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Abstract. We consider error-correction over the Non-Binary Symmet-
ric Channel (NBSC) which is a natural probabilistic extension of the
Binary Symmetric Channel (BSC). We propose a new decoding algo-
rithm for interleaved Reed-Solomon Codes that attempts to correct all
“interleaved” codewords simultaneously. In particular, interleaved en-
coding gives rise to multi-dimensional curves and more specifically to a
variation of the Polynomial Reconstruction Problem, which we call Si-
multaneous Polynomial Reconstruction. We present and analyze a novel
probabilistic algorithm that solves this problem. Our construction yields
a decoding algorithm for interleaved RS-codes that allows efficient trans-
mission arbitrarily close to the channel capacity in the NBSC model.

1 Introduction

Random noise assumptions have been considered extensively in the coding the-
ory literature with substantial results. One prominent example is Forney Codes
[For66] that were designed over the binary symmetric channel (BSC). The BSC
suggests that when transmitting binary digits, errors are independent and every
bit transmitted has a fixed probability of error. The BSC provides a form of a
random noise assumption, which allows probabilistic decoding for message rates
that approach the capacity of the channel.
Worst-case non-ambiguous decoding (i.e., when only a bound on the number

of faults is assumed and a unique solution is required) has a natural limitation
of correcting a number of errors that is up to half the distance of the code. Go-
ing beyond this natural bound, either requires re-stating the decoding problem
(e.g. consider list-decoding: output all possible decodings for a corrupted code-
word), or assuming some “noise assumption” that will restrict probabilistically
the combinatorial possibilities for a multitude of possible solutions. Typically,
such assumptions are associated with physical properties of given channels (e.g.,
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bursty noise, etc.). Recent breakthrough results by Guruswami and Sudan in
list-decoding ([Sud97,GS98]) showed that decoding beyond the natural error-
correction bound is possible in the worst-case, by outputting all possible decod-
ings. Naturally, there are still limitations in the case of worst-case decoding that
prohibit the decoding of very high error-rates.
In this work, motivated by the above, we investigate a traditional channel

model that is native to the non-binary setting. The channel is called “Non-Binary
Symmetric Channel” (NBSC), presented in figure 1.
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Fig. 1. A non-binary symmetric channel over an alphabet of n symbols. The probability
of successful transmission is 1−p+p/n. We will refer to p as the error-rate of the NBSC.

As a channel model for bit-level transmission the Non-Binary Symmetric
Channel model usually applies to settings where aggregates of bits are sent and
errors are assumed to be bursty. Thus, in contrast with the Binary Symmet-
ric Channel, errors in consecutive bits are assumed from a Coding Theoretic
perspective to be correlated. There are additional situations that have been con-
sidered in a number of Computer Science settings where the NBSC describes
the transmission model. For example, consider the case of Information Disper-
sal Algorithms (IDA) introduced by Rabin in [Rab89] for omission errors, and
extended by Krawczyk [Kra92] to deal with general errors. In this setting, a
word is encoded into a codeword and various portions of the codeword are sent
over different radio network channels, some of which may introduce errors. In
the case where the channels are operating in different frequencies, errors may
be introduced by jammed channels which emit white noise. Namely, they ran-
domize the transmitted symbol. As a result the communication model in this
case approximates the NBSC. Another setting which approximates the NBSC is
the transmission of encrypted data where each sub codeword is sent encrypted
with what is called “error propagation encryption mode.” These popular modes
(e.g. the CBC mode), over noisy channels, will produce a transmission that
also approximates the NBSC model ([MOV96], page 230). Moreover the NBSC
model has been used in the cryptographic setting as a way to hide information
in schemes that employ intractability assumptions related to the hardness of
decoding, see e.g. [KY01].
In this work we concentrate on Reed-Solomon Codes. The decoding problem

of Reed-Solomon Codes (aka the Polynomial Reconstruction problem — PR) has
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been studied extensively, see e.g. [Ber96,Sud97,GS98]. Here, we present a varia-
tion of the PR, which we call “Simultaneous Polynomial Reconstruction” and we
present a novel probabilistic algorithm that solves it for settings of the param-
eters that are beyond the currently known solvability bounds for PR (without
any effect on the solvability of the latter problem). Our algorithm is probabilistic
and is employed in settings where errors are assumed to be random.
Next we concentrate on the “code interleaving” encoding schema, see e.g.

section 7.5, [VV89], which is a technique used to increase the robustness of a
code in the setting of burst errors. We consider the problem of decoding inter-
leaved Reed-Solomon Codes and we discover the relationship of this problem to
the problem of Simultaneous Polynomial Reconstruction. In particular we show
that the two problems are equivalent when interleaved Reed-Solomon Codes are
applied over a channel that satisfies the NBSC model.
Subsequently using our algorithm for Simultaneous Polynomial Reconstruc-

tion we present a novel decoding algorithm for interleaved Reed-Solomon Codes
in the NBSC model that is capable of correcting any error-rate up to r

r+1 (1−κ)
where r is the “amount of interleaving” and κ is the message rate.
We observe that traditional decoding of interleaved RS-Codes does not im-

prove the error-rate that can be corrected. In fact, error-rates only up to 1−κ
2 can

be corrected (uniquely) in the worst-case, and in the NBSC model list-decoding
algorithms ([GS98]) for unique decoding can be also employed thus correcting
error-rates up to 1− √

κ.
Nevertheless using our algorithm for Simultaneous Polynomial Reconstruc-

tion we correct error-rates up to r
r+1 (1− κ) (with high probability). An imme-

diate corollary is that we can correct any error-rate bounded away from (1− κ)
provided that the alphabet-size is selected to be large enough. In other words,
interleaved RS-Codes reach the channel’s capacity as the amount of interleaving
r → ∞ (something that requires that the alphabet-size n over which the NBSC
model is employed to also satisfy n → ∞).
Organization. In section 2 we present our variation of the Polynomial Recon-
struction problem and we describe and analyze a probabilistic algorithm that
solves this problem. Subsequently in section 3 we describe the relation of this
problem to the decoding of Interleaved Reed-Solomon codes and we show how
our algorithm is employed in this domain. We use the notation [n] to denote the
set {1, . . . , n}.

2 The Algorithm

In this section we present a probabilistic algorithm that solves efficiently the
following problem, which we call the Simultaneous Polynomial Reconstruction:

Definition 1. (Simultaneous Polynomial Reconstruction — SPR) For
n, k, t, r ∈ IN, an instance of SPR is a set of tuples {〈zi, yi,1, . . . , yi,r〉}n

i=1 over
a finite field F with i 
= j → zi 
= zj that satisfies the following:
1. There exists an I ⊆ [n] with |I| = t, and polynomials p1, . . . , pr ∈ F[x] of

degree less than k, such that p�(zi) = yi,� for all i ∈ I and � ∈ [r].
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2. For all i 
∈ I, � ∈ [r] it holds that yi,� are uniformly distributed over F.
Goal: Recover p1, . . . , pr.

We remark that the goal of Simultaneous Polynomial Reconstruction, assum-
ing a large underlying finite-field F, is well-defined (in other words the probability
that another tuple of r polynomials p′

1, . . . , p
′
r exists that would fit the data in

the same way p1, . . . , pr do, is very small). Taking this into account, the SPR
problem with parameters n, k, t, r reduces easily to the Polynomial Reconstruc-
tion Problem with parameters n, k, t, (by simply reducing the n tuples to pairs
by discarding r− 1 coordinates — it follows easily that the recovery of p1 would
reveal the remaining polynomials). Thus, we would be interested in algorithmic
solutions for the SPR problem when the parameters n, k, t are selected to be
beyond the state-of-the-art solvability of the PR problem.

2.1 Description of the Algorithm

The algorithmic construction that we present amends the prototypical decoding
paradigm (fitting the data through an error-locator polynomial, see e.g. [BW86,
Ber96]) to the setting of Simultaneous Polynomial Reconstruction. More specif-
ically our algorithm can be seen as a generalization of the Berlekamp-Welch
algorithm for Reed-Solomon Decoding, [BW86]. The parameter settings where
our algorithm works is

t ≥ n+ rk

r + 1
observe that for r = 1 the above bound on t coincides with the bound of the
[BW86]-algorithm, whereas when r > 1 less agreement is required (t is allowed
to be smaller).
Let {〈zi, yi,1, . . . , yi,r〉}n

i=1 be an instance of the SPR problem with parame-
ters n, k, t, r. Further observe that the condition on t above implies that r ≥ n−t

t−k .
Define the following system of rn equations:

[m1(zi) = yi,1E(zi)]ni=1 . . . [mr(zi) = yi,rE(zi)]ni=1 (∗)
where the unknowns are the coefficients of the polynomials m1, . . . ,mr, E. Each
m� is a polynomial of degree less than n− t+ k and E is a polynomial of degree
at most n − t with constant term equal to 1. It follows that the system has
r(n− t+ k)+n− t unknowns and thus it is not underspecified (i.e., the number
of equations is at least as large as the number of unknowns); this follows from
the condition on r.
Our algorithm for SPR simply solves system (∗) to recover the polynomials

m1, . . . ,mr, E and outputs m1/E, . . . ,mr/E as the solution to the given SPR
instance. This is accomplished by selecting an appropriate square sub-system of
(∗) defined explicitly in section 2.3.
This completes the description of our algorithm. We argue about its correct-

ness in the following two sections. We remark that the novelty of our approach
relies on the probabilistic method that is employed to ensure the uniqueness of
the error-locator polynomial E.
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2.2 Feasibility

In this section we argue that for a given SPR instance {〈zi, yi,1, . . . , yi,r〉}n
i=1,

one of the possible outputs of the algorithm of section 2.1 is the solution of the
SPR instance. Observe that due to item 1 of definition 1, there exists I ⊆ [n]
with |I| = t such that p�(zi) = yi,� for i ∈ I and all � ∈ [r] for some polynomials
p1, . . . , pr ∈ F[x] (which constitute the solution of the SPR instance).
Let Ẽ(x) = (−1)n−|I| ∏

i �∈I(x/zi−1). Observe that Ẽ has constant term 1 and
degree n−t. Further, if m̃�(x) := p�(x)Ẽ(x) it holds that m̃�(zi) = p�(zi)Ẽ(zi) =
yi,�Ẽ(zi), for all i = 1, . . . , n. The degree of m̃� is less than n − t + k. Observe
that the polynomials Ẽ, m̃1, . . . , m̃r constitute a possible solution of the system
(∗). Moreover (by construction) m̃�(x)/Ẽ(x) = p�(x) for � = 1, . . . , r and as a
result one of the possible outputs of the algorithm of section 2.1 is indeed the
solution of the given SPR instance.

2.3 Uniqueness

The crux of the analysis of our algorithm is the technique we introduce to show
the uniqueness of the solution constructed in the previous section.
In a nutshell we will present a technique for constructing a minor for the

matrix of system (∗) that is non-singular with high probability. It is exactly at
this point that item 2 of definition 1 will be employed in a non-trivial manner.
We present the technique as part of the proof of the theorem below. The reader
is also referred to figure 2 for a graphical representation of the method.

Theorem 1. The matrix of the linear system (∗) has a minor of order r(n −
t+ k)+n− t denoted by Â that is non-singular with probability at least 1− n−t

|F| .

Proof. Consider the following matrices, for � = 1, . . . , r:

M =




1 z1 z21 . . . zn−t+k−1
1

1 z2 z22 . . . zn−t+k−1
2

...
...
... . . .

...
1 zn z2n . . . zn−t+k−1

n


 M� =




y1,�z1 y1,�z
2
1 . . . y1,�z

n−t
1

y2,�z2 y2,�z
2
2 . . . y2,�z

n−t
2

...
... . . .

...
yn,�zn yn,�z

2
n . . . yn,�z

n−t
n




Given these definitions, it follows that the matrix of the system (∗) is the
following (where 0 stands for a n × (n − t+ k)-matrix with 0’s everywhere):

A =




M 0 . . . 0 −M1
0 M . . . 0 −M2
...
... . . .

...
...

0 0 . . . M −Mr




We index each row of A by the pair 〈i, �〉 with i ∈ {1, . . . , n} and � ∈
{1, . . . , r}. The �-th block row of A contains the rows 〈1, �〉, . . . , 〈n, �〉.
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Fig. 2. Constructing the matrix Â∗ from the matrix of the system (∗). Refer to the
proof of theorem 1 for the definitions of the matrices shown above.

Now we select a square sub-matrix Â of A by removing r(t − k) − (n − t)
rows as follows: starting from the r-th block row we remove a number of rows
x ∈ {0, . . . , t − k} indexed by 〈n, r〉, . . . , 〈n − t+ k + 1, r〉 (in this order) until Â
becomes square or x reaches t − k. Then we repeat the same procedure for the
block-row (r − 1) and so on, until Â becomes square. Next, we will show that Â
is non-singular with high probability.
Without loss of generality we assume that I = {n − t+ 1, . . . , n}. The proof

is identical for any other choice of I.
Now let us denote by N� a (n− t+k)-Vandermonde matrix over the elements

{z1, . . . , zn}−{z1+(�−1)(t−k), . . . , z�(t−k)}. Also we defineM ′
� to be the sub-matrix

ofM� with the rows 〈x+(�−1)(t−k), �〉 removed for x = 1, . . . , t−k. Finally let
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V� be a (n−t)×(n−t+k)-matrix that is 0 everywhere except for the rows u that
satisfy the property that there is an x ∈ [t−k] such that u = x+(�−1)(t−k) ≤
n − t; such a row of V� will be equal to the tuple 〈1, zu, . . . , z

n−t+k−1
u 〉. The

matrix Â∗ defined below is a rearrangement of the rows of Â.

Â∗ =




N1 0 . . . 0 −M ′
1

0 N2 . . . 0 −M ′
2

...
... . . .

...
...

0 0 . . . Nr −M ′
r

V1 V2 . . . Vr −M̂




where the right low corner matrix M̂ is defined below:

M̂ =




y1,1z1 y1,1z
2
1 . . . y1,1z

n−t
1

y2,1z2 y2,1z
2
2 . . . y2,1z

n−t
2

...
... . . .

...
yt−k,1zt−k yt−k,1z

2
t−k . . . yt−k,1z

n−t
t−k

yt−k+1,2zt−k+1 yt−k+1,2z
2
t−k+1 . . . yt−k+1,2z

n−t
t−k+1

yt−k+2,2zt−k+2 yt−k+2,2z
2
t−k+2 . . . yt−k+2,2z

n−t
t−k+2

...
... . . .

...
y2(t−k),2z2(t−k) y2(t−k),2z

2
2(t−k) . . . y2(t−k),2z

n−t
2(t−k)

...
... . . .

...
yn−t,�zn−t yn−t,�z

2
n−t . . . yn−t,�z

n−t
n−t




We will argue that Â∗ is non-singular. First observe that the determinant
of Â∗ can be seen as a multivariate polynomial over the variables yi,� where
i ∈ [n] and � ∈ [r] (taking into account the fact that yi,� for i ∈ I are only k-wise
independent — note that without loss of generality we assume that the solution
of a SPR instance is uniformly random: indeed given a SPR instance we can
easily randomize its solution by adding a random polynomial of degree less than
k to each of the r coordinates; naturally, if a solution is found we will have to
subtract the randomization polynomial from each coordinate).
Suppose now we want to eliminate V1. In particular to eliminate the first non-

zero row of V1 we should find λt−k+1, . . . , λn such that
∑n

j=t−k+1 λjz
m
j = −zm

1
for each m ∈ [n − t+ k − 1] ∪ {0}.
Now let us choose some assignment for the values y1,1, . . . , yn,1; we set y1,1 =

. . . = yt−k,1 = 2 and yt−k+1,1 = . . . = yn,1 = 1. It follows that the first row of M̂
is rewritten as 〈2z1, . . . , 2zn−t

1 〉. It follows that after the elimination of the first
row of V1 the first row of M̂ becomes equal to 〈z1, . . . , zn−t

1 〉.
Regarding the step above, observe the following: (i) the assignment we did for

the yi,� values is consistent with their dependency condition: yn−t+1,�, . . . , yn,�

must be k-wise independent; (ii) by applying the same elimination method to
the remaining non-zero rows of V1, V2, . . . , Vr and for each � ∈ [r] making the
assignment yi,� = 2 for each i ∈ {x+(�−1)(t−k) ≤ n− t | x = 1, . . . , t−k} and



104 D. Bleichenbacher, A. Kiayias, and M. Yung

yi,� = 1 otherwise, it follows that we will eliminate all V1, . . . , Vr. After this is
accomplished observe that in place of the matrix M̂ there will be a Vandermonde-
like matrix of order n − t that is non-singular.
It follows that det(Â∗) (seen as a multivariate-polynomial) is not the zero-

polynomial and thus, by Schwartz’s Lemma [Sch80], it cannot be 0 in more than
a n−t

|F| -fraction of its domain (where n − t is the total degree of the polynomial

det(Â∗)). As a result det(Â∗) will be 0 with probability at most n−t
|F| . �

It follows easily from the above theorem that the system (∗) accepts at most
one solution. Naturally the non-singularity of Â is not sufficient to ensure the
existence of a solution. Nevertheless we know that (∗) accepts at least one so-
lution (as constructed explicitly in section 2.2). It follows that system (∗) has a
unique solution (that coincides with the solution constructed in section 2.2) and
this solution can be found by solving the system that has Â as its matrix.
To improve the efficiency of our algorithm observe that is is not necessary

to solve the linear-system with matrix Â directly; instead, we can derive easily
a system of n − t equations that completely determines the polynomial E; it is
obvious that the recovery of E will reveal all solutions of the given SPR instance.
This is so, since finding all roots of E will reveal the error-locations of the given
SPR-instance and then the recovery of p1, . . . , pr can be done by interpolation.
A system of n − t equations that determines E completely can be found by
eliminating all variables that correspond to the polynomials m� from at most
t − k rows of the �-th block row of matrix Â, for � = 1, . . . , r. Such elimination
will be possible for exactly n − t rows.

3 Decoding Interleaved RS-Codes in the NBSC Model

In this section we present a coding theoretic application of our algorithm of
section 2 to the case of interleaved Reed-Solomon Decoding. First we recall the
notion of interleaved codes.

3.1 Interleaved Codes

Interleaved codes are not an explicit family of codes, but rather an encoding
mode that can be instantiated over any concrete family of codes. In The mode
can be applied to any family of codes; in this section we give a code independent
description.
Let Σ′ be an alphabet with |Σ′| = r

√|Σ|. Let φ : Σ → (Σ′)r be some 1-1
mapping. We will denote φ(x) by the string xφ[1]xφ[2] . . . xφ[r], where xφ[�] ∈ Σ′,
for � = 1, . . . , r, for any x ∈ Σ.
Now let enc : (Σ′)k → (Σ′)n be an encoding function. An interleaved code

w.r.t. φ for enc is a function encφ : (Σ)k → (Σ)n that is defined as follows: Let
m0m1 . . .mk−1 ∈ (Σ)k. First the following strings of (Σ′)n are computed:
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c1,1 . . . cn,1 = enc(mφ
0 [1] . . .m

φ
k−1[1])

...

c1,r . . . cn,r = enc(mφ
0 [r] . . .m

φ
k−1[r])

The interleaved encoding is defined as follows:

encφ(m0m1 . . .mk−1) = φ−1(c1,1 . . . c1,r) . . . φ−1(cn,1 . . . cn,r)

A graphical representation of code interleaving is presented in figure 3.
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m
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∑'
enc

enc

enc

enc

Fig. 3. Encoding schema for an interleaved code. Single subscript symbols (mi, ci)
belong to the “outer” alphabet Σ; double subscript symbols (mi,j , ci,j) belong to the
“inner” alphabet Σ′.

Such interleaved encodings will be said to be of degree r over the alphabet
Σ′ (we will also call it “amount of interleaving”).
The common way to use an interleaved code, is simply decode each of the

code words (c1,i . . . cn,i) separately. Such a decoding does not increase the error
correction rate. The advantage is the fact that burst errors are distributed over
several code words, and therefore employing interleaving over bursty channels
increases the chances of error-correction.
We emphasize here that under reasonable channel assumptions it might be

possible to take advantage of interleaving and attempt to correct all code words
simultaneously. Indeed, in contrast to the standard approach of decoding each
one of the codewords individually, we will present a decoding technique that
attempts to correct all codewords simultaneously assuming that the NBSC model
describes the transmission channel. This methodology will increase the possible
error-rates that the interleaved code can withstand.

3.2 Interleaved Reed-Solomon Codes

Let Σ = GF (2B) be the alphabet for the encoding function (without loss of
generality we will focus only on binary extension fields — all our results hold
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also for general finite fields). The parameters are n, k ∈ IN where κ := k/n is
the message rate. We assume additionally a parameter r ∈ IN with the property
br = B (we remark here that a similar scheme is also possible when B is prime,
however, for notational simplicity we do not deal with this case in this abstract).
Let z1, . . . , zn ∈ GF (2b) be fixed distinct constants.
We now describe the case of interleaved Reed-Solomon Codes. First, observe

that there exists a straightforward bijection mapping φ : GF (2B) → (GF (2b)r.
Given m0 . . .mk−1 ∈ GF (2B) we define the following polynomials over GF (2b),
for � = 1, . . . , r:

p�(x) := mφ
0 [�] +mφ

1 [�]x+ . . .+mφ[�]k−1x
k−1

The encoding of m0 . . .mk−1 is set to be the string

φ−1(p1(z1) . . . pr(z1)) . . . φ−1(p1(zn) . . . pr(zn))

The common way to decode RS-interleaved-codes is to concentrate to each
of the r coordinates individually and employ the decoding algorithm of the
underlying RS-Code over Σ′. This can be done as follows: given a (partially
corrupted) codeword c1 . . . cn ∈ (Σ)n we treat the string cφ

1 [1] . . . c
φ
n[1] ∈ (Σ′)n

as a partially corrupted RS-codeword over Σ′ and we employ the RS-Decoding
of Berlekamp-Welch to recover p1. Observe that the recovery of p1 will imply the
recovery of p2, . . . , pr immediately, provided that the error-rate is at most 1−κ

2
(the error-rate is taken over the channel that transmits GF (2B) symbols; it is
easy to verify that in the NBSC model all codewords cφ

1 [�] . . . c
φ
n[�], � = 1, . . . , r

will have identical error-pattern with very high probability).
Moreover, due to assured unique solution with high probability in our case,

one can further employ the Guruswami-Sudan list-decoding algorithm that will
produce a unique solution with high probability for error-rates up to 1 − √

κ.
The main focus of the next section is to go beyond this bound.

3.3 The Decoding Algorithm

In this section we reduce the problem of decoding interleaved Reed-Solomon
Codes in the NBSC model to the problem of Simultaneous Polynomial Recon-
struction. Given this result, our algorithm for the latter problem yields a decod-
ing algorithm for interleaved RS-codes.
Consider interleaved RS-Codes with parameters r, n, k, t ∈ IN, where r is

the amount of interleaving. Also let φ : GF (2B) → GF (2b)r be the bijection
mapping employed for the interleaving.
Let c1 . . . cn ∈ (GF (2B))n be the received codeword. Let yi,1 . . . yi,r = φ(ci),

with yi,� ∈ GF (2b) for all i = 1, . . . , n, � = 1, . . . , r.
Suppose now that i ∈ {1, . . . , n} is an error-location for the codeword

c1 . . . cn. It follows that ci is uniformly distributed over GF (2B) (because of
the employment of the NBSC model). Since φ is a bijection it follows easily that
each of yi,1, . . . , yi,r are uniformly distributed over GF (2b).
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On the other hand there exist polynomials p1, . . . , pr ∈ GF (2b)[x] of degree
less than k such that for all i ∈ {1, . . . , n} with i not an error-location, it holds
that yi,1 = p1(zi), . . . , yi,r = pr(zi). The following proposition is immediate:

Proposition 1. Let c1 . . . cn ∈ GF (2B)n be an encoding of a message m0 . . .
mk−1 ∈ GF (2B)k using the interleaved Reed-Solomon encoding scheme with
parameters n, k, r that has e errors (over the NBSC model). Then the tuples
{〈zi, yi,1, . . . , yi,r〉}n

i=1 as defined above constitute an instance of the SPR problem
with parameters n, k, t := n − e, r over the field GF (2b), b = B/r.

Based on our algorithm of section 2 we deduce:

Corollary 1. There exists a decoding algorithm for interleaved Reed-Solomon
codes over parameters n, k, r that corrects any error-rate ε up to

ε ≤ r

r + 1
(1− κ)

with probability 1− n−t
2b .

Example: Suppose that the message-rate is 1/4 and the error-rate is 11/16. We
employ the interleaved RS-schema for r = 11 with alphabets Σ = GF (2B) =
GF (2440) and Σ′ = GF (2b) = GF (240). Observe that such error-rates are not
correctable by considering the interleaved codewords individually (indeed, even
list-decoding algorithms, e.g. the [GS98]-method would work only for error-rates
up to 1/2). Suppose now that the block-size is n = 64. Our probabilistic decoding
algorithm for such interleaved RS-codes corresponds to solving the SPR problem
on parameters n = 64, k = 16, t = 20, r = 11 over the finite-field GF (240) and
thus we will succeed in decoding with probability least 1− 2−34.
Remark: We note that employing our methodology, setting and analysis tech-
niques in other cases (i.e. simultaneous decoding of all interleaved codewords for
other families of interleaved codes in the NBSC model) is an interesting research
direction.
An independent solution of the Simultaneous Polynomial Reconstruction

Problem was presented recently by Coppersmith and Sudan in [CS03]. Their
solution requires t > r+1

√
nkr + k + 1 which improves on our bound t ≥ n+rk

r+1 in
cases where t > 2k.
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