
IEICE TRANS. FUNDAMENTALS, VOL. E82–A, NO. 1 JANUARY 1999
11

PAPER Special Section on Cryptography and Information Security

Efficient Private Information Retrieval

Toshiya ITOH†, Member

SUMMARY Informally, private information retrieval for k >=
1 databases (k-PIR) is an interactive scheme that enables a user
to make access to (separated) k replicated copies of a database
and privately retrieve any single bit out of the n bits of data
stored in the database. In this model, “privacy” implies that
the user retrieves the bit he is interested in but releases to each
database nothing about which bit he really tries to get. Chor et.
al. proposed 2-PIR with communication complexity 12n1/3 + 2
that is based on the covering codes. Then Ambainis recursively
extended the scheme by Chor et. al. and showed that for each
k >= 2, there exists k-PIR with communication complexity at
most ck · n1/(2k−1) some constant ck > 0. In this paper, we re-
lax the condition for the covering codes and present time-efficient
2-PIR with communication complexity 12n1/3. In addition, we
generally formulate the recursive scheme by Ambainis and show
that for each k >= 4, there exists k-PIR with communication com-
plexity at most c′

k
· n1/(2k−1) for some constant c′

k
� ck.

key words: information retrieval, privacy, communication
complexity, time complexity, covering codes

1. Introduction

1.1 Background

Private information retrieval for k >= 1 databases (k-
PIR) is initiated by Chor et. al. [4] as a useful way for
a user to privately get information through networks. It
would be quite natural to ask for the privacy of the user.
For example, an investor (or a speculator) that makes
access to the stock-market database to get the value of
a certain stock may wish to keep private which stock he
is interested in. Informally, k-PIR is a scheme that en-
ables a user to make access to (separated) k replicated
copies of a database and privately retrieve a single bit
of data stored in the database. In this framework, “pri-
vate” implies that the user is able to retrieve his desired
bit but releases to each database nothing about which
bit he tries to get in the information-theoretic sense.
In the practical point of view, the communication com-
plexity between the user and the databases (and the
time complexity of the user and the databases) seems
to be one of the most important resources for construct-
ing efficient and practical k-PIR.

When the user makes access to only a single
database, he may ask for a copy of the whole database

Manuscript received March 18, 1998.
Manuscript revised July 21, 1998.

†The author is with Interdisciplinary Graduate School
of Science and Engineering, Tokyo Institute of Technology,
Yokohama-shi, 226–8502 Japan.

to privately retrieve the bit that he is interested in. Ob-
viously, this requires O(n) communication complexity
but is proved to be essentially the best he can do. In-
deed, Chor et al. [4] showed that any 1-PIR requires
Ω(n) communication complexity. To reduce communi-
cation complexity of k-PIR, Chor et. al. [4] applied the
covering codes [10] and proposed 2-PIR with communi-
cation complexity 12n1/3 + 2 and k-PIR with commu-
nication complexity O(n1/k), where n is the length of
total data stored in the database. It is conjectured by
Chor et. al. [4] that O(n1/3) might be the lower bound
for the communication complexity of any 2-PIR. Then
Ambainis [1] recursively extended the scheme by Chor
et. al. [4] to construct k-PIR with less communication
complexity and showed that for each k >= 2, there exists
k-PIR with communication complexity O(n1/(2k−1)).

By applying cryptographic (secure) primitives,
Chor and Gilboa [3] extended k-PIR in a natural way
to define computationally private information retrieval
for k >= 1 databases (k-CPIR). This is a scheme that
is similar to the original k-PIR but the user releases
(in the computational sense) to each database nothing
about which bit he tries to retrieve. In this framework,
Chor and Gilboa [3] showed that for any ε > 0, there
exists 2-CPIR with communication complexity O(nε)
under the general assumption that pseudo-random gen-
erators exist [6], [7]. Intuitively, 1-CPIR with communi-
cation complexity o(n) would be impossible, however,
Kushilevitz and Ostrovsky [8] recently showed that for
any ε > 0, there exists 1-CPIR with communication
complexity O(nε) under the (stronger but reasonable)
assumption that quadratic residuosity [5] is hard.

1.2 Motivation

As for the communication complexity, the 2-CPIR [3]
and the 1-CPIR [8] achieve much better than k-PIR for
any reasonable k >= 2, however, there exist trade-offs
between the communication complexity and the time
complexity. To achieve O(nε) communication complex-
ity for any ε > 0, the 2-CPIR [3] and the 1-CPIR [8] are
recursively constructed and in each recursive step, each
database (in the 2-CPIR [3] and the 1-CPIR [8]) needs
to execute large amount of computations. This may
eventually lead to a large delay until the user receives
the response from the database. In addition to this, the
privacy of the user in k-CPIR is asymptotically guaran-

12
IEICE TRANS. FUNDAMENTALS, VOL. E82–A, NO. 1 JANUARY 1999

teed with respect to n (the length of total data stored
in the database), i.e., the privacy of the user in k-CPIR
is protected for sufficiently large n. In general, this
implies that the privacy of the user in k-CPIR are not
necessarily guaranteed for reasonable size of data stored
in the database.

Thus k-PIR is more advantageous than k-CPIR
from the practical-oriented privacy point of view, be-
cause k-PIR protects the privacy of the user for any size
of data stored in the database. The goal of this paper
is to design time-efficient (or communication-efficient)
k-PIR.

1.3 Main Results

In this paper, we relax the condition for the covering
codes to design time-efficient 2-PIR and present 2-PIR
PIRBD with communication complexity 12n1/3. In ad-
dition, we generally formulate the recursive k-PIR by
Ambainis [1] and show that for each k >= 4, there exist
k-PIR PIRk

BREC of which communication complexity is
much less than that of k-PIR by Ambainis [1].

2. Preliminaries

In this paper, x = x1x2 . . .xn ∈ {0, 1}n denotes the
contents of the database and let n = |x|. For m > 0,
let [m] = {1, 2, . . . ,m} and d(a, b) be the Hamming dis-
tance of a and b.

2.1 The Model

A model for k-PIR is similar to that of multi-prover in-
teractive proofs [2]. We use U to denote a user that
is a probabilistic polynomial time interactive Turing
machine and DB1,DB2, . . . ,DBk denote deterministic
polynomial time interactive Turing machines that are
allowed to communicate with U but are not allowed to
communicate with each other. We also use q�

j to denote
the �th question made by U to DBj and a�

j to denote
the �th answer returned by DBj to U . For each j ∈ [k],
let Q�

j = (q1j , q
2
j , . . . , q�

j) and A�
j = (a1j , a

2
j , . . . , a�

j).

Definition 2.1 [4]: We say that (U ;DB1,DB2, . . . ,
DBk) is m-round information retrieval for k >= 1
databases (k-IR) if for any n > 0, any x ∈ {0, 1}n, and
any i ∈ [n], it satisfies the following: Let xi ∈ {0, 1}
be the bit that U wishes to retrieve from x. For each
round � ∈ [m] and each j ∈ [k], U sends q�

j(i) =
U(i, j, n;A�−1

1 , A�−1
2 , . . . , A�−1

k) to DBj as the �th ques-
tion and DBj responds U with a�

j = DBj(x,Q�
j(i))

as the �th answer. At the end of round m, U can
always retrieve the bit xi from Am

1 , Am
2 , . . . , Am

k , i.e.,
xi = U(i, n;Am

1 , Am
2 , . . . , Am

k).

Since U is a probabilistic polynomial time machine,
Qm

j (i) is a random variable. Note that i ∈ [n] is not a

random variable, because it is the bit position that U
wishes to retrieve.

Definition 2.2 (Privacy [4]): We say that (U ;DB1,
DB2, . . . ,DBk) is m-round private information retrieval
for k >= 1 databases (k-PIR) if it is k-IR and satisfies
the following: For each j ∈ [k], Qm

j (i1) and Qm
j (i2) are

identically distributed for every i1, i2 ∈ [n].

Definition 2.3 (Communication Complexity [4]): Let
Π = (U ;DB1,DB2, . . . ,DBk) be k-PIR. Then communi-
cation complexity of Π is the sum of the total amount of
bits exchanged between U and each DBj (1 <= j <= k),
i,e.,
∑

j∈[k]{|Qm
j (i)| + |Am

j |}.

Definition 2.4 (Time Complexity): Let Π = (U ;DB1,
DB2, . . . ,DBk) be k-PIR. Then time complexity of Π is
the sum of the running time of U and the maximum
running time of DBj .

Obviously, communication complexity corresponds to
the network cost and time complexity to the delay to
retrieve information. For k-PIR Π, we use COMΠ(n)
to denote communication complexity of PIRΠ, and
TIMEΠ(n) to denote time complexity of PIRΠ.

2.2 Useful Properties

For any S⊂= [m], �S = (s1, s2, . . . , sm) ∈ {0, 1}m is de-
fined to be si = 1 if i ∈ S and si = 0 if i |∈ S. For any
S⊂= [m] and i ∈ [m], define S ⊕ i to be S \ {i} if i ∈ S

and S ∪ {i} if i |∈ S, and for a = (a1, a2, . . . , am) ∈
{0, 1}m and b = (b1, b2, . . . , bm) ∈ {0, 1}m, let (a, b)
denote the inner product of a and b modulo 2, i.e.,
(a, b) =

∑
i∈[m] aibi (mod 2) =

⊕
i∈[m] aibi.

Proposition 2.5 [4, §3.1]: For any S⊂= [n] and i ∈
[n], let S1 = S and S2 = S ⊕ i and also let A1 =
(x, �S1) =

⊕
i∈S1

xi and A2 = (x, �S2) =
⊕

i∈S2
xi. Then

A1 ⊕A2 = xi.

For each d >= 2, we assume without loss of general-
ity that n = �d, i.e., � = n1/d. If it is not the case, we
expand x by padding appropriate number of zeros to
satisfy the condition. We embed x in a d-dimensional
cube by associating each position i ∈ [n] with a d-tuple
(i1, i2, . . . , id) in a natural manner. The following is
essential to design communication-efficient k-PIR.

Proposition 2.6 [4, §3.2]: For each t ∈ [n], let (t1,
t2, . . . , td) be the associated d-tuple of t ∈ [n]. For
each j ∈ [d], we also let S1j ⊂= [�] and S2j = S1j ⊕ tj ,
and for each σ = σ1σ2 · · ·σd ∈ {1, 2}d, we define
Aσ1σ2···σd

=
⊕

i1∈S
σ1
1

⊕
i2∈S

σ2
2

· · ·⊕id∈S
σd
d

xi1,i2,...,id
.

Then xt1,t2,...,td
=
⊕

σ1σ2···σd∈{0,1}d Aσ1σ2···σd
.

For any integer s >= 1, let m = �n/s� and X =
(X1, X2, . . . , Xm) = x ∈ {0, 1}n, where Xi ∈ {0, 1}s for

ITOH: EFFICIENT PRIVATE INFORMATION RETRIEVAL
13

each block i ∈ [m], and we also assume without loss
of generality that m = �d, i.e., � = m1/d. In a way
similar to the above, we embed X in a d-dimensional
cube by associating each block i ∈ [m] with a d-tuple
(i1, i2, . . . , id) in a natural manner.

Note that Proposition 2.6 holds for the case that
s = 1 but can be generalized to the case that s > 1 in an
obvious way. The lemma below will play a central role
in Sect. 3 to design time-efficient (and communication-
efficient) k-PIR by an appropriate choice of s > 1.

Lemma 2.7: For each t ∈ [m], let (t1, t2, . . . , td) be the
associated d-tuple of t. For each j ∈ [d], let S1j ⊂= [�] and
S2j = S1j ⊕ tj , and for each σ1σ2 · · ·σd ∈ {1, 2}d, define
Aσ1σ2···σd

=
⊕

i1∈S
σ1
1

⊕
i2∈S

σ2
2

· · ·⊕id∈S
σd
d

Xi1,i2,...,id
.

Then Xt1,t2,...,td
=
⊕

σ1σ2···σd∈{0,1}d Aσ1σ2···σd
.

3. Time-Efficient 2-PIR

To analyze time complexity, we will make the follow-
ing (practical) assumption: Let r = 32 or r = 64 and
U and DBi are equipped with an r-bit CPU. Since we
are interested in information-theoretic (not complexity-
theoretic) private information retrieval, U is allowed to
make access to truly random bit sequence ρ and requires
a single step to read a random bit from ρ. Let r � �.
For any S⊂= [�], pointing index i ∈ S requires �(lg �)/r�
steps. Note that �(lg �)/r� = 1 for r = 32 if � <= 109

and �(lg �)/r� for r = 64 if � <= 1019.

3.1 The Covering Codes Scheme

To be self-contained, we show the 2-PIR (PIRCC) by
Chor et. al. [4] that is based on the covering codes [10].
Let d = 3 and � = n1/3 and assume that U wishes to
retrieve xt for some t ∈ [n]. Then (t1, t2, t3) ∈ [�]3 is
the associated 3-tuple of t in the 3-dimensional cube.

The Covering Codes Scheme: PIRCC

U-1: U chooses S1j ⊂= [�] uniformly and indepen-
dently for each 1 <= j <= 3.

U-2: U computes S2j = S1j ⊕tj for each 1 <= j <= 3.

U → DB1: S11 , S
1
2 , S

1
3
⊂= [�].

U → DB2: S21 , S
2
2 , S

2
3
⊂= [�].

DB1-1: DB1 computes

b000 =
⊕

i1∈S1
1

⊕
i2∈S1

2

⊕
i3∈S1

3

xi1,i2,i3 .

DB1-2: DB1 computes

bh
100 =

⊕
i1∈S1

1⊕h

⊕
i2∈S1

2

⊕
i3∈S1

3

xi1,i2,i3 ;

bh
010 =

⊕
i1∈S1

1

⊕
i2∈S1

2⊕h

⊕
i3∈S1

3

xi1,i2,i3 ;

bh
001 =

⊕
i1∈S1

1

⊕
i2∈S1

2

⊕
i3∈S1

3⊕h

xi1,i2,i3 ,

for each h ∈ [�], and defines

B100 = (b1100, b
2
100, . . . , b�

100);
B010 = (b1010, b

2
010, . . . , b�

010);
B001 = (b1001, b

2
001, . . . , b�

001).

DB1 → U : b000 ∈ {0, 1}, B100, B010, B001 ∈ {0, 1}�.

DB2-1: DB2 computes

c111 =
⊕

i1∈S2
1

⊕
i2∈S2

2

⊕
i3∈S2

3

xi1,i2,i3 .

DB2-2: DB2 computes

ch
011 =

⊕
i1∈S2

1⊕h

⊕
i2∈S2

2

⊕
i3∈S2

3

xi1,i2,i3 ;

ch
101 =

⊕
i1∈S2

1

⊕
i2∈S2

2⊕h

⊕
i3∈S2

3

xi1,i2,i3 ;

ch
110 =

⊕
i1∈S2

1

⊕
i2∈S2

2

⊕
i3∈S2

3⊕h

xi1,i2,i3 ,

for each h ∈ [�], and defines

C011 = (c1011, c
2
011, . . . , c�

011);
C101 = (c1101, c

2
101, . . . , c�

101);
C110 = (c1110, c

2
110, . . . , c�

110).

DB2 → U : c111 ∈ {0, 1}, C011, C101, C110 ∈ {0, 1}�.

U-3: U computes b000⊕ bt1
100⊕ bt2

010⊕ bt3
001⊕ c111⊕

ct1
011 ⊕ ct2

101 ⊕ ct3
110 (= xt).

Obviously, (S11 , S12 , S13)⊂= [�]3 and (S21 , S22 , S23)⊂= [�]3 are
uniformly distributed over [�]3 for any t ∈ [n]. Thus it
follows from Proposition 2.6 that PIRCC is 2-PIR.

Lemma 3.1 [4]: COMCC(n) = 12n1/3 + 2.

Lemma 3.2: TIMEwc
CC(n) = 13n + 6n1/3 + 19 and

TIMEav
CC(n) = (11/4) · n + 6n1/3 + 19.

Proof: In the practical point of view, we assume that
n <= 1020 and also that pointing i ∈ S⊂= [�] = [n1/3]
requires a single step. From the description of PIRCC,
we immediately have the following: In both the worst
and average cases, 3� steps for random generation in
U-1, 3 steps for index pointing and 3 steps for XOR
in U-2, and 6 steps for index pointing and 7 steps for
XOR in U-3 are required. To compute b000 in DB1-1,
DB1 requires 3�3 steps for index pointing and �3 steps
for XOR in the worst case and 3(�/2)3 steps for index
pointing and (�/2)3 steps for XOR in the average case.
To compute B100 in DB1-2, DB1 requires (2�2 + 1)�
steps for index pointing and �3 steps for XOR in the

14
IEICE TRANS. FUNDAMENTALS, VOL. E82–A, NO. 1 JANUARY 1999

worst case and {2(�/2)2 + 1}� steps for index pointing
and (�/2)2� steps for XOR in the average case by eval-
uating bh

100 = b000 ⊕ (
⊕

i2∈S1
2

⊕
i3∈S1

3
xh,i2,i3) for each

h ∈ [�]. The analysis similar to this can be applied to
B010, B001. Since the number of steps made by DB1
is the same with that made by DB2 and � = n1/3,
we have that TIMEwc

CC(n) = 13n + 6n1/3 + 19 and
TIMEav

CC(n) = (11/4) · n + 6n1/3 + 19. ✷

3.2 The Block Division Scheme

In this subsection, we show new 2-PIR (PIRBD) that is
based on Lemma 2.7. Let m = �n/s� for some s >= 1 (s
will be fixed later), and X = (X1, X2, . . . , Xm) = x ∈
{0, 1}n, where Xi ∈ {0, 1}s for each block i ∈ [m]. Let
d = 2 and � = m1/2 and we embed X in a 2-dimensional
cube by associating each block i ∈ [m] with a 2-tuple
(i1, i2) in a natural manner.

Here we assume that U wishes to retrieve xt for
some t ∈ [n] and that xt is located at the τth bit of
Xβ , where τ ∈ [s] and β ∈ [m]. Let (β1, β2) ∈ [�]2

be the associated 2-tuple of β, and for any A =
(A1, A2, . . . , A�) ∈ {0, 1}� and α ∈ [�], let pickα(A) =
Aα.

The Block Division Scheme: PIRBD

U-1: U chooses S11 , S
1
2 ⊂= [�] and T 1⊂= [s] uniformly

and independently.

U-2: U computes S21 = S11 ⊕ β1, S22 = S12 ⊕ β2,
and T 2 = T 1 ⊕ τ .

U → DB1: S11 , S
1
2 ⊂= [�], T 1⊂= [s].

U → DB2: S21 , S
2
2
⊂= [�], T 2⊂= [s].

DB1-1: DB1 computes

B00 =
⊕

i1∈S1
1

⊕
i2∈S1

2

Xi1,i2 .

DB1-2: For each h ∈ [�], DB1 computes

bh
10 =

⊕
i1∈S1

1⊕h

⊕
i2∈S1

2

(Xi1,i2 , �T
1);

bh
01 =

⊕
i1∈S1

1

⊕
i2∈S1

2⊕h

(Xi1,i2 , �T
1),

and defines B10 = (b110, b
2
10, . . . , b�

10), B01 =
(b101, b

2
01, . . . , b�

01).

DB1 → U : B00 ∈ {0, 1}s, B10, B01 ∈ {0, 1}�.

DB2-1: DB2 computes

C11 =
⊕

i1∈S2
1

⊕
i2∈S2

2

Xi1,i2 .

DB2-2: For each h ∈ [�], DB2 computes

ch
01 =

⊕
i1∈S2

1⊕h

⊕
i2∈S2

2

(Xi1,i2 , �T
2);

ch
10 =

⊕
i1∈S2

1

⊕
i2∈S2

2⊕h

(Xi1,i2 , �T
2),

and defines C01 = (c101, c201, . . . , c�
01), C10 =

(c110, c
2
10, . . . , c�

10).

DB2 → U : C11 ∈ {0, 1}s, C10, C11 ∈ {0, 1}�.

U-3: U computes pickτ (B00)⊕pickτ (C11)⊕(bβ1
10⊕

cβ2
10) ⊕ (bβ2

01 ⊕ cβ1
01) (= xt).

The intuition behind PIRBD is as follows: For each
h ∈ [�], let Y h

10 =
⊕

i1∈S1
1⊕h

⊕
i2∈S1

2
Xi1,i2 and Y h

01 =⊕
i1∈S1

1

⊕
i2∈S1

2⊕h Xi1,i2 instead of bh
10 and bh

01 respec-
tively, and let Zh

01 =
⊕

i1∈S2
1⊕h

⊕
i2∈S2

2
Xi1,i2 and

Zh
10 =
⊕

i1∈S2
1

⊕
i2∈S2

2⊕h Xi1,i2 instead of ch
01 and ch

10

respectively. Recall that U wishes to retrieve xt for
some t ∈ [n] and xt is located at the τth bit of
Xβ1,β2 . Then it follows from Lemma 2.7 that Xβ1,β2 =
B00 ⊕ Y β1

10 ⊕ Y β2
01 ⊕ C11, but this blows up commu-

nication complexity. Since U is interested in the τth
bit of Xβ1,β2 and Y β1

10 = Zβ2
10 and Y β2

01 = Zβ1
01 hold

from Proposition 2.5 and the definitions of T 1 and T 2,
(Y β1
10 , �T 1) ⊕ (Zβ2

10 ,
�T 2) = bβ1

10 ⊕ cβ2
10 provides the τth bit

of Y β1
10 and (Y β2

01 , �T 1) ⊕ (Zβ1
01 ,

�T 2) = bβ2
01 ⊕ cβ1

01 provides
the τth bit of Y β2

01 . These are sufficient for U to retrieve
xt and reduce communication complexity.

Theorem 3.3: The block division scheme PIRBD is pri-
vate information retrieval for 2 databases.

Proof: For d = 2, it follows from Lemma 2.7 that
Xβ1,β2 = A00 ⊕A01 ⊕A10 ⊕A11, where

A00 =
⊕

i1∈S1
1

⊕
i2∈S1

2

Xi1,i2 ;

A01 =
⊕

i1∈S1
1

⊕
i2∈S1

2⊕β2

Xi1,i2

=
⊕

i1∈S1
1

⊕
i2∈S2

2

Xi1,i2 ;

A10 =
⊕

i1∈S1
1⊕β1

⊕
i2∈S1

2

Xi1,i2

=
⊕

i1∈S2
1

⊕
i2∈S1

2

Xi1,i2 ;

A11 =
⊕

i1∈S1
1⊕β1

⊕
i2∈S1

2⊕β2

Xi1,i2

=
⊕

i1∈S2
1

⊕
i2∈S2

2

Xi1,i2 ,

for any S11 ⊂= [�] and any S22 ⊂= [�]. Since xt is located at
the τth bit of Xβ1,β2 , we have that xt = pickτ (Xβ1,β2) =

ITOH: EFFICIENT PRIVATE INFORMATION RETRIEVAL
15

pickτ (A00)⊕pickτ (A01)⊕pickτ (A10)⊕pickτ (A11). From
the definitions of A00, A11 and B00, C11, it is immediate
that A00 = B00 and A11 = C11, and thus we have that

pickτ (B00) ⊕ pickτ (C11)
= pickτ (A00) ⊕ pickτ (A11). (1)

On the other hand, from the definitions of B10, C10 and
A10, it is obvious that

bβ1
10 =

⊕
i1∈S1

1⊕β1

⊕
i2∈S1

2

(Xi1,i2 , �T
1)

=

⊕

i1∈S2
1

⊕
i2∈S1

2

Xi1,i2 , �T
1

 =

(
A10, �T

1
)

;

cβ2
10 =

⊕
i1∈S2

1

⊕
i2∈S2

2⊕β2

(Xi1,i2 , �T
2)

=

⊕

i1∈S2
1

⊕
i2∈S1

2

Xi1,i2 , �T
2

 =

(
A10, �T

2
)
.

Then from the fact that �T 2 = �T 1 ⊕ τ and Proposi-
tion 2.5, it follows that bβ1

10 ⊕ cβ2
10 = pickτ (A10) and

bβ2
01 ⊕ cβ1

01 = pickτ (A01). Thus we have that

bβ1
10 ⊕ cβ2

10 = pickβ1
(B10) ⊕ pickβ2

(C10)
= pickτ (A10); (2)

bβ2
01 ⊕ cβ1

01 = pickβ2
(B01) ⊕ pickβ1

(C01)
= pickτ (A01). (3)

Then from Eqs. (1), (2), and (3), it turns out that

xt = pickτ (Xβ1,β2)
= pickτ (A00) ⊕ pickτ (A01)

⊕pickτ (A10) ⊕ pickτ (A11)
= pickτ (B00) ⊕ pickτ (C11)

⊕(bβ1
10 ⊕ cβ2

10) ⊕ (bβ2
01 ⊕ cβ1

01).

It is obvious that for any t ∈ [n], (S11 , S
1
2 , T

1)⊂= [�]2× [s]
and (S21 , S22 , T 2)⊂= [�]2 × [s] are uniformly distributed
over [�]2 × [s]. Thus PIRBD is 2-PIR. ✷

Theorem 3.4: COMBD(n) = 12n1/3.

Proof: From the description of PIRBD, it is immediate
that COMBD(n) = 8�+ 4s = 8 · (n/s)1/2+ 4s. Then we
have that COMBD(n) = 12n1/3 by setting s = n1/3. ✷

Theorem 3.5: TIMEwc
BD(n) = 5n+ 4n2/3+ 9n1/3+ 17

and TIMEav
BD(n) = (5/4) ·n + (3/2) ·n2/3 + 8n1/3 + 17.

Proof: In a way similar to the proof of Lemma 3.2,
we assume that pointing i ∈ S⊂= [�] = [n1/3] requires a
single step. From the description of PIRBD, we immedi-
ately have the following: In both the worst and average
cases, 2�+s steps for random generation in U-1, 3 steps

for index pointing and 3 steps for XOR in U-2, and 6
steps for index pointing and 5 steps for XOR in U-3
are required. To compute B00 in DB1-1, DB1 requires
2�2 steps for index pointing and �2s steps for XOR in
the worst case and 2(�/2)2 steps for index pointing and
(�/2)2s steps for XOR in the average case. To com-
pute B10 in DB1-2, DB1 first evaluate b = (B00, �T 1)
for which DB1 requires s steps for AND and s steps for
XOR in the worst case and s/2 steps for AND and s/2
steps for XOR in the average case. Then DB1 evaluates
bh
10 = b ⊕ {⊕i2∈S1

2
(Xh,i2 , �T

1)} for each h ∈ [�]. This
requires (� + 1)� steps for index pointing, �2s steps for
AND, and (�s+1)� steps for XOR in the worst case and
{(�/2) + 1}� steps for index pointing, (�/2)2(s/2) steps
for AND and {(�/2)(s/2) + 1}� steps for XOR in the
average case. The analysis similar to this can be ap-
plied to B01. Since the number of steps made by DB1
is the same with that made by DB2 and s = � = n1/3,
we have that TIMEwc

BD(n) = 5n+4n2/3+9n1/3+17 and
TIMEav

BD(n) = (5/4) · n + (3/2) · n2/3 + 8n1/3 + 17. ✷

4. Communication-Efficient k-PIR

Let k >= 2. Here wee assume without loss of general-
ity that n = �2k−1, i.e., � = n1/(2k−1), and we embed
x ∈ {0, 1}n in a (2k − 1)-dimensional cube by associ-
ating each position i ∈ [n] with a (2k − 1)-dimensional
tuple (i1, i2, . . . , i2k−1) ∈ [�]2k−1 in a natural manner.
We also assume that U wishes to retrieve xt for some
t ∈ [n] and let (t1, t2, . . . , t2k−1) ∈ [�]2k−1 be the asso-
ciated (2k − 1)-tuple of t.

4.1 General Frameworks

We first show general recursive schemes for k-
PIR (k-PIRGREC) with communication complexity
O(n1/(2k−1)) that includes the scheme by Ambai-
nis [1] as a special case. For any d, r >= 1 and
any c ∈ {0, 1}d, let Bd(c, r) be the set of all d-
bit long strings that differ from c in at most r po-
sitions, i.e., Bd(c, r) = {v ∈ {0, 1}d : d(c, v) <= r}.
For any S = (S1, S2, . . . , S2k−1)⊂= [�]2k−1, let �S =

(�S1, �S2, . . . , �S2k−1) ∈ {0, 1}�(2k−1). Then for each δ ∈
[2k − 1], we define

Ck(S, δ) =

T = (T1, T2, . . . , T2k−1) ∈ [�]2k−1 :

�T ∈ B�(2k−1)(�S, δ) &

2k−1∧
j=1

[
�Tj ∈ B�(�Sj , 1)

]

i.e., T = (T1, T2, . . . , T2k−1) ∈ Ck(S, δ) if (1) for each
j ∈ [2k − 1], Tj = Sj ⊕ ij for some ij ∈ [�] or Tj = Sj;
and (2) Tj |= Sj happens at most δ times. Let ‖A‖ be

16
IEICE TRANS. FUNDAMENTALS, VOL. E82–A, NO. 1 JANUARY 1999

the number of elements in a finite set A. We number
each element of Ck(S, δ) in a natural order. Obviously,

M(k, δ) = ‖Ck(S, δ)‖ =
δ∑

i=0

(
2k − 1

i

)
�i.

Recall that t ∈ [n] is the bit position U wishes to re-
trieve and (t1, t2 . . . , t2k−1) ∈ [�]2k−1 is the associated
(2k − 1)-tuple of t.

For any S = (S1, S2, . . . , S2k−1)⊂= [�]2k−1, define

Hk(S, t, δ) =
{
T = (T1, T2, . . . , T2k−1) ∈ [�]2k−1 :

T ∈ Ck(S, δ) &
∀j ∈ [2k − 1]

[
Tj |= Sj

⇒ Tj = Sj ⊕ tj
]}

,

i.e., T ∈ Hk(S, t, δ) if T ∈ Ck(S, δ) and Tj differs from
Sj only on tj ∈ [�] for j ∈ [2k− 1]. From the definition
of Hk(S, t, δ), it is obvious that

N(k, δ) = ‖Hk(S, t, δ)‖ =
δ∑

i=0

(
2k − 1

i

)
.

Since Hk(S, t, δ)⊂=Ck(S, δ), each element of Hk(S, t, δ)
has the unique number assigned by the numbering for
all elements of Ck(S, δ). Here we define Pk(S, t, δ) =
(p1, p2, . . . , pN(k,δ)) to be the set of the numbers that
are assigned to all elements of Hk(S, T, δ).

Let k1, k2 ∈ [k], where k1 + k2 = k. We present
2-PIR, (k1, k2)-BASIS, for U ′ and DB′

1,DB′
2 that will

be a building block for constructing general recursive
k-PIR (k-PIRGREC). As noticed above, k-PIRGREC in-
cludes the recursive scheme by Ambainis [1] as a special
case.

The Building Block: (k1, k2)-BASIS

U-1: U ′ chooses S1j ⊂= [�] uniformly and indepen-
dently for each j ∈ [2k − 1].

U-2: U ′ computes S2j = S1j ⊕ tj for each j ∈
[2k − 1].

U ′ → DB′
1: Q1 = (S11 , S

1
2 , . . . , S12k−1)⊂= [�]2k−1.

U ′ → DB′
2: Q2 = (S21 , S

2
2 , . . . , S22k−1)⊂= [�]2k−1.

DB1-1: DB′
1 enumerates Lh = (Lh

1 , . . . , Lh
2k−1) ∈

Ck(Q1, 2k1 − 1) and computes

a1h =
⊕

i1∈Lh
1

· · ·
⊕

i2k−1∈Lh
2k−1

xi1,...,i2k−1 ,

for each h ∈ [M(k, 2k1 − 1)].

DB′
1 → U ′: A1 = (a11, a

1
2, . . . , a1M(k,2k1−1)).

DB2-1: DB′
2 enumerates Rh = (Rh

1 , . . . , Rh
2k−1) ∈

Ck(Q2, 2k2 − 1) and computes

a2h =
⊕

i1∈Rh
1

· · ·
⊕

i2k−1∈Rh
2k−1

xi1,...,i2k−1 ,

for each h ∈ [M(k, 2k2 − 1)].

DB′
2 → U ′: A2 = (a21, a

2
2, . . . , a2M(k,2k2−1)).

U-3: U ′ obtains {⊕i∈Pk(Q1,t,2k1−1) picki(A1)} ⊕
{⊕i∈Pk(Q2,t,2k2−1) picki(A2)} (= xt).

The intuition behind (k1, k2)-BASIS is as follows: From
Proposition 2.6 and the definition of Ck(S, δ), it follows
that A1 and A2 include enough information to retrieve
xt. After receiving A1 and A2, U retrieves xt by picking
appropriate bits from A1 and A2.

Lemma 4.1: The building block (k1, k2)-BASIS is pri-
vate information retrieval for 2 databases.

Proof: For each σ = (σ1, σ2, . . . , σ2k−1) ∈ {1, 2}2k−1,
let w1(σ) be the number of j ∈ [2k−1] such that σj = 1
and w2(σ) the number of j ∈ [2k− 1] such that σj = 2.
We define Σk1 = {σ ∈ {1, 2}2k−1 : w2(σ) <= 2k1 − 1}
and Σk2 = {σ ∈ {1, 2}2k−1 : w1(σ) <= 2k2 − 1}. For
any σ, if w2(σ) <= 2k1 − 1, then w1(σ) = 2k − 1 −
w2(σ) >= 2k − 1 − (2k1 − 1) = 2(k − k1) = 2k2, because
w1(σ) +w2(σ) = 2k− 1 and k1+ k2 = k. Thus we have
that Σk1 = {σ ∈ {1, 2}2k−1 : w1(σ) >= 2k2}, and this
implies that Σk1 ,Σk2 is a bipartition of {1, 2}2k−1.

Let Qk = {Sσ = (Sσ1
1 , Sσ2

2 , . . . , Sσ2k−1
2k−1) ∈ [�]2k−1 :

σ = (σ1, σ2, . . . , σ2k−1) ∈ {1, 2}2k−1} be the set of ques-
tions for which Proposition 2.5 holds, and define

Qk1 = {Sσ ∈ Qk : σ ∈ Σk1};
Qk2 = {Sσ ∈ Qk : σ ∈ Σk2}.

Then Qk1 ,Qk2 is a bipartition of Qk, because Σk1 ,Σk2

is a bipartition of {1, 2}2k−1. From the definition of
Hk(S, t, δ), Qk1 , and Qk2 , it is obvious that Qk1 =
Hk(Q1, t, 2k1 − 1) and Qk2 = Hk(Q2, t, 2k2 − 1). Note
that Pk(Q1, t, 2k1 − 1) and Pk(Q2, t, 2k2 − 1) respec-
tively characterize the position for each element of
Hk(Q1, t, 2k1−1) and Hk(Q2, t, 2k2−1). Then it follows
from Proposition 2.5 that

xt =

⊕
i∈Pk(Q1,t,2k1−1)

picki(A1)

⊕

⊕
i∈Pk(Q2,t,2k2−1)

picki(A2)

 .

Obviously, Q1 = (S11 , S
1
2 , . . . , S12k−1)⊂= [�]2k−1 and

Q2 = (S21 , S
2
2 , . . . , S22k−1)⊂= [�]2k−1 are uniformly dis-

tributed over [�]2k−1 for any t ∈ [n]. Thus the building
block (k1, k2)-BASIS is 2-PIR. ✷

Now we are ready to show general recursive k-PIR,

ITOH: EFFICIENT PRIVATE INFORMATION RETRIEVAL
17

k-PIRGREC, for U , DB(k1) = (DB11, . . . ,DB1k1
), and

DB(k2) = (DB21, . . . ,DB2k2
). Recall that k1, k2 ∈ [k]

such that k1 + k2 = k.

The General Recursive Scheme: k-PIRGREC

U-1: U simulates U ′ of (k1, k2)-BASIS to gen-
erate Q1, Q2⊂= [�]2k−1.

U → DB(k1): Q1⊂= [�]2k−1.

U → DB(k2): Q2⊂= [�]2k−1.

DB(k1)-1: DB(k1) simulates DB′
1 of (k1, k2)-BASIS

on Q1 to generate A1 ∈ {0, 1}M(k,2k1−1).

DB(k2)-1: DB(k2) simulates DB′
2 of (k1, k2)-BASIS

on Q2 to generate A2 ∈ {0, 1}M(k,2k2−1).

U ↔ DB(k1): For each h ∈ Pk(Q1, t, 2k1 − 1), U and
DB(k1) run k1-PIRGREC on A1 to get a1h.

U ↔ DB(k2): For each h ∈ Pk(Q2, t, 2k2 − 1), U and
DB(k2) run k2-PIRGREC on A2 to get a2h.

U-2: U computes {⊕h∈Pk(Q1,t,2k1−1) a
1
h} ⊕

{⊕h∈Pk(Q2,t,2k2−1) a
2
h} (= xt).

The intuition behind k-PIRGREC is as follows: We
have already known 2-PIR (e.g., PIRCC and PIRBD
in Sect. 3) with communication complexity O(n1/3),
and for each k >= 3, k-PIRGREC is inductively con-
structed from k1-PIRGREC with communication com-
plexity O(n1/(2k1−1)) and k2-PIRGREC with communi-
cation complexity O(n1/(2k2−1)). Here we recall that
A1 and A2 include enough information for U to re-
trieve xt (as we have noticed above). Since |A1| =
O(n(2k1−1)/(2k−1)) and |A2| = O(n(2k2−1)/(2k−1)), we
can achieve O(n1/(2k−1)) communication complexity by
picking appropriate bits from A1 and A2.

Theorem 4.2: For each k >= 2, the general recursive
scheme k-PIRGREC is k-PIR with communication com-
plexity O(n1/(2k−1)).

Proof: We prove the theorem by induction on k. For
convenience, 1-PIRGREC for U and DB is assumed to be
a scheme that U asks nothing and DB responds U with
the whole stored data.

Base Stage: Assume that k = 2. Since k1, k2 ∈ [k]
and k1+k2 = k, we have that k1 = k2 = 1. This implies
that DB(k1) = DB1 and DB(k2) = DB2. Note that
(1, 1)-BASIS is exactly the same with PIRCC in Sect. 3.1
and that DB1 and DB2 respond U with A1 and A2, re-
spectively. Then it turns out that 2-PIRGREC is exactly
the same with PIRCC. Thus it follows from Lemma 3.1
that 2-PIRGREC is 2-PIR with communication complex-
ity 12n1/3 + 2 = O(n1/(2·2−1)).

Induction Stage: Let k >= 3 and assume that for
any 2 <= k′ < k, k′-PIRGREC is k′-PIR with communica-
tion complexity O(n1/(2k

′−1)). To complete the proof,
we show in the following that k-PIRGREC is k-PIR with
communication complexity O(n1/(2k−1)).

From the induction hypothesis, it follows that k1-
PIRGREC is k1-PIR with communication complexity
O(n1/(2k1−1)) and k2-PIRGREC is k2-PIR with commu-
nication complexity O(n1/(2k2−1)). For each j ∈ [k1],
let Q1j = {Q1, q1j (1), q1j (2), . . . , q1j (N(k, 2k1−1))} be the
set of questions made by U to DB1j and for each j ∈ [k2],
let Q2j = {Q2, q2j (1), q2j (2), . . . , q2j (N(k, 2k2−1))} be the
set of questions made by U to DB2j Since k1-PIRGREC

is k1-PIR, q1j (h) is identically (and independently) dis-
tributed for each h ∈ Pk(Q1, t, 2k1 − 1). Note that Q1
is uniformly distributed for any t ∈ [n] and is indepen-
dently distributed of q1j (h) for each h ∈ Pk(Q1, t, 2k1 −
1). Then it follows that for any t ∈ [n], Q1j is identi-
cally distributed for each j ∈ [k1]. In a way similar to
this, we can show that for any t ∈ [n], Q2j is identically
distributed for each j ∈ [k2]. Thus k-PIRGREC is k-PIR
for each k >= 2.

Finally, we analyze communication complexity of
k-PIRGREC. We use COMk

GREC(n) to denote commu-
nication complexity of k-PIRGREC. Note that |Q1| =
|Q2| = (2k− 1) · � = (2k− 1) ·n1/(2k−1). The definition
of M(k, δ) guarantees that there exist ck1 , ck2 > 0 such
that

|A1| = M(k, 2k1 − 1)

=
2k1−1∑

i=0

(
2k − 1

i

)
�i <= ck1 · n

2k1−1
2k−1 ;

|A2| = M(k, 2k2 − 1)

=
2k2−1∑

i=0

(
2k − 1

i

)
�i <= ck2 · n

2k2−1
2k−1 .

Since COMk′
GREC(n) = O(n1/(2k

′−1)) for each k′ < k
(induction hypothesis), there exist dk1 , dk2 > 0 such
that

COMk1
GREC(n) <= dk1 · n1/(2k1−1);

COMk2
GREC(n) <= dk2 · n1/(2k2−1),

respectively. Then we have that

COMk
GREC(n)

= k1 · |Q1| + k2 · |Q2|
+ N(k, 2k1 − 1) · COMk1

GREC(|A1|)
+ N(k, 2k2 − 1) · COMk2

GREC(|A2|)
<= k(2k − 1) · n1/(2k−1)

+ N(k, 2k1 − 1) · dk1 · |A1|1/(2k1−1)

+ N(k, 2k2 − 1) · dk2 · |A2|1/(2k2−1)

< ck · n1/(2k−1),
for some ck > 0. Thus for each k >= 2, COMk

GREC(n) =
O(n1/(2k−1)) for any n > 0. ✷

Note that in Theorem 4.2, COMk
GREC(n) is mea-

sured independently of the choices of k1, k2 ∈ [k]. To

18
IEICE TRANS. FUNDAMENTALS, VOL. E82–A, NO. 1 JANUARY 1999

analyze the inherent behavior of COMk
GREC(n) more

precisely for each k >= 2, we define

Dk
GREC = lim

n→∞
COMk

GREC(n)
n1/(2k−1)

.

It is obvious that Dk
GREC is the coefficient for the dom-

inant factor of COMk
GREC(n).

4.2 The Unbalanced Recursive Scheme

For each k >= 2, we assume that k1 = k− 1 and k2 = 1.
Then k-PIRGREC coincides with the recursive k-PIR by
Ambainis [1] and we refer to the unbalanced recursive
scheme as k-PIRUREC. Let COMk

UREC(n) denote com-
munication complexity of k-PIRUREC for each k >= 2.

Theorem 4.3: For each k >= 4, Dk
UREC

>= (2k − 1) ·
2k(k−1).

Proof: Since k1 = k − 1 and k2 = 1 in k-PIRUREC, U
sends DB1j Q1⊂= [�]2k−1 for each j ∈ [k1] = [k−1], and U
sends DB2j Q2⊂= [�]2k−1 for j ∈ [k1] = [1]. Then U and
DB11,DB12, . . . ,DB1k−1 run (k−1)-PIRUREC N(k, 2k−3)
times to retrieve a1h for each h ∈ Pk(Q1, t, 2k−3), how-
ever, U asks nothing more and DB21 responds U with
A2 in 1-PIRUREC. Here we note that N(k, 2k − 3) =
22k−1− (2k− 1)− 1 = 22k−1− 2k and |A2| = M(k, 1) =
1 + (2k − 1) · n1/(2k−1). Then

COMk
UREC(n)

= (k1 + k2)(2k − 1) · n1/(2k−1)
+ COM1

UREC(M(k, 1))

+ N(k, 2k − 3) · COMk−1
UREC(M(k, 2k − 3))

= (22k−1 − 2k) · COMk−1
UREC(M(k, 2k − 3))

+ (2k − 1)(k + 1) · n1/(2k−1) + 1. (4)

From the definitions of Dk
GREC and M(k, δ), we have

that

lim
n→∞

COMk−1
UREC(M(k, 2k − 3))

n1/(2k−1)

= lim
n→∞

[
{M(k, 2k − 3)}1/(2k−3)

n1/(2k−1)

× COMk−1
UREC(M(k, 2k − 3))

{M(k, 2k − 3)}1/(2k−3)
]

=
(

2k − 1
2k − 3

)1/(2k−3)
· Dk−1

UREC. (5)

Note that 22k−1 − 2k >= 22k−2 for each k >= 2 and that(
n
k

)
>= (n/k)k [9, Proposition B.2]. Then from Eqs. (4)

and (5), it follows that for each k >= 4,

Dk
UREC = lim

n→∞
COMk

UREC(n)
n1/(2k−1)

= lim
n→∞

{
(2k − 1)(k + 1) +

1
n1/(2k−1)

+ (22k−1 − 2k)

× COMk−1
UREC(M(k, 2k − 3))

n1/(2k−1)

}

= (22k−1 − 2k) ·
(

2k − 1
2k − 3

)1/(2k−3)
· Dk−1

UREC

+ (2k − 1)(k + 1) (6)

>= (22k−1 − 2k) ·
(

2k − 1
2k − 3

)1/(2k−3)
· Dk−1

UREC

>= 22k−2 ·
(

2k − 1
2k − 3

)1/(2k−3)
· Dk−1

UREC

>= 22k−2 · 2k − 1
2k − 3

· Dk−1
UREC. (7)

Since 2-PIRUREC is exactly the same with PIRCC,
we have that COM2

UREC(n) = 12n1/3 + 2, and thus
D2UREC = 12. Then it follows from Eq. (7) that

Dk
UREC

>=

{
k−1∏
i=2

(
22i · 2i + 1

2i− 1

)}
· D2UREC

=
2k − 1

3
· 2(k+1)(k−2) · 12.

Hence Dk
UREC

>= (2k − 1) · 2k(k−1) for each k >= 4. ✷

4.3 The Balanced Recursive Scheme

In this subsection, we present new k-PIR with (much)
less communication complexity than k-PIRUREC by tak-
ing k1 = �k/2� and k2 = k − �k/2�. The way of taking
k1, k2 ∈ [k] is more balanced than that of k-PIRUREC.
We refer to the balanced recursive scheme as k-PIRBREC
and use COMk

BREC(n) to denote communication com-
plexity of k-PIRBREC for each k >= 2.

In k-PIRUREC, we take k1 = k− 1 and k2 = 1, and
this causes k-PIRUREC to recursively call k′-PIRUREC
(for k′ < k) k times. On the other hand, k-PIRBREC
needs to recursively call k′-PIRBREC (for k′ < k) only
lg k times because of its balanced way of taking k1, k2 ∈
[k]. Intuitively, the difference between k-PIRUREC and
k-PIRBREC provides a huge gap between Dk

UREC and
Dk

BREC.

Theorem 4.4: For each k >= 4, Dk
BREC < k · 25k.

Proof: We first note that 2-PIRBREC is the same with
PIRCC and 3-PIRBREC is the same with 3-PIRUREC.
Then from Lemma 3.1, it follows that D2BREC = 12 <
2048 = 2 · 25×2 and from Eq. (6), it follows that
D3BREC = 692 < 98304 = 3 · 25×3.

For each k >= 4, let k1 = �k/2� and k2 = k−�k/2�.
For each j ∈ [k1], U sends Q1⊂= [�]2k−1 to DB1j and for

ITOH: EFFICIENT PRIVATE INFORMATION RETRIEVAL
19

each j ∈ [k2], U sends Q2⊂= [�]2k−1 to DB2j . Then U
and DB(k1) run k1-PIRUREC N(k, 2k1 − 1) times to get
a1h for each h ∈ Pk(Q1, t, 2k1 − 1), and U and DB(k2)
run k2-PIRUREC N(k, 2k2 − 1) times to get a2h for each
h ∈ Pk(Q2, t, 2k2 − 1). Thus it follows that

COMk
BREC(n)

= k(2k − 1) · n1/(2k−1)
+ N(k, 2k1 − 1) · COMk1

BREC(M(k, 2k1 − 1))

+ N(k, 2k2 − 1) · COMk2
BREC(M(k, 2k2 − 1)).

(8)

From the definition of Dk
GREC and M(k, δ), we have that

lim
n→∞

COMk1
BREC(M(k, 2k1 − 1))

n1/(2k−1)

= lim
n→∞

[
{M(k, 2k1 − 1)}1/(2k1−1)

n1/(2k−1)

× COMk1
BREC(M(k, 2k1 − 1))

{M(k, 2k1 − 1)}1/(2k1−1)

]

=
(

2k − 1
2k1 − 1

)1/(2k1−1)
· Dk1

BREC; (9)

lim
n→∞

COMk2
BREC(M(k, 2k2 − 1))

n1/(2k−1)

= lim
n→∞

[
{M(k, 2k2 − 1)}1/(2k2−1)

n1/(2k−1)

× COMk2
BREC(M(k, 2k2 − 1))

{M(k, 2k2 − 1)}1/(2k2−1)

]

=
(

2k − 1
2k2 − 1

)1/(2k2−1)
· Dk2

BREC. (10)

Thus from the definition of Dk
GREC and Eqs. (8) to (10),

it follows that

Dk
BREC = lim

n→∞
COMk

BREC(n)
n1/(2k−1)

= k(2k − 1)

+ N(k, 2k1 − 1)

×
{

lim
n→∞

COMk1
BREC(M(k, 2k1 − 1))

n1/(2k−1)

}

+ N(k, 2k2 − 1)

×
{

lim
n→∞

COMk2
BREC(M(k, 2k2 − 1))

n1/(2k−1)

}

= k(2k − 1)

+ N(k, 2k1 − 1)

×
(

2k − 1
2k1 − 1

)1/(2k1−1)
· Dk1

BREC

+ N(k, 2k2 − 1)

×
(

2k − 1
2k2 − 1

)1/(2k2−1)
· Dk2

BREC, (11)

for each k >= 4. In the following, we show the theorem
by induction on k >= 4.

Base Stage: Let k = 4 and we have that k1 = k2 =
2. From the definition of N(k, δ), it immediate to see
that N(4, 3) = 64. Thus it follows from Eq. (11) that
D4BREC = 5052 < 4194304 = 4 · 25×4.

Induction Stage: Let k >= 5 and assume that
Dk′

BREC
<= k′ · 25k

′
for each 2 <= k′ <= k − 1. Note that

2k2−1 <= 2 · {k− (k/2)}−1 = k−1 <= (2k−1)/2. Then
we have that for each k >= 5,

N(k, 2k1 − 1) =
2k1−1∑

i=0

(
2k − 1

i

)
<

3
4
· 22k−1; (12)

N(k, 2k2 − 1) =
2k2−1∑

i=0

(
2k − 1

i

)
< 22k−2. (13)

We also note that 2k1 − 1 >= k − 1 = (2k − 2)/2 and
2k2−1 >= 2 ·{k−(k/2)−(1/2)}−1 = k−2 >= (2k−2)/3
for each k >= 5. Then we have that for each k >= 5,

lim
n→∞

{M(k, 2k1 − 1)}1/(2k1−1)

n1/(2k−1)

=
(

2k − 1
2k1 − 1

)1/(2k1−1)

< 2
2k−2
2k1−1 <= 4; (14)

lim
n→∞

{M(k, 2k2 − 1)}1/(2k2−1)

n1/(2k−1)

=
(

2k − 1
2k2 − 1

)1/(2k2−1)

< 2
2k−2
2k2−1 <= 8. (15)

Thus from Eq. (11) and Eqs. (12) to (15), it immedi-
ately follows that

Dk
BREC < k(2k − 1) +

3
4
· 22k+1 · Dk1

BREC

+ 22k+1 · Dk2
BREC.

From the assumption that Dk′
BREC < k′ · 25k

′
for each

2 <= k′ < k, it turns out that

Dk
BREC < k(2k − 1) +

3
4
· 22k+1 · k1 · 25k1

+ 22k+1 · k2 · 25k2

= k · 25k ·
{

2k − 1
25k

+
3
4
· k1
k

· 25k1+1−3k

+
k2
k

· 25k2+1−3k
}

<= k · 25k,

because 2 <= k2 <= k1 < k for k >= 5. Thus we have that
Dk

BREC < k · 25k for each k >= 4. ✷

20
IEICE TRANS. FUNDAMENTALS, VOL. E82–A, NO. 1 JANUARY 1999

Theorem 4.5: For each k >= 4, Dk
BREC < Dk

UREC.

Proof: Recall that D2UREC = D2BREC = 12 (Lemma
3.1). From Eqs. (6) and (11), it is immediate that

D4BREC = 5052 < 152741 = D4UREC;
D5BREC = 702492 < 127934898 = D5UREC.

For each k >= 6, it follows from Theorems 4.3 and 4.4
that Dk

BREC < k · 25k < (2k − 1) · 2k(k−1) <= Dk
UREC.

Thus we have that Dk
BREC < Dk

UREC for each k >= 4. ✷

5. Concluding Remarks

In this paper, we have presented 2-PIR (PIRBD)
with communication complexity 12n1/3 that is more
time-efficient than 2-PIR (PIRCC [1]). Then for each
k >= 2, we have generally formulated (unbalanced) re-
cursive scheme k-PIR (k-PIRUREC) given by Ambai-
nis [1] and have presented (balanced) recursive scheme
k-PIR (k-PIRBREC) with communication complexity
O(n1/(2k−1)) that is more communication-efficient than
k-PIRUREC.

Recall that k-PIRBREC (and k-PIRUREC) is con-
structed from PIRCC for each k >= 2. Then it seems
natural to expect that we could reduce communica-
tion complexity of k-PIRBREC (and/or k-PIRUREC) if we
would have more communication-efficient 2-PIR. Ac-
tually, we can show that if there exists 2-PIR with
communication complexity O(n1/(3+e)) for some inte-
ger e >= 1, then for each k >= 2, there exists k-PIR with
communication complexity O(n1/(2k−1+e)). Then we
have

(1) For some ε > 0, find 2-PIR with communication
complexity O(n1/(3+ε)).

(2) For some ε > 0, find k-PIR with communication
complexity O(n1/(2k−1+ε)) for each k >= 3.

(3) Show a (nontrivial) lower bound on communica-
tion complexity of 2-PIR.

(4) Show a (nontrivial) lower bound on communica-
tion complexity of k-PIR for each k >= 3.

Presumably, time complexity of k-PIRBREC is much less
than that of k-PIRUREC, but we have not analyzed them
due to their recursive structures. Then we finally have

(5) Analyze the time complexity of k-PIRBREC and
k-PIRBREC for each k >= 3.

Acknowledgments

The author thanks anonymous referees for their several
valuable comments, especially for the comments on the
analysis for time complexity of 2-PIR.

References

[1] A. Ambainis, “Upper bound on the communication com-
plexity of private information retrieval,” Proc. ICALP, Lec-
ture Notes in Computer Science, vol.1256, pp.401–409,
1997.

[2] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigder-
son, “Multi-prover interactive proofs: How to remove in-
tractability assumptions,” Proc. 20th ACM Symposium on
Theory of Computing, pp.113–131, 1988.

[3] B. Chor and N. Gilboa, “Computationally information re-
trieval,” Proc. 29th ACM Symposium on Theory of Com-
puting, pp.304–313, 1997.

[4] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Pri-
vate information retrieval,” Proc. 36th IEEE Symposium
on Foundations of Computer Science, pp.41–50, 1995.

[5] S. Goldwasser and S. Micali, “Probabilistic encryption,”
Journal of Computer and System Sciences, vol.28, pp.270–
299, 1984.

[6] J. H̊astad, “Pseudo-random generators with uniform as-
sumptions,” Proc. 22nd ACM Symposium on Theory of
Computing, pp.395–404, 1990.

[7] R. Impagliazzo, L.A. Levin, and M. Luby, “Pseudo-random
generation from one-way functions,” Proc. 30th IEEE Sym-
posium on Foundations of Computer Science, pp.12–24,
1989.

[8] E. Kushilevitz and R. Ostrovsky, “Replication is not
needed: Single database, computationally-private informa-
tion retrieval,” Proc. 38th IEEE Symposium on Founda-
tions of Computer Science, pp.364–373, 1997.

[9] R. Motwani and P. Raghavan, “Randomized Algorithms,”
Cambridge University Press, 1995.

[10] F.J. MacWilliams and N.J.A. Sloane, “The Theory of Error-
Correcting Codes,” 9th edition, North-Holland, 1996.

Toshiya Itoh was born in Urawa,
Japan, in 1959. He received the B. Eng.,
the M.S. Eng., and the Dr. Eng. degree in
electronic engineering in 1982, 1984, and
1988, respectively from Tokyo Institute of
Technology, Tokyo, Japan. From 1985 to
1990, he was an Assistant Professor in the
Department of Electrical and Electronic
Engineering at Tokyo Institute of Tech-
nology, and from 1990 to 1992, he was a
Lecturer in the Department of Informa-

tion Processing at Tokyo Institute of Technology. Since 1992, he
has been an Associate Professor in the Department of Information
Processing at Tokyo Institute of Technology. His current interests
are modern cryptographies, finite field arithmetics, and complex-
ity theory. Dr. Itoh is a member of the Information Processing
Society of Japan, the International Association for Cryptologic
Research, the Association for Computing Machinery, and LA.

