
The Weak Prime Number Theorem

1 Introduction

Notation 1.1 π(n) is the number of primes that are ≤ n.

The Prime Number Theorem states that π(n) tends to n
ln n as n goes to

infinity. (Formally the ratio of the two tends to 1.) Note that there are no hidden
multiplicative constants– the theorem is tight. It was proven independently by
Hadamard (1896) and de la Vallee Poussin (1896). An easy corollary of the
Prime Number Theorem is Bertrand’s Postulate: for all large n there is a prime
between n and 2n. (Its actually known that for n ≥ 3 this is true.) This
was proven by Chebyshev (1850). Bertrand’s Postulate is used in Theoretical
Computer Science since you often need to find a prime. We give two examples.

1. The proof that EQUALITY has Randomized Communication Complexity
O(log n) uses that there exists a prime between n and 2n.

2. FILL IN LATER

The Prime Number Theorem is difficult to prove. In this note we prove
a weaker version of the Prime Number Theorem, due to Chebyshev (1850?),
namely π(n) = Θ( n

ln n ). We will do this by getting upper and lower bounds
on π(n). In both cases are constants are quite good. This version sufficient to
obtain a weak version of Bertrand’s Postulate. This weak version suffices for all
computer science applications. Chebyshev also proved that if the ratio of π(n)
to n

ln n existed then it was 1.
Our approach here is to get really good constants but have the result hold

for large n. Alternatively one can, using similar techniques, obtain a result that
has less good constants, but holds for all n.

I do not know if the proof presented here is Chebyshev’s proof. I doubt it
since he got better constants (see Note 7.3).

2 Some Really Easy Theorem

Before presenting the Weak Prime Number Theorem we present some very ele-
mentary upper and lower bounds on π(n).

Theorem 2.1

1. (∀n)[π(n) ≥ 1
3 log2 n].

2. (∀n)[π(n) ≤ n + 1− log2 n].
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Proof:
Let COMP be the number of composite numbers that are ≤ n.

a) Let x ∈ COMP and x ≤ n. We factor x so that x = pa1
1 · · · pan

aπ(n). Write each

ai = 2bi +ci where ci ∈ {0, 1}. Hence x = p2b1
1 p2p2

2 p2b3
3 · · · p2bπ(n)

π(n)) pc1
1 pc2

2 · · · pcπ(n)

π(n) .
Note that this can be written as m2pc1

1 pc2
2 · · · pcπ(n)

π(n) . How many numbers are of
this form?

There are at most
√

n numbers of the form m2 where m2 ≤ n. There are at
most 2π(n) numbers of the form pc1

1 pc2
2 · · · pcπ(n)

π(n) where each ci ∈ {0, 1}. Hence
there

COMP ≤
√

n2π(n)

n− π(n) ≤
√

n2π(n)

n ≤
√

n2π(n) + π(n)

if π(n) ≤ ( 1
3 ) log2 n then

n ≤
√

n2π(n) + π(n) ≤
√

nn1/3 +
1
3

log2 n ≤ n5/6 +
1
3

log2 n

which is a contradiction.

b) Since 22, 23, . . . , 2log2 n are all composite numbers that are less than n we
have

COMP ≥ (log2 n)− 1
n− π(n) ≥ (log2 n)− 1

π(n) ≤ n + 1− log2 n

EXERCISE: Improve the constants in the above theorem.

3 Definitions

Convention 3.1 Henceforth p will always denote a prime. Throughout this
paper log means log2 unless otherwise noted.

Note that π(n) =
∑

p≤n 1. This is hard to prove things about. Hence we
consider the following two functions.

Def 3.2

1. f(n) =
∑

p≤n log p.

2. g(n) =
∑

k≥1

∑
pk≤n log p.

We will obtain upper and lower bounds on π(n) in terms of f(n). Then we
will obtain upper and lower bounds on f(n). The lower bound on f(n) will use
g(n).
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4 Bounds on π(n) in terms of f(n)

Lemma 4.1 f(n)
log n ≤ π(n).

Proof: f(n) =
∑

p≤n log p ≤ π(n) log n. Hence f(n)
log n ≤ π(n).

Lemma 4.2 Let 0 < δ < 1. Then π(n) ≤ f(n)
δ log n + nδ.

Proof:

f(n) =
∑
p≤n

log p ≥
∑

nδ≤p≤n

log p ≥ (π(n)− π(nδ) log nδ ≥ (π(n)− nδ)δ log n.

So f(n)
δ log n ≥ π(n)− nδ. Hence π(n) ≤ f(n)

δ log n + nδ.

Note 4.3 By Lemmas 4.1 and 4.2 we need only show that f(n) = Θ(n) to
obtain the Weak Prime Number Theorem.

5 Upper Bound on f(n)

Lemma 5.1 f(n) ≤ 2n.

Proof:
We obtain a recurrence for f .

f(2n) =
∑

p≤2n log p =
∑

p≤n log p +
∑

n+1≤p≤2n log p

= f(n) +
∑

n+1≤p≤2n log p

= f(n) + log(
∏

n+1≤p≤2n p).

We seek bounds on
∏

n+1≤p≤2n p. KEY IDEA: to bound a number find a
number that it divides.

Clearly
∏

n+1≤p≤2n p divides (n+1)(n+2) · · · 2n. But this is large. We will
divide (n + 1)(n + 2) · · · 2n by some quantity so that what we have left (a) is
still an integer, and (b) still has

∏
n+1≤p≤2n p dividing it.

Look at (n+1)(n+2)···2n
n! =

(
2n
n

)
. This is an integer. Since

∏
n≤p≤2n p divides

the numerator but is relatively prime to the denominator,
∏

n+1≤p≤2n p divides(
2n
n

)
. Hence ∏

n+1≤p≤2n ≤
(
2n
n

)∏
n+1≤p≤2n ≤ 22n

log(
∏

n+1≤p≤2n) ≤ 2n

Hence
f(2n) ≤ f(n) + 2n.
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Note that f(2n− 1) = f(2n) so we have
f(2n− 1) ≤ f(n) + 2n.
These two equation together easily yields f(n) ≤ 2n.

6 Lower Bounds on f(n)

To obtain lower bounds on f(n) we first need to relate g(n) to f(n) and then
get lower bounds on g(n).

Lemma 6.1 g(n) ≤ f(n) + 2
√

n log n.

Proof: g(n) =
∑

k≥1

∑
pk≤n log p.

Let 1 ≤ p ≤ n. How many times is log p a summand? Since p1 ≤ n, at
least once. If p2 ≤ n then it will be counted again. Hence, all primes p ≤ n1/2

contribute at least two log p summands. More generally, if p ≤ n1/i then log p
will appear i times as a summand. Hence we obtain

g(n) = f(n) + f(n1/2) + f(n1/3) + · · ·+ f(n1/log n).
So g(n) ≤ f(n) + (log n)f(

√
n). By Lemma 5.1 we get g(n) ≤ f(n) +

2
√

n log n.

We now obtain a lower bound on g(n).

Lemma 6.2 For all ε > 0 there exists n0 such that (∀n ≥ n0)[g(n) ≥ (1− ε)n].

Proof:
g(2n) =

∑
k≥1

∑
pk≤2n log p.

Fix p. How many times does log p appear as a summand? It will appear
k times where pk ≤ 2n ≤ pk+1. This is

⌊
logp 2n

⌋
times. Hence g(2n) =∑

p≤2n(
⌊
logp 2n

⌋
)(log p).

CLEVER IDEA- find some other quantity that is about the same.
Look at

(
2n
n

)
. All its prime factors are ≤ 2n.

Notation 6.3 If p, m ∈ N , p ≤ m, and p is prime then let LARDIVp,m be

the largest i such that pi divides m. Note that LARDIVp,m! =
⌊

m
p

⌋
+

⌊
m
p2

⌋
+⌊

m
p3

⌋
+ · · ·.

Let kp = LARDIVp,(2n)!−LARDIVp,n!n! = LARDIVp,(2n)!−2LARDIVp,n!.(
2n
n

)
=

∏
p≤2n pkp

We need to estimate kp.

kp =
∞∑

i=1

⌊
(2n)
pi

⌋
− 2

∞∑
i=1

⌊
n

pi

⌋
=

∞∑
i=1

⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋
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Note that each summand is either 0 or 1. Also note that at most
⌊
logp(2n)

⌋
of the terms are nonzero. Hence kp ≤

⌊
logp(2n)

⌋
.

So (
2n

n

)
=

∏
p≤2n

pkp ≤
∏

p≤2n

pblogp 2nc

By Stirling’s formula
(
2n
n

)
= Θ( 22n

√
n
). Let n′0 be such that, for all n ≥ n0,(

2n
n

)
≥ 22n

n . Hence we have

22n

n
≤

∏
p≤2n

pblogp(2n)c.

2n− log n ≤
∑

p≤2n

(
⌊
logp(2n)

⌋
)(log p) = g(2n).

g(2n) ≥ 2n− log n.

Let n′′0 be the least number bigger than n′0 such that (∀n ≥ n0)[g(2n) ≥
(2 − ε)n]. Since g(2n − 1) = g(2n), we also have g(2n − 1) ≥ (2 − ε)n. Let
n0 = 2n′′0 . We have (∀n ≥ n0)[g(n) ≥ (2− ε)n].

Lemma 6.4 For all ε > 0 there exists n0 such that (∀n ≥ n0)[f(n) ≥ (1− ε)n].

Proof: By Lemma 6.1 we have f(n) ≥ g(n)− 2
√

n log n. Let 0 < ε′ < ε. By
Lemma 6.2 we have that there exists n′0 such that

(∀n ≥ n0)[g(n) ≥ (2− ε′)n
Hence we have

f(n) ≥ (2− ε′)n− 2
√

n log n.

Let n0 be the least number ≥ n′0 such that

(∀n ≥ n0)[(2− ε′)n− 2
√

n log n ≥ (2− ε)n].

Clearly (∀n ≥ n0)[f(n) ≥ (2− ε)n].

7 The Weak Prime Number Theorem

Theorem 7.1 For all ε there exists n0 such that

(∀n ≥ n0)[(1− ε)
n

log n
≤ π(n) ≤ (2 + ε)

n

log n
]
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Proof: By Lemma 4.1 we have that f(n)
log n ≤ π(n). By Lemma 6.4 we have

(∃n′0)(∀n ≥ n′0)[f(n) ≥ (1− ε)n].

Hence we have

(∃n′0)(∀n ≥ n′0)[(1− ε)
n

log n
≤ π(n)].

By Lemma 4.2 we have that, for any δ with 0 < δ < 1, π(n) ≤ f(n)
δ log n + nδ.

By Lemma 5.1 we have f(n) ≤ 2n. Hence we have

π(n) ≤ 2n

δ log n
+ nδ =

2
δ

n

log n
+ nδ

Let δ > 0 be such that 2
δ < (2 + ε). Let n′′0 be such that

(∀n ≥ n′′0)[
2
δ

n

log n
+ nδ ≤ (2 + ε)

n

log n
].

Let n0 = max{n′0, n′′0}. Then, for all n ≥ n0,

(1− ε)
n

log n
≤ π(n) ≤ (2 + ε)

n

log n
.

Note 7.2 The real Prime Number Theorem uses ln n instead of log n. To see
how the weak one compares, we rewrite it using the fact that log n = ln n

ln 2 . We
have

(∀ε > 0)(∃n0)(∀n ≥ n0)[(1− ε)(ln 2)
n

lnn
≤ π(n) ≤ (2 + ε)(ln 2)

n

lnn
].

Using 0.69 ≤ ln 2 ≤ 0.7.

(∀ε > 0)(∃n0)(∀n ≥ n0)[0.69
n

lnn
≤ π(n) ≤ 1.4

n

lnn
.]

Note 7.3 Chebyshev obtained

(∀ε > 0)(∃n0)(∀n ≥ n0)[0.875
n

lnn
≤ π(n) ≤ 1.125

n

lnn
.

EXERCISE: For ε = 1, 1
2 , . . . find a value of n0. Try to make it as small as

possible.
We can now prove a weak version of Bertrand’s Postulate.

Theorem 7.4 There exists n0 such that, for all n ≥ n0, there is a prime be-
tween n and 3n.
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Proof:
We need to show that π(3n)− π(n) ≥ 1.
By Theorem 7.1 with ε = 1

8 we have (∃n0)(∀n ≥ n0)[ 78 ) n
log n ≤ π(n) ≤

17
8

n
log n ]. Hence
π(3n) ≥ 21

8
n

log 3n ≥ 21
8

n
log n . and π(n) ≤ 17

8
n

log n .

Hence π(3n)− π(n) ≥ 1.

EXERCISE: Prove a tighter version of Bertrand’s postulate using these
methods.

EXERCISE: Using cruder approximations that work for all n, obtain a
weaker version of the Weak Prime Number Theorem that works for all n. (It
will not have an ε or n0 in it.)
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