1 Introduction

Notation $1.1 \pi(n)$ is the number of primes that are $\leq n$.
The Prime Number Theorem states that $\pi(n)$ tends to $\frac{n}{\ln n}$ as n goes to infinity. (Formally the ratio of the two tends to 1.) Note that there are no hidden multiplicative constants- the theorem is tight. It was proven independently by Hadamard (1896) and de la Vallee Poussin (1896). An easy corollary of the Prime Number Theorem is Bertrand's Postulate: for all large n there is a prime between n and $2 n$. (Its actually known that for $n \geq 3$ this is true.) This was proven by Chebyshev (1850). Bertrand's Postulate is used in Theoretical Computer Science since you often need to find a prime. We give two examples.

1. The proof that EQUALITY has Randomized Communication Complexity $O(\log n)$ uses that there exists a prime between n and $2 n$.

2. FILL IN LATER

The Prime Number Theorem is difficult to prove. In this note we prove a weaker version of the Prime Number Theorem, due to Chebyshev (1850?), namely $\pi(n)=\Theta\left(\frac{n}{\ln n}\right)$. We will do this by getting upper and lower bounds on $\pi(n)$. In both cases are constants are quite good. This version sufficient to obtain a weak version of Bertrand's Postulate. This weak version suffices for all computer science applications. Chebyshev also proved that if the ratio of $\pi(n)$ to $\frac{n}{\ln n}$ existed then it was 1 .

Our approach here is to get really good constants but have the result hold for large n. Alternatively one can, using similar techniques, obtain a result that has less good constants, but holds for all n.

I do not know if the proof presented here is Chebyshev's proof. I doubt it since he got better constants (see Note 7.3).

2 Some Really Easy Theorem

Before presenting the Weak Prime Number Theorem we present some very elementary upper and lower bounds on $\pi(n)$.

Theorem 2.1

1. $(\forall n)\left[\pi(n) \geq \frac{1}{3} \log _{2} n\right]$.
2. $(\forall n)\left[\pi(n) \leq n+1-\log _{2} n\right]$.

Proof:

Let $C O M P$ be the number of composite numbers that are $\leq n$.
a) Let $x \in C O M P$ and $x \leq n$. We factor x so that $x=p_{1}^{a_{1}} \cdots p_{a_{\pi}(n)}^{a_{n}}$. Write each $a_{i}=2 b_{i}+c_{i}$ where $c_{i} \in\{0,1\}$. Hence $x=p_{1}^{2 b_{1}} p_{2}^{2 p_{2}} p_{3}^{2 b_{3}} \cdots p_{\pi(n))}^{2 b_{\pi(n)}} p_{1}^{c_{1}} p_{2}^{c_{2}} \cdots p_{\pi(n)}^{c_{\pi(n)}}$. Note that this can be written as $m^{2} p_{1}^{c_{1}} p_{2}^{c_{2}} \cdots p_{\pi(n)}^{c_{\pi(n)}}$. How many numbers are of this form?

There are at most \sqrt{n} numbers of the form m^{2} where $m^{2} \leq n$. There are at most $2^{\pi(n)}$ numbers of the form $p_{1}^{c_{1}} p_{2}^{c_{2}} \cdots p_{\pi(n)}^{c_{\pi(n)}}$ where each $c_{i} \in\{0,1\}$. Hence there

$$
\begin{aligned}
C O M P & \leq \sqrt{n} 2^{\pi(n)} \\
n-\pi(n) & \leq \sqrt{n} 2^{\pi(n)} \\
n & \leq \sqrt{n} 2^{\pi(n)}+\pi(n)
\end{aligned}
$$

if $\pi(n) \leq\left(\frac{1}{3}\right) \log _{2} n$ then

$$
n \leq \sqrt{n} 2^{\pi(n)}+\pi(n) \leq \sqrt{n} n^{1 / 3}+\frac{1}{3} \log _{2} n \leq n^{5 / 6}+\frac{1}{3} \log _{2} n
$$

which is a contradiction.
b) Since $2^{2}, 2^{3}, \ldots, 2^{\log _{2} n}$ are all composite numbers that are less than n we have

$$
\begin{aligned}
C O M P & \geq\left(\log _{2} n\right)-1 \\
n-\pi(n) & \geq\left(\log _{2} n\right)-1 \\
\pi(n) & \leq n+1-\log _{2} n
\end{aligned}
$$

EXERCISE: Improve the constants in the above theorem.

3 Definitions

Convention 3.1 Henceforth p will always denote a prime. Throughout this paper \log means $\log _{2}$ unless otherwise noted.

Note that $\pi(n)=\sum_{p \leq n} 1$. This is hard to prove things about. Hence we consider the following two functions.

Def 3.2

1. $f(n)=\sum_{p \leq n} \log p$.
2. $g(n)=\sum_{k \geq 1} \sum_{p^{k} \leq n} \log p$.

We will obtain upper and lower bounds on $\pi(n)$ in terms of $f(n)$. Then we will obtain upper and lower bounds on $f(n)$. The lower bound on $f(n)$ will use $g(n)$.

4 Bounds on $\pi(n)$ in terms of $f(n)$

Lemma $4.1 \frac{f(n)}{\log n} \leq \pi(n)$.
Proof: $\quad f(n)=\sum_{p \leq n} \log p \leq \pi(n) \log n$. Hence $\frac{f(n)}{\log n} \leq \pi(n)$.

Lemma 4.2 Let $0<\delta<1$. Then $\pi(n) \leq \frac{f(n)}{\delta \log n}+n^{\delta}$.

Proof:

$$
\begin{aligned}
& f(n)=\sum_{p \leq n} \log p \geq \sum_{n^{\delta} \leq p \leq n} \log p \geq\left(\pi(n)-\pi\left(n^{\delta}\right) \log n^{\delta} \geq\left(\pi(n)-n^{\delta}\right) \delta \log n\right. \\
& \text { So } \frac{f(n)}{\delta \log n} \geq \pi(n)-n^{\delta} . \text { Hence } \pi(n) \leq \frac{f(n)}{\delta \log n}+n^{\delta} .
\end{aligned}
$$

Note 4.3 By Lemmas 4.1 and 4.2 we need only show that $f(n)=\Theta(n)$ to obtain the Weak Prime Number Theorem.

5 Upper Bound on $f(n)$

Lemma $5.1 f(n) \leq 2 n$.

Proof:

We obtain a recurrence for f.

$$
\begin{aligned}
f(2 n)=\sum_{p \leq 2 n} \log p & =\sum_{p \leq n} \log p+\sum_{n+1 \leq p \leq 2 n} \log p \\
& =f(n)+\sum_{n+1 \leq p \leq 2 n} \log p \\
& =f(n)+\log \left(\prod_{n+1 \leq p \leq 2 n} p\right)
\end{aligned}
$$

We seek bounds on $\prod_{n+1 \leq p \leq 2 n} p$. KEY IDEA: to bound a number find a number that it divides.

Clearly $\prod_{n+1 \leq p \leq 2 n} p$ divides $(n+1)(n+2) \cdots 2 n$. But this is large. We will divide $(n+1)(n+\overline{2}) \cdots 2 n$ by some quantity so that what we have left (a) is still an integer, and (b) still has $\prod_{n+1 \leq p \leq 2 n} p$ dividing it.

Look at $\frac{(n+1)(n+2) \cdots 2 n}{n!}=\binom{2 n}{n}$. This is an integer. Since $\prod_{n \leq p \leq 2 n} p$ divides the numerator but is relatively prime to the denominator, $\prod_{n+1 \leq p \leq 2 n} p$ divides $\binom{2 n}{n}$. Hence

$$
\begin{aligned}
\prod_{n+1 \leq p \leq 2 n} & \leq\binom{ 2 n}{n} \\
\prod_{n+1 \leq p \leq 2 n} & \leq 2^{2 n} \\
\operatorname{og}\left(\prod_{n+1 \leq p \leq 2 n}\right) & \leq 2 n
\end{aligned}
$$

Hence
$f(2 n) \leq f(n)+2 n$.

Note that $f(2 n-1)=f(2 n)$ so we have $f(2 n-1) \leq f(n)+2 n$.
These two equation together easily yields $f(n) \leq 2 n$.

6 Lower Bounds on $f(n)$

To obtain lower bounds on $f(n)$ we first need to relate $g(n)$ to $f(n)$ and then get lower bounds on $g(n)$.

Lemma $6.1 g(n) \leq f(n)+2 \sqrt{n} \log n$.
Proof: $\quad g(n)=\sum_{k \geq 1} \sum_{p^{k} \leq n} \log p$.
Let $1 \leq p \leq n$. How many times is $\log p$ a summand? Since $p^{1} \leq n$, at least once. If $p^{2} \leq n$ then it will be counted again. Hence, all primes $p \leq n^{1 / 2}$ contribute at least two $\log p$ summands. More generally, if $p \leq n^{1 / i}$ then $\log p$ will appear i times as a summand. Hence we obtain
$g(n)=f(n)+f\left(n^{1 / 2}\right)+f\left(n^{1 / 3}\right)+\cdots+f\left(n^{1 / \log n}\right)$.
So $g(n) \leq f(n)+(\log n) f(\sqrt{n})$. By Lemma 5.1 we get $g(n) \leq f(n)+$ $2 \sqrt{n} \log n$.

We now obtain a lower bound on $g(n)$.
Lemma 6.2 For all $\epsilon>0$ there exists n_{0} such that $\left(\forall n \geq n_{0}\right)[g(n) \geq(1-\epsilon) n]$.

Proof:

$g(2 n)=\sum_{k \geq 1} \sum_{p^{k} \leq 2 n} \log p$.
Fix p. How many times does $\log p$ appear as a summand? It will appear k times where $p^{k} \leq 2 n \leq p^{k+1}$. This is $\left\lfloor\log _{p} 2 n\right\rfloor$ times. Hence $g(2 n)=$ $\sum_{p \leq 2 n}\left(\left\lfloor\log _{p} 2 n\right\rfloor\right)(\log p)$.

CLEVER IDEA- find some other quantity that is about the same.
Look at $\binom{2 n}{n}$. All its prime factors are $\leq 2 n$.
Notation 6.3 If $p, m \in N, p \leq m$, and p is prime then let $L A R D I V_{p, m}$ be the largest i such that p^{i} divides m. Note that $L A R D I V_{p, m!}=\left\lfloor\frac{m}{p}\right\rfloor+\left\lfloor\frac{m}{p^{2}}\right\rfloor+$ $\left\lfloor\frac{m}{p^{3}}\right\rfloor+\cdots$.

Let $k_{p}=L A R D I V_{p,(2 n)!}-L A R D I V_{p, n!n!}=L A R D I V_{p,(2 n)!}-2 L A R D I V_{p, n!}$. $\binom{2 n}{n}=\prod_{p \leq 2 n} p^{k_{p}}$

We need to estimate k_{p}.

$$
k_{p}=\sum_{i=1}^{\infty}\left\lfloor\frac{(2 n)}{p^{i}}\right\rfloor-2 \sum_{i=1}^{\infty}\left\lfloor\frac{n}{p^{i}}\right\rfloor=\sum_{i=1}^{\infty}\left\lfloor\frac{2 n}{p^{i}}\right\rfloor-2\left\lfloor\frac{n}{p^{i}}\right\rfloor
$$

Note that each summand is either 0 or 1 . Also note that at most $\left\lfloor\log _{p}(2 n)\right\rfloor$ of the terms are nonzero. Hence $k_{p} \leq\left\lfloor\log _{p}(2 n)\right\rfloor$.

So

$$
\binom{2 n}{n}=\prod_{p \leq 2 n} p^{k_{p}} \leq \prod_{p \leq 2 n} p^{\left\lfloor\log _{p} 2 n\right\rfloor}
$$

By Stirling's formula $\binom{2 n}{n}=\Theta\left(\frac{2^{2 n}}{\sqrt{n}}\right)$. Let n_{0}^{\prime} be such that, for all $n \geq n_{0}$, $\binom{2 n}{n} \geq \frac{2^{2 n}}{n}$. Hence we have

$$
\begin{gathered}
\frac{2^{2 n}}{n} \leq \prod_{p \leq 2 n} p^{\left\lfloor\log _{p}(2 n)\right\rfloor} \\
2 n-\log n \leq \sum_{p \leq 2 n}\left(\left\lfloor\log _{p}(2 n)\right\rfloor\right)(\log p)=g(2 n) \\
g(2 n) \geq 2 n-\log n
\end{gathered}
$$

Let $n_{0}^{\prime \prime}$ be the least number bigger than n_{0}^{\prime} such that $\left(\forall n \geq n_{0}\right)[g(2 n) \geq$ $(2-\epsilon) n$]. Since $g(2 n-1)=g(2 n)$, we also have $g(2 n-1) \geq(2-\epsilon) n$. Let $n_{0}=2 n_{0}^{\prime \prime}$. We have $\left(\forall n \geq n_{0}\right)[g(n) \geq(2-\epsilon) n]$.

Lemma 6.4 For all $\epsilon>0$ there exists n_{0} such that $\left(\forall n \geq n_{0}\right)[f(n) \geq(1-\epsilon) n]$.
Proof: By Lemma 6.1 we have $f(n) \geq g(n)-2 \sqrt{n} \log n$. Let $0<\epsilon^{\prime}<\epsilon$. By Lemma 6.2 we have that there exists n_{0}^{\prime} such that
$\left(\forall n \geq n_{0}\right)\left[g(n) \geq\left(2-\epsilon^{\prime}\right) n\right.$
Hence we have

$$
f(n) \geq\left(2-\epsilon^{\prime}\right) n-2 \sqrt{n} \log n
$$

Let n_{0} be the least number $\geq n_{0}^{\prime}$ such that

$$
\left(\forall n \geq n_{0}\right)\left[\left(2-\epsilon^{\prime}\right) n-2 \sqrt{n} \log n \geq(2-\epsilon) n\right]
$$

Clearly $\left(\forall n \geq n_{0}\right)[f(n) \geq(2-\epsilon) n]$.

7 The Weak Prime Number Theorem

Theorem 7.1 For all ϵ there exists n_{0} such that

$$
\left(\forall n \geq n_{0}\right)\left[(1-\epsilon) \frac{n}{\log n} \leq \pi(n) \leq(2+\epsilon) \frac{n}{\log n}\right]
$$

Proof: By Lemma 4.1 we have that $\frac{f(n)}{\log n} \leq \pi(n)$. By Lemma 6.4 we have

$$
\left(\exists n_{0}^{\prime}\right)\left(\forall n \geq n_{0}^{\prime}\right)[f(n) \geq(1-\epsilon) n]
$$

Hence we have

$$
\left(\exists n_{0}^{\prime}\right)\left(\forall n \geq n_{0}^{\prime}\right)\left[(1-\epsilon) \frac{n}{\log n} \leq \pi(n)\right]
$$

By Lemma 4.2 we have that, for any δ with $0<\delta<1, \pi(n) \leq \frac{f(n)}{\delta \log n}+n^{\delta}$. By Lemma 5.1 we have $f(n) \leq 2 n$. Hence we have

$$
\pi(n) \leq \frac{2 n}{\delta \log n}+n^{\delta}=\frac{2}{\delta} \frac{n}{\log n}+n^{\delta}
$$

Let $\delta>0$ be such that $\frac{2}{\delta}<(2+\epsilon)$. Let $n_{0}^{\prime \prime}$ be such that

$$
\left(\forall n \geq n_{0}^{\prime \prime}\right)\left[\frac{2}{\delta} \frac{n}{\log n}+n^{\delta} \leq(2+\epsilon) \frac{n}{\log n}\right]
$$

Let $n_{0}=\max \left\{n_{0}^{\prime}, n_{0}^{\prime \prime}\right\}$. Then, for all $n \geq n_{0}$,

$$
(1-\epsilon) \frac{n}{\log n} \leq \pi(n) \leq(2+\epsilon) \frac{n}{\log n} .
$$

Note 7.2 The real Prime Number Theorem uses $\ln n$ instead of $\log n$. To see how the weak one compares, we rewrite it using the fact that $\log n=\frac{\ln n}{\ln 2}$. We have

$$
(\forall \epsilon>0)\left(\exists n_{0}\right)\left(\forall n \geq n_{0}\right)\left[(1-\epsilon)(\ln 2) \frac{n}{\ln n} \leq \pi(n) \leq(2+\epsilon)(\ln 2) \frac{n}{\ln n}\right]
$$

Using $0.69 \leq \ln 2 \leq 0.7$.

$$
(\forall \epsilon>0)\left(\exists n_{0}\right)\left(\forall n \geq n_{0}\right)\left[0.69 \frac{n}{\ln n} \leq \pi(n) \leq 1.4 \frac{n}{\ln n} .\right]
$$

Note 7.3 Chebyshev obtained

$$
(\forall \epsilon>0)\left(\exists n_{0}\right)\left(\forall n \geq n_{0}\right)\left[0.875 \frac{n}{\ln n} \leq \pi(n) \leq 1.125 \frac{n}{\ln n}\right.
$$

EXERCISE: For $\epsilon=1, \frac{1}{2}, \ldots$ find a value of n_{0}. Try to make it as small as possible.

We can now prove a weak version of Bertrand's Postulate.
Theorem 7.4 There exists n_{0} such that, for all $n \geq n_{0}$, there is a prime between n and $3 n$.

Proof:

We need to show that $\pi(3 n)-\pi(n) \geq 1$.
By Theorem 7.1 with $\epsilon=\frac{1}{8}$ we have $\left(\exists n_{0}\right)\left(\forall n \geq n_{0}\right)\left[\frac{7}{8}\right) \frac{n}{\log n} \leq \pi(n) \leq$ $\left.\frac{17}{8} \frac{n}{\log n}\right]$. Hence
$\pi(3 n) \geq \frac{21}{8} \frac{n}{\log 3 n} \geq \frac{21}{8} \frac{n}{\log n}$. and $\pi(n) \leq \frac{17}{8} \frac{n}{\log n}$.
Hence $\pi(3 n)-\pi(n) \geq 1$.
EXERCISE: Prove a tighter version of Bertrand's postulate using these methods.

EXERCISE: Using cruder approximations that work for all n, obtain a weaker version of the Weak Prime Number Theorem that works for all n. (It will not have an ϵ or n_{0} in it.)

