochromatic 3-AP (so we are done) or
there exists a w ≤ W and a set C such that |C| = c such that COL(w) /∈ C. This second
case can’t happen since COL is a c-coloring. Hence the first case happens so there is a
monochromatic 3-AP.
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2.4 An Easy Lower Bound on W (3, c)

We now obtain a lower bound on W (3, c). Much better lower bounds are known.

Theorem 2.8 For c large W (3, c) > 2c.

Proof: Let the colors be [c]. Use the coloring 112233 · · · cc.

2.5 A Proof of the Full VDW theorem

There are two parameters: k and c. Which one to do induction on? We will do induction
on the ordered pair (k, c) under the following ordering.

(2, 2) ≺ (2, 3) ≺ (2, 4) ≺ · · · (3, 2) ≺ (3, 3) ≺ (3, 4) ≺ · · · ≺ (4, 2) ≺ (4, 3) ≺ (4, 4) · · ·

Formally the ordering is (i, j) ≺ (i′, j′) iff either i < i′ or i = i′ and j < j′.

Definition 2.9 An ordering is well founded if it has no infinite descending chains. These
are precisely the orderings that one can do a proof by induction on.

The ordering ≺ is a well founded ordering. Note that even though there are plenty of
· · ·’s, if you start anywhere in the ordering and try to go down for as far as you can, you
will end up at (2, 2).

Example 2.10 Start at the element (5, 17). Let C be a decreasing chain that starts with
(5, 17). We show that C is finite. We can assume that C begins

(5, 17) � (5, 16) � (5, 15 � · · · � (5, 2)

The next point in C has to begin with a 4,3,2, or 1. We’ll assume it begins with a 4.
Say it is (4, N). This is the key- it has to be (4, N) where N is some finite number. After
N − 2 more steps in the chain you will have either (4, 2) or (3,M) for some M . Continuing
in this way eventually (after a FINITE number of steps) you will get to (2, 2).

We have already established the theorem for (2, 2), (2, 3), . . . , (3, 2), (3, 3), (3, 4), . . .. The
next case of interest is (4, 2). We will now proof the full VDW but note that the case of
(4, 2) will depend on (3,M) where M is very large.

Definition 2.11 If A ⊆ N and D ∈ N then

A + D = {x + D | x ∈ A}.

Usually A will be a finite contiguous subset of N.

We leave the proof of the following fact to the reader.

Fact 2.12 Let k ≥ 3. Assume that, for all c, W (k − 1, c) exists.
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1. If COL is a c-coloring of [2W (k − 1, c)] then there exists a, d such that

a, a + d, . . . , a + (k − 1)d ∈ [2W (k − 1, c)]

COL(a) = COL(a + d) = · · · = COL(a + (k − 2)d).

We make no comment on COL(a + (k − 1)d).

2. Let b ∈ N. Let W = b(2W (k − 1, cb).. We view W as 2W (k − 1, cb) blocks of size b.
which we denote

B1B2 · · ·B2W (k−1,cb).

Let COL : [W ] → [c] be a c-coloring of [W ] and let COL∗ be the induced cb-coloring
of the blocks. Then there exists a block A and a number D such that

A,A + D, . . . , A + (k − 1)D ∈ [2W (k − 1, cb]

COL∗(BA) = COL∗(BA+D) = · · · = COL∗(BA+(k−2)D).

We make no comment on COL∗(BA+(k−1)D).

Theorem 2.13 For every k ≥ 1 and c ≥ 1 there exists W = W (k, c) such that for every
c-coloring COL of [W ] there exists a monochromatic k-AP.

We prove a lemma from which the theorem will follow easily.

Lemma 2.14 Fix c ≥ 1, k ≥ 1. Assume that for all ordered pairs (k′, c′) ≺ (k, c), W (k′, c′)
exists. Let 1 ≤ r ≤ c. Then there exists U = U(k, c, r) such that for any c-coloring COL of
[U ] either

1. there exists a monochromatic k-AP, or

2. there exists a w ∈ [U ] and a set C ⊆ [c] such that

(a) |C| = r,

(b) COL(w) /∈ C, and

(c) if w is recolored with any color in C then there would be a monochromatic k-AP.

Proof: We do an induction on r, 1 ≤ r ≤ c.
Base Case: We show that if r = 1 then U(1, k, c) = 2W (k − 1, c) suffices. Let COL be
any c-coloring of [2W (k − 1, c)]. By Fact 2.12 there exists a, d such that

a, a + d, a + 2d, . . . , a + (k − 1)d ∈ [2W (k − 1, c)]

COL(a) = COL(a + d) = COL(a + 2d) = · · · = COL(a + (k − 2)d).
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If COL(a + (k − 1)d) = COL(a) then

(a, a + d, a + 2d, . . . , a + (k − 1)d)

form a monochromatic k-AP and we are done. If not then let w = a + (k − 1)d and let
C = {COL(a)}. Clearly |C| = 1, COL(w) /∈ C. If w is recolored with any element of C
then there will be a monochromatic k-AP. Hence we are done.

Induction Hypothesis: U(k, c, r) exists.

Induction Step We show that U(k, c, r+1) exists. Let U = U(k, c, r+1) = U(k, c, r)2W (k−
1, cU(k,c,r)). Let COL be any c-coloring of [U ]. If COL has any monochromatic k-AP’s then
we are done. Hence we assume that there are none.

View [U ] as 2W (k− 1, cU(k,c,r)) consecutive blocks of size U(k, c, r) each. Let the blocks
be

B1B2 · · ·B2W (k−1,cU(k,c,r)).

View COL as a cU(k−1,c,r)-coloring of the blocks. We call this coloring COL∗. By
Fact 2.12.2 there exists a block A and a number D such that

A,A + D, . . . , A + (k − 1)D ∈ [2W (k − 1, cU(k,c,r))]

COL∗(BA) = COL∗(BA+D) = · · · = COL∗(BA+(k−2)D).

Let
E1 = BA, E2 = BA+D, . . . , Ek = BA+(k−1)D.

For every i, 1 ≤ i ≤ k − 1, Ei is of size U(k, c, r). We apply the induction hypothesis to
E1. Since we are assuming that there are no monochromatic k-AP’s, there exists w0 and
C0 such that

1. |C0| = r. We can renumber and assume C0 = [r].

2. w0 is not colored any color in C0. We can renumber and assume COL(w0) = r + 1.

3. If w0 is recolored to anything in C0 then there will be a monochromatic k-AP. Hence,
for every j ∈ C0 there exists aj , dj such that

(a) aj , aj + dj , aj + 2dj , . . . , aj + (k − 1)dj ∈ E1,

(b) COL(aj) = COL(aj + dj) = COL(aj + 2dj) = · · · = COL(aj + (k − 2)dj) = j,

(c) w0 = aj + (k − 1)dj

Since COL∗(E1) = · · · = COL∗(Ek−1) we have

COL(w0) = COL(w0 + D) = · · · = COL(w0 + (k − 2)D)

and
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for every j ∈ C0,

COL(aj) = COL(aj + D) = COL(aj + 2D) = · · · = COL(aj + (k − 2)D) = j.

Combining this with

COL(aj) = COL(aj + dj) = COL(aj + 2dj) = · · · = COL(aj + (k − 2)dj) = j

we get what we need which is

COL(aj) = COL(aj+dj+D) = COL(aj+2(dj+D)) = · · · = COL(aj+(k−2)(dj+D)) = j.

If COL(w0 + (k − 1)D) = COL(w0) then there is a monochromatic k-AP:

w0, w0 + D, . . . , w0 + (k − 1)D.

Hence we assume this is not the case.
Let w be w0 + (k − 1)D and C = C0 ∪ {COL(w0)}. Note that, for all j ∈ C0,

w = w0 + (k − 1)D = aj + (k − 1)dj + (k − 1)D = aj + (k − 1)(dj + D).

If we recolor w to any element in C then a monochromatic k-AP is formed:

1. Recolor w to some j ∈ C0. Note that w = aj + (k − 1)D. Denote the recoloring by
COL′. We have

COL′(aj) = COL′(aj + dj + D) = COL′(aj + 2dj + 2D) = · · · =
COL′(aj + (k − 2)(dj + D)) = COL′(aj + (k − 1)(dj + D)) = j.

2. Recolor w to COL′(w0). Denote the recoloring by COL′. We have

COL′(w0) = COL′(w0 + D) = COL′(w0 + 2D) = · · · =
COL′(w0 + (k − 2)D) = COL′(w0 + (k − 1)D).

3 The Polynomial VDW Theorem

We prove the theorem below which is known as the Polynomial VDW theorem. This theorem
was first proved by Bergelson and Leibman [1] using ergodic methods, and later proved by
Walters [7] later proved it using combinatorial techniques. We give the combinatorial proof.

Theorem 3.1 For any natural number c and any polynomials p1(x), . . . , pk(x) ∈ Z[x] such
that (∀i)[pi(0) = 0], for any c-coloring of Z, there exists a, d ∈ Z such that

COL(a) = COL(a + p1(d)) = COL(a + p2(d)) = · · ·COL(a + pk(d)).

We will give the combinatorial proof.
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3.1 The case of k = 1 and p1(x) = x2

We will prove the following:

Theorem 3.2 For all c there exists W = W (c) such that for any c-coloring COL : [W ] →
[c] there exists a, d such that

COL(a) = COL(a + d2).

We prove the following lemma from which the theorem will easily follow.

Lemma 3.3 Fix c. For all r there exists Q = Q(c, r) such that for any c-coloring COL :
[Q] → [c] one of the following holds.

• There exists a, d such that

COL(a) = COL(a + d2).

• There exists a, d1, d2, . . . , dr such that

COL(a), COL(a + d2
1), COL(a + d2

2), . . . , COL(a + d2
r) are all different.

Proof:
We proof this by induction on r.

Base Case: r = 1. Take Q(1) = 2. This is trivial.
Induction Hypothesis: There exists Q = Q(c, r) such that for any c-coloring COL of [Q]
one of the following holds.

• There exists a, d such that

COL(a) = COL(a + d2).

• There exists a, d1, d2, . . . , dr such that

COL(a), COL(a + d2
1), COL(a + d2

2), . . . , COL(a + d2
r) are all different.

Induction Step: Let Q = Q(c, r+1) = (Q(c, r)W (2Q(c, r)+1, cQ(c,r)))2+Q(c, r)W (2Q(c, r)+
1, cQ(c,r)). Let COL be a c-coloring of [Q]. If (∃a, d) such that

COL(a) = COL(a + d2)

then we are done; hence, we assume this is not the case.
We view [Q] as one block of size (Q(c, r)W (2Q(c, r)+1, cQ(c,r)))2 (the big block) followed

by W (2Q(c, r) + 1, cQ(c,r)) blocks of size Q(c, r) (the small blocks). We concentrate on the
coloring of [[Q]] just on the small blocks. Let COL∗ be the cQ(c,r)-coloring of the small
blocks induced by COL. Since there are W (2Q(c, r) + 1, cQ(c,r)) blocks, by Theorem 2.13
there exists a block A and a number D such that

COL∗(A) = COL∗(A + D) = COL∗(A + 2D) = · · · = COL∗(A + 2Q(c, r)D).
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NEED PICT[Q]RE
Since A is of size Q(c, r) there exists a, d1, . . . , dr such that

a, a + d2
1, . . . , a + d2

r ∈ A

COL(a), COL(a + d2
1), COL(a + d2

2), COL(a + d2
3), . . . , COL(a + d2

r) are all different .

Since

COL∗(A) = COL∗(A + D) = COL∗(A + 2D) = · · · = COL∗(A + 2Q(c, r)D).

We have

COL(a) = COL(a + D) = COL(a + 2D) = · · · = COL(a + 2Q(c, r)D).

COL(a + d2
1) = COL(a + d2

1 + D) = COL(a + d2
1 + 2D) = · · · = COL(a + d2

1 + 2Q(c, r)D).

COL(a + d2
2) = COL(a + d2

2 + D) = COL(a + d2
2 + 2D) = · · · = COL(a + d2

2 + 2Q(c, r)D).

...

COL(a + d2
r) = COL(a + d2

r + D) = COL(a + d2
r + 2D) = · · · = COL(a + d2

r + 2Q(c, r)D).

Note that
(∀i)[di ≤ |A| = Q(c, r)].

We will need this later.
NEED PICT[Q]RE
Note that D ≤ Q(c, r)W (2Q(c, r)+1, cQ(c,r)). Since [[Q]] has at least (Q(c, r)W (2Q(c, r)+

1, cQ(c,r)))2 elements before a, the number a−D2 is in [[Q]].
Set a′ = a −D2. We need r + 1 numbers that are a square away from a′ and that are

all different colors. The first element is easy: a, which differs from a′ by D2. Hence we set
e1 = D. We know that COL(a′) 6= COL(a′ + e2

1) since we are assuming we do not have a
number and a square away being the same color

We want a e2 such that

COL(a′) 6= COL(a′ + e2
2)

COL(a′ + d2
1) 6= COL(a′ + e2

2)
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Since

COL(a + d2
1) = COL(a + d2

1 + D) = COL(a + d2
1 + 2D) = · · · = COL(a + d2

1 + 2Q(c, r)D)

and that this color is different from COL(a) = COL(a′ + e2
1), we seek a shift of a + d2

1 by
some multiple of D, say SD, such that a + d2

1 + SD is a square away from a′ = a − D2.
Note that the difference is

D2 + SD + d2
1.

Take S = 2d1. Since d1 ≤ Q(c, r), 2d1 ≤ 2Q(c, r), so the element FILL IN LATER- THE
POINT IS THAT d1 ISN”T THAT BIG This motivates setting e2 = (D + d1). More
generally, for 2 ≤ i ≤ r + 1, set ei = (D + di−1). Summing up we have the following:

1. a′ = a−D2

2. e1 = D

3. (∀i, 2 ≤ i ≤ r + 1)[ei = D + di−1]

We show that a′, a′ + e2
1, . . ., a′ + d2

r+1 are all different colors.
COL(a′) differs from all of the colors, else we would have a number and its square the

same color.
For notational convenience let d0 = 0. For l ≤ i ≤ r + 1

COL(a′ + e2
i ) = COL(a−D2 + (D + di−1)2) = COL(a + d2

i−1 + 2Dd2
i−1) = COL(a + d2

i−1)

NEED PICT[Q]RE
Since for all 0 ≤ i < j ≤ r

COL(a + d2
i ) 6= COL(a + d2

j ),

by the above equation, for all 1 ≤ i ≤ r + 1,

COL(a′ + e2
i ) 6= COL(a′ + e2

j ).

4 The Hales-Jewitt Theorem

5 The Polynomial HJ Theorem
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