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Abstract

Alice wants to query a database but she does not want the database to learn what
she is querying. She can ask for the entire database. Can she get her query answered
with less communication? One model of this problem is Private Information Retrieval ,
henceforth PIR. We survey results obtained about the PIR model including partial
answers to the following questions. (1) What if there are k non-communicating copies
of the database but they are computationally unbounded? (2) What if there is only
one copy of the database and it is computationally bounded?

1 Introduction

Consider the following scenario. Alice wants to obtain information from a database but does
not want the database to learn which information she wanted. One solution is for Alice to
ask for the entire database. Can she obtain what she wants with less communication?

The earliest references for problems of this sort are Rivest et al. [55], Blakely [15] and
Feigenbaum [30]. The model in [30] was re�ned by Abadi et al. [1]. This re�ned model was
the basis for several later papers [7, 6].

We will consider a later formulation by Chor et al. [23]. We model a database as (1) an n-
bit string x = x1x2 · · ·xn, together with (2) a computational agent that can do computations
based on both x and queries made to it. Alice wants to obtain xi such that the database
does not learn i. Actually Alice wants more than that� she wants the database to have
absolutely no hint as to what i is. For example, if the database knows that i 6= 98 then Alice
will be unhappy. Alice can achieve this level of privacy by asking for all n bits. Can she
obtain xi with complete privacy by a scheme that uses fewer than n bits of communication?
We assume that the database knows Alice's scheme and can simulate it. This question has
several answers.

1. If Alice uses a deterministic scheme then n bits are required. (This is folklore.) This
holds even if there are several non-communicating copies of the database. Hence, for
the rest of the paper, we assume Alice can �ip coins. Despite this, we will require that
she always obtains the correct answer.
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2. If the database has unlimited computational power and there is only one copy of the
database then n bits are required [23].

3. Let k ≥ 2. Assume there are k non-communicating copies of the database. We also
assume that the databases have unlimited computational power. The following are
known.

(a) Chor et al. [23] have a scheme that uses O((k lg k)n1/ lg k) bits.

(b) Chor et al. [23] have a scheme that probably uses O((k lg k)n1/(lg k+lg lg k)) bits.
(The status of the number of bits depends on some open problems in coding
theory.)

(c) Chor et al. [22] have a scheme that uses O((k2 log k)n1/k) bits.

(d) Ambainis [2] have a scheme that uses O(2k
2
n1/(2k−1)) bits.

(e) Ishai and Kushilevitz [40, 10] have a scheme that uses O(k3n1/(2k−1)) bits.

(f) Beimel et al. [12] have a scheme that uses nO(lg lg k/k lg k) bits.

The last result is currently the best known even for small k (see Table 1).

4. Chor and Gilboa [19] show that if there exists one-way functions then there exists
a scheme that uses two copies of the database and O(nε) bits where ε can be taken
arbitrarily small.

5. Kushilevitz and Ostrovsky [47] show that if the database cannot solve the Quadratic
Residue problem (QR problem) then there is 1-DB scheme that uses O(nε) bits, where
ε can be taken arbitrarily small.

6. Cachin et al. [17] show that if the database cannot solve the φ-hiding problem then
there is a 1-DB probabilistic scheme that uses O((lg n)a) bits. where a depends on how
hard the φ-hiding problem is. (The φ-hiding problem was �rst de�ned in [17].)

7. Kushilevitz and Ostrovsky [48] show that if there exist one-way permutations with a
trapdoor then there is a 1-DB scheme that uses n− o(n)-bits.

8. Beimel et al. [11] showed that

9. Di-Crescenzo et al. [29] showed that if there is a sublinear 1-DB scheme then there
exist an oblivious transfer protocol.

Asonov [3] has a short survey of PIR results. Lin [49] has a survey of some of the
information-theoretic results, complete with many examples. Castner [18] has a survey of
some of the schemes based on number theory, complete with many examples. By the time
you read this I will have a website of PIR papers at www.cs.umd.edu/ g̃asarch. In addition
I will have an extended version of this paper, with more proofs added, at www.eccc.uni-
tier.de/eccc/ in 2004.

To limit the survey the following topics are omitted.



1. Locally Decodable Codes [27, 43, 44].

2. PIR's that are allowed to make errors but with low probability [43, 44].

3. Quantum PIR's [44].

4. Attempts to make PIR practical [4, 45] in the real-real world.

5. The connection between current PIR work and some of the older papers on the same
theme such as [1, 7, 6].

Notation 1.1. Throughout this paper we assume that lg is log2 and returns an integer.

2 De�nitions

The following de�nition is due to Chor et al. [23]. We present them informally.

De�nition 2.1. [23] A 1-round k-DB Information Retrieval Scheme with x ∈ {0, 1}n and k
databases has the following form.

1. Alice wants to know xi. There are k copies of the database which all have x = x1 · · ·xn.
The DB's do not communicate with each other.

2. Alice �ips coins and, based on the coin �ips and i, computes (query) strings q1, . . . , qk.
Alice sends qj to database DBj.

3. For all j, 1 ≤ j ≤ k, DBj sends back a (answer) string ANSj(qj).

4. Using the value of i, the coin �ips, and the ANSj(qj), Alice computes xi.

The complexity of the above PIR scheme is
∑k

j=1 |qj|+ |ANSj(qj)|.

We de�ne two types of privacy.

De�nition 2.2. [23] A 1-round k-DB Private Information Retrieval Scheme with x ∈ {0, 1}n
and k databases is an information retrieval scheme such that, after the query is made and
answered, the database does not have any information about what i is. The database is
assumed to be computationally unbounded. Hence we need to ensure that the database does
not have enough information to �gure out anything about i. For these PIR schemes we will
need multiple copies of the database.

De�nition 2.3. [19] A 1-round k-DB Computationally Private Information Retrieval Scheme
with x ∈ {0, 1}n and k databases is an information retrieval scheme such that, assuming some
limitations on what the database can compute, after the query is made and answered, the
database does not have any information about what i is. Hence we need to ensure that
computing anything about i is beyond the computational limits of the database.

The de�nition is only for 1-round PIR schemes. This can be modi�ed to allow more
rounds; however, no PIR scheme in the literature needs more than 1-round. (Some variants
of the PIR problem need multirounds- see Section 6.2.)



3 Information Theoretic PIR

Assume you have k ≥ 2 copies of the database. Then there are PIR schemes of complexity
<< n which achieve complete information theoretic security. In this section we examine
several of these PIR schemes. For a summary of the known results see Table 1. The last row
of the table is the best known PIR scheme.

Tools Th Ref 2 DB 3 DB 4 DB k DB
kth root Th 3.2 [23] no PIR no PIR n1/2 k · n1/lg k

Cov. Codes Th 3.3 [23] n1/3 no PIR n1/4 (k lg k)n1/(lg k+lg lg k)?
poly inter. [22] n1/2 n1/3 n1/4 (k2 log k)n1/k

Rec Th 3.7 [2] n1/3 n1/5 n1/7 2k
2
n1/(2k−1)

Linear Alg [41] n1/3 n1/5 n1/7 k!n1/(2k−1)

Linear Alg [40, 10] n1/3 n1/5 n1/7 k3n1/(2k−1)

poly-heavy [12] n1/3 n1/5.25 n1/7.87 nO(lg lg k/k lg k)

Table 1: Summary of Information Theoretic Schemes, up to a constant factor.

3.1 A k-DB, O(kn1/ lg k)-bit PIR Scheme

The PIR schemes in this section are from Chor et al. [23].

De�nition 3.1. If σ is a string and i ≤ |σ| then σ⊕ i is the string σ with the ith bit �ipped.

Theorem 3.2. [23] For all k ∈ N there is a k-DB, O((k lg k)n1/ lg k)-bit PIR scheme.

KEY IDEA: View the database as a
√
n×
√
n bit array and use properties of ⊕.

Proof. We do the k = 4 case and leave the generalization to the reader. Each index of the
database is represented as an ordered pair (i1, i2), where i1 and i2 are written in base d

√
ne.

The databases are labeled DB00, DB01, DB10 and DB11.
4-DB, O(

√
n)-bit, Information Theoretic PIR Scheme

1. Alice wants to know bit xi1,i2 .

2. Alice generates σ, τ ∈ {0, 1}
√
n.

3. Alice then generates two additional
√
n bits strings from the �rst two strings: σ′ = σ⊕i1

and τ ′ = τ ⊕ i2.

4. Alice sends two strings to each database. DB00 receives σ, τ . DB01 receives σ and τ ′.
DB10 receives σ′ and τ . DB11 receives σ′ and τ ′.

5. D00 sends ⊕σ(j1)=1,τ(j2)=1xj1,j2 . D01 sends ⊕σ(j1)=1,τ ′(j2)=1xj1,j2 . D10 sends ⊕σ′(j1)=1,τ(j2)=1xj1,j2 .
D11 sends ⊕σ′(j1)=1,τ ′(j2)=1xj1,j2 .



6. Alice XORs the four bits. Since xi1,i2 is the only bit that appeared an odd number of
times, the result is xi1,i2 .

Note that the number of bits sent is 8
√
n+ 4.

3.2 A k-DB, O((k lg k)n1/lg k+lg lg k)(?)-bit PIR Scheme

The PIR schemes in this section are from Chor et al. [23]. We show a 2-DB O(n1/3)-bit PIR
scheme, which contains most of the ideas. We will then sketch a k-DB case, which is similar
but whose bit complexity depends on open questions involving covering sets.

In the PIR scheme from Theorem 3.2, Alice sends many more bits than the database
sends. By making the databases send a comparable number of bits as Alice, the total
number of bits communicated between Alice and the databases can be reduced.

Theorem 3.3. [23] There is a a 2-DB O(n1/3)-bit PIR scheme.

KEY IDEA: Two databases can do the work of eight. Covering codes help to
organize who does what.

Proof. By the n = 8 case of Theorem 3.2 there is an 8-DB O(n1/3)-bit PIR scheme. We can
decrease the number of databases from eight to two by having two databases simulate the
work of eight databases. In particular, DBA simulates DB000, DB001, DB010, DB100; and
DBB simulates DB111, DB011, DB101 and DB110. The simulation is designed so that DBA

(DBB) simulates databases whose 3-bit labels are of Hamming distance ≤ 1 from 000 (111).

2-DB, O(n1/3), Information-Theoretic PIR Scheme

1. Alice views the database as a n1/3×n1/3×n1/3 grid. Alice wants xi1,i2,i3 . The database
is x.

2. Alice generates σ, τ, η ∈ {0, 1}n1/3 and creates σ′ = σ ⊕ i1, τ ′ = τ ⊕ i2, η′ = η′ ⊕ i3.

3. Alice sends σ, τ, η to DBA. Clearly DBA can simulate DB000 (from the original PIR
scheme) and send back the needed single bit. Consider what DBA must do to simulate
DB100. DBA knows that DB100 would have received the following strings: σ′, τ, η.
DBA already has two of the three strings that DB100 has (namely, τ, η) but does not
have σ′; however, it knows that σ′ and σ (which it does have) di�er by only one bit.
DBA can create and use all n1/3 possible values of σ′. Speci�cally, DBA generates
σ ⊕ i for 0 ≤ i < n1/3. Each of the strings generated is a candidate for σ′. For each
candidate DBA simulates what DB100 would have done. Note that there are O(n1/3)
candidates for σ′ and each one leads to a 1-bit answer. Hence DBA sends O(n1/3) bits
to simulate DB100. Similarly, it can simulate DB010 and DB001. The total number of
bits sent back is 3n1/3 + 1.

4. Alice sends σ′, τ ′, η′ to DBB. Similar to the last step, DBB simulates DB111, DB110,
DB101, and DB011.



5. Alice XOR's the relevant bits. That is, she ignores all of the bits send back except those
corresponding to {σ, τ, η}, {σ, τ, η′}, {σ, τ ′, η}, {σ′, τ, η}, (which DBA sends back) and
{σ′, τ ′, η′}, {σ, τ ′, η′}, {σ′, τ, η′}, {σ′, τ ′, η}, (which DBB sends back).

Alice sends 6n1/3 bits and each database sends back 3n1/3 +1 bits, for a total of 12n1/3 +2
bits.

Note 3.4. Itoh [41] presents a slightly di�erent PIR scheme yields 12n1/3. Beimel and
Ishai [9, 10] use a di�erent approach which yields 7.27n1/3. Improving this constant may be
important in that the techniques employed may lead to a PIR scheme that uses << n1/3

bits.

The key to Theorem 3.3 is that we took an 8-DB, O(n1/3)-bit database and got two
databases to do the work of eight since there are two vectors ~v1, ~v2 ∈ {0, 1}3 that cover
{0, 1}3 in that every ~v is at most one bit away from either ~v1 or ~v2. This is called a covering
set. From Theorem 3.2 we know there is a 2d-DB, O(n1/d)-bit PIR scheme. If we can �nd k
vectors that cover {0, 1}d then we can generalize the PIR scheme from the above theorem.
The problem is that the status of k, called the problem of covering numbers, is not resolved
(see [24, 25, 37, 58]). Even so, we have the following theorem and speculation.

Theorem 3.5. [23]

1. Assume there are k vectors in {0, 1}d that cover {0, 1}d. Then there is a k-DB, O(n1/d)-
bit PIR scheme.

2. There is a 4-DB, O(n1/4)-bit PIR scheme.

3. This technique can lead to, at best, a k-DB, O(k lg k)n1/(lg k+lg lg k))-bit PIR scheme.

Proof sketch:
1) This is similar to the proof of Theorem 3.3
2) This follows from part a using the vectors {0000, 1000, 0111, 1111}
3) This follows from the volume bound of Gallager [32], though it is not hard to prove. �

We tend to think that the lower bound on covering sets is equal to the upper bound;
hence, we think there is a k-DB, O(k lg k)n1/(lg k+lg lg k))-bit PIR scheme. However, this is
unknown as of this time. It is also not important for PIR since, as we will see in the next
section, there exist much better PIR schemes.

3.3 A k-DB O(2k
2

n1/2k−1)-bit PIR Scheme

The PIR scheme in this section is by Ambainis [2]. The main new idea is to use recursion;
however, to set up the recursion we need a lopsided protocol.

Lemma 3.6. [2] There is a 2-DB PIR scheme where the following hold.

1. Both databases receive O(kn1/2k−1) bits.

2. One of the databases sends back O(kn1/2k−1) bits.



3. The other database sends back O(22kn2k−3/2k−1) bits.

4. Alice only needs k+ 1 = Θ(k) of the bits sent back by DBA and 22k−1− k− 1 = Θ(22k)
bits send back by DBB.

Proof. We will be simulating the 22k−1-DB O(n1/2k−1)-bit PIR Scheme of Theorem 3.2 with
two databases. Hence we will be viewing the database as a 2k − 1-dimensional array of 0's
and 1's. DBA will simulate the k + 1 databases that are of Hamming distance ≤ 1 from
00 · · · 0 DBB will simulate the remaining 22k−1 − k − 1 databases.
2-DB, Lopsided Information-Theoretic PIR Scheme

1. Alice wants bit xi1,...,i2k−1
.

2. Alice generates σ1, σ2, . . . , σ2k−1 ∈ {0, 1}n
1/2k−1 .

3. For 1 ≤ j ≤ 2k− Alice forms σ′j = σj ⊕ ij.

4. Alice sends σ1, . . . , σ2k−1 to DBA. Alice sends σ′1, . . . , σ
′
2k−1 to DBB.

5. DBA simulates DB0···0 and all databases of Hamming distance of one from DB0···0
(using the n1/2k−1 PIR scheme described in Section 3.2). This takes O(k × n1/(2k−1))
bits (similar to the proof of Theorem 3.3). Alice only uses the k+ 1 bits corresponding
to the correct guesses as to the queries that would have been asked.

6. DBB simulates DB1···1 and all databases with index Hamming distance less than or
equal to 2k−3 from 1 · · · 1, which means that it simulates the rest of the databases that
DBA does not simulate. A database of Hamming distance h transmits O(2hn1/2k−1)
bits. Hence DBB will transmit O(22k−3n(2k−3)/(2k−1)) bits back to Alice. Alice only
uses the 22k−3 − k − 1 bits corresponding to the correct guesses as to the queries that
would have been asked.

We use the lopsided PIR scheme to build a PIR scheme of the desired complexity.

Theorem 3.7. [2] For all k there is a k-DB O(2k
2
n1/2k−1)-bit scheme.

KEY IDEAS: The k databases simulate the two databases from the lopsides
scheme. Since Alice only needs one bit of what the database is going to send
her, apply the PIR scheme recursively to get that bit.

Proof. We build the PIR scheme by induction. The base case is the 2-DB O(n1/3)-bit PIR
scheme from Theorem 3.3. Assume inductively that there is a k− 1-DB, O(2(k−1)2

n1/(2k−3))-
bit scheme.
k-DB, O(2k

2
n1/2k−1) Information-Theoretic PIR Scheme

1. Alice has i and wants xi.



2. Alice begins to simulate the lopsided protocol by generating σ1, σ2, . . . , σ2k−1 ∈ {0, 1}n
1/2k−1 .

and forming, for 1 ≤ j ≤ 2k−, σ′j = σj ⊕ ij.

3. Alice sends σ1, . . . , σ2k−1 to DB1 (who will simulate DBA) and σ′1, . . . , σ
′
2k−1 to all of

DB2, . . . , DBk (who will collectively simulate DBB. σ1, . . . , σ2k−1 ∈ to DB1. (Alice
sends a total of O(k2n1/2k−1) bits.)

4. DB1 runs the lopsided PIR scheme as DBA and hence sends Alice O(kn1/(2k−1)) bits.

5. Each of these databases DB2, . . . , DBk runs the lopsided PIR scheme playing the role
of DBB, and computes O(22kn(2k−3)/(2k−1)) bits. These bits are not sent back to Alice,
but are left at the database.

6. Alice and DB2, . . . , DBk treat the O(22kn(2k−3)/(2k−1)) bits as a new database. Alice
privately retrieves the Θ(22k) bits from the new database, using the (k − 1)-DB PIR
scheme inductively. This takes

O(22k × 2(k−1)2

(n(2k−3)/(2k−1))1/2k−3) = O(22k+k2−2k+1n1/2k−1) = O(2k
2

n1/2k−1)

bits.

This PIR scheme may appear to take more than two rounds. But note that the bits Alice
sends in each round do not depend on previous rounds; hence the PIR scheme can be done
in one round.

Note 3.8. Note that the dependence on k is large since the PIR scheme takes O(2k
2
n1/2k−1)

bits. Itoh [41] has a di�erent protocol that has constant k!. Ishai and Kushilevitz use an
entirely di�erent technique (without recursion) and reduce it to O(k3n1/2k−1) bits. These
improvements are important since the new techniques they used evenutally lead to an PIR
scheme using << n1/2k−1 bits.

3.4 A k-DB nO(lg lg k/k lg k)-bit PIR Scheme

The PIR scheme in this chapter is from Beimel et al. [12].

KEY IDEA: View the database as a polynomial.

De�nition 3.9. Let x ∈ {0, 1}n. Let d,m be such that
(
m
d

)
≥ n. Hence m ≥ dn1/d.

1. For all i ∈ [n], let E(i) be the ith element of {0, 1}m that has exactly d ones.

2. Let Px(z1, . . . , zm) be the polynomial in Z2 of degree d such that (∀i)[Px(E(i)) = xi].
Formally Px(z1, . . . , zm) =

∑n
i=1 xi

∏
E(i)j=1

zj.



3. Let (z1, . . . , zm) = (
∑k

j=1 y1,j, . . . ,
∑k

j=1 ym,j). Let

Qx({yj,h}, 1 ≤ j ≤ k, 1 ≤ h ≤ m) = Px(
k∑
j=1

y1,j, . . . ,

k∑
j=1

ym,j).

For each j ∈ [k] let Vj = {y1,j, . . . , ym,j}.

The PIR problem is equivalent to the following problem:

1. Alice has E(i).

2. The k databases have Px.

3. Alice wants to know Px(E(i)) without the databases knowing anything about i.

We present the �rst few steps of a PIR scheme for this and then restate the problem.

Partial PIR Scheme

1. Alice has E(i).

2. Alice generates Y1, . . . , Yk−1 ∈ {0, 1}m and then forms Yk such that
∑k

j=1 Yj = E(i).

3. For all j ∈ [k], Alice sends {Y1, . . . , Yk}−Yj to DBj. Hence Alice sends O(km) bits to
each database, O(k2m) bits total.

Each database has all but m variables of Qx. Can they send Alice information so that
she can evaluate Qx({yj,h}, 1 ≤ j ≤ k, 1 ≤ h ≤ m)?

We use this reformulation to obtain a O(k3n1/2k−1) PIR scheme. Alas, it is not the case
that all of the key ideas are contained here. We will discuss how to modify it to obtain the
desired PIR scheme.

Theorem 3.10. [9, 40, 10, 12] For all k, there is a k-DB O(k3n1/2k−1)-bit scheme.

Proof. Let d = 2k − 1. Let m = Θ(kn1/d) be such that
(
m
d

)
≥ n. Let Qx, V1, . . . , Vk be as in

De�nition 3.9. We assign to each monomial M of Qx the database that can best evaluate it.
This is done before the PIR scheme begins.

1. If there exists j0 ∈ [k] such that no variable of M is in Vj0 then assign M to DBj0 .
Note that DBj0 will be able to evaluate M .

2. Assume for all j ∈ [k] some variable of Vj is in M . If there exists j0 ∈ [k] such that
only one variable of Vj0 is in M , then assign M to DBj0 .

3. Assume for all j ∈ [k] two variables of Vj are in M . Then M has 2k > d variables.
Since Qx is of degree d this cannot occur.



Let pj be the sum of all the monomials assigned to DBj. Note that once the yj′,h for
j′ 6= j are known, pj is linear in {yj,1, . . . , yj,m}. Hence pj can be represented by an element
of {0, 1}m, and is m bits long.
k-DB O(k3n1/2k−1) PIR Scheme

1. Alice has E(i).

2. Alice generates Y1, . . . , Yk−1 ∈ {0, 1}m and then forms Yk such that
∑k

j=1 Yj = E(i).

3. For all j ∈ [k] Alice sends {Y1, . . . , Yk} − Yj to DBj. Hence Alice sends O(k2m) bits.

4. For each j ∈ [k] DBj �nds pj and sends it back to Alice. Each database is sending m
bits, so this is O(km) bits total.

5. Alice can evaluate all of the pj that are sent and XOR them. This is the answer.

This takes O(k2m) = O(k3n1/d) = O(k3n1/2k−1) bits.

To extend this proof to general k we will need to take d ≥ 2k. However, if d ≥ 2k and
we assign monomials to the database best able to compute it, the polynomial that a DB
has been assigned may be quadratic in m variables and hence requires m2 = n2d bits to
communicate. We sketch the ideas that are needed.

1. Let k′, λ be parameters to be chosen carefully. The polynomial Px(~z) is broken up into
several pieces, some of which use ~z and some of which use the y's. In particular, for
each V ⊆ [k] such that |V | ≥ k′ we have a polynomial PV (z1, . . . , zm), and we have
linear polynomials pj(y∗,j) such that

(a) Px(z1, . . . , zm) = Px(
∑k

j=1 y1,j, . . . ,
∑k

j=1 ym,j) =∑
V⊆[k],|V |≥k′ PV (z1, . . . , zm) +

∑k
j=1 pj(y1,j, . . . , ym,j).

(b) PV and pj both take m variables.

(c) The degree of PV is ≤ λ|V |.
(d) The degree of pj is one (so pj is linear).

(e) Note that Px(E(i)) =
∑

V⊆[k],|V |≥k′ PV (E(i)) +
∑k

j=1 pj(y1,j, . . . , ym,j).

2. For each V ⊆ [k], |V | = k′, the databases in V will be able to evaluate PV (E(i)).
Alice cannot give them E(i); however, it will turn out that there are not that many
coe�cients of PV that Alice needs and she will be able to get these by a recursive call
to the PIR scheme.

4 Conjectures that Imply sublinear PIR

In Section 3, we examined PIR schemes where the databases had unlimited computing power;
hence we needed to replicate the database to achieve sublinear communication complexity.
In this section we will look at sublinear PIR's where the database has computational limits.



4.1 Number Theoretic Conjectures

The Quadratic Residue Problem (see De�nition 4.1) is thought to be hard. Kushilevitz
and Ostrovsky [47] show that, assuming QR is hard, there is a 1-DB O(nε)-bit PIR scheme
where ε can be taken to be aribrarily small. We present that PIR scheme. Cachin et al. [17]
assume that the Φ-Hiding Problem is hard and, from that, obtain a polylog PIR scheme.
(The Φ-hiding problem is de�ned in| [17].) We do not formalize or prove that theorem.

De�nition 4.1. Let z,m ∈ N. Assume z is relatively prime to m. The number z is a
Quadratic Residue mod m if there exists a number a such that a2 ≡ z (mod m). The
Quadratic Residue Problem is, given (z,m), determine if z is a quadratic residue mod m.

We state the next theorem informally and only present the PIR scheme, not the proof
that it is correct or private.

De�nition 4.2. Z∗n is the group of integers with underlying set {x | gcd(x,n)=1} and the
operation of multiplication mod n.

Theorem 4.3. [47] Assume that the quadratic residue problem is `hard' for m the product of
two primes and |m| ≥ nδ (|m| is the length of m, not its absolute value). Then there exists
a 1-DB, O(n1/2+δ)-bit PIR scheme.

KEY IDEA: View the database as a
√
n ×
√
n array. A new database is formed

which relates to QR.
Proof sketch: The database is viewed as a

√
n×
√
n array of bits.

1-DB PIR Scheme

1. Alice wants bit xi,j.

2. Alice generates two primes p1, p2 of the same length such that m = p1p2 has length nδ.

3. Alice generates
√
n elements of Z∗m which we call r1, . . . , r√n. Alice makes sure that all

of them are quadratic residues except ri. Make sure that ri has Jacobi symbol 1 (i.e.,
it is a non-square modulo both p1 and p2.)

4. Alice sends m, r1, . . . , r√n to the database. Note that this takes O(nδ
√
n) = O(n1/2+δ)

bits.

5. The database computes the following matrix.

(a) ca,b = z2
b if xab = 1,

(b) ca,b = zb if xab = 0.

6. The database computes the products of the rows. In particular, for 1 ≤ a ≤
√
n the

database computes ra =
∏√n

b=1 ca,b.

7. The database sends over r1, . . . , r√n. This takes O(n1/2+δ) bits.



8. Alice sees if rj is a QR. If it is then xi,j = 1, otherwise xi,j = 0.

We leave the proof that this is correct to the reader. The proof that this is private
depends on a careful de�nition of what it means for the QR problem to be hard. �

In the last step of the PIR scheme Alice receives n1/2+δ bits but only uses nδ of them.
Hence we can do the last step recursively. In the PIR schemes current form this does not
help; however, if we start with di�erent dimensions and use the n1/2+δ protocol as a base
case we can obtain a PIR scheme which takes n1/4+f(δ) bits. By repeating this we can obtain
a PIR scheme with nε+fε(δ) bits. We leave this to the reader.

Note 4.4. The PIR scheme above uses that Z∗m is a group. Yamamur and Saito have
generalized this scheme to any group in [59]. Mann [50] has a similar scheme that is based
on general assumptions.

4.2 One-way Functions Imply O(nε) 2-DB PIRs

Chor and Gilboa [19] show that if one-way functions exist then there is a 2-DB O(nε)-bit
PIR scheme. Having a one-way function is equivalent to having a pseudorandom generator.
We phrase the theorem in those terms and prove a scaled down version of it.

Theorem 4.5. [19] Let 1 ≤ m ≤ n. Assume there is a function G : {0, 1}lgn → {0, 1}(n/m)1/3

such that Alice and the databases can compute G but the databases cannot deduce anything
about z from G(z). Then there is a 2-DB O((n/m)1/3 + m lg n)-bit PIR scheme. By taking
m = n1/4 we obtain an O(n1/4 lg n) PIR scheme.

KEY IDEA: Alice does the O(n1/3)-bit PIR scheme from theorem 3.3 on each
row, but she sends short seed instead of long message.

Proof. We view the database as an m× n/m bit matrix. We will determine m later.
2-DB O((n/m)1/3 +m lg n)-bit PIR scheme

1. Alice wants bit xi,j.

2. Alice generates σ ∈ {0, 1}m and lets σ′ = σ ⊕ i.

3. Alice acts as though she is going to run the PIR scheme in Theorem 3.3 on the ith row
to get the j bit. Alice prepares the queries q1, q2 of length (n/m)1/3 that she would
send to DB1 and DB2 but does not send them.

4. For each column index b, 1 ≤ b ≤ n/m, Alice generates sb ∈ {0, 1}lgn.

5. Alice �nds M1,M2 ∈ {0, 1}(n/m)1/3 such that G(sj) ⊕M1 = q1 and G(sj) ⊕M2 = q2.
(This is not a typo- it really is G(sj) both times.)

6. Alice sends to DB1 the following: σ,M1,M2, s1, s2, . . . , sm. Alice sends to DB2 the fol-
lowing: σ′,M1,M2, s1, s2, . . . , sm. (The total is O(m+(n/m)1/3+m lg n) = O((n/m)1/3+
m lg n).)



7. DB1 sends back U1 = ⊕σ(a)=1ANS1(M1⊕G(sa)) and U2 = ⊕σ(a)=0ANS2(M1⊕G(sa)).
This is of length O((n/m)1/3). (Recall that ANS1(q) is the answer that DB1 gives
when sent question q.)

8. DB2 sends back V1 = ⊕σ′(a)=1ANS2(M1 ⊕G(sa) and V2 = ⊕σ′(a)=0ANS2(M1 ⊕G(sa).
This is of length O((n/m)1/3).

9. Note that the PIR scheme in Theorem 3.3 that we are using has the following important
property: if you give the two databases the same query, they will return the same
answer. Hence we have, for all a, ANS1(M1 ⊕ G(sa)) = ANS2(M1 ⊕ G(sa)) and
ANS1(M2⊕G(sa)) = ANS2(M2⊕G(sa)). Assume σ(i) = 1 (the other case is similar).
Hence U1 ⊕ V1 will mostly cancel out just leaving ANS1(M1 ⊕ G(sj)) = ANS1(qj),
and U2⊕ V2 will mostly cancel out just leaving ANS2(M2⊕G(sj)) = ANS2(qj), From
these Alice can complete the simulation and recover xi.

The following theorem follows from the proof of Theorem 4.5. (A result that follows from
a Theorem is called a Corollary. A result that follows from a proof is called a Porism.)

Porism 4.6. Assume that α(n) is a function and 1 ≤ m ≤ n. Assume that P is a 2-DB
α(n)-bit PIR scheme (possibly based on computational limits on the databases) where, for all
queries q that that Alice could make, ANS1(q) = ANS2(q). Assume there is a function G :
{0, 1}lgn → {0, 1}α(n/m) such that Alice and the databases can compute G but the databases
cannot deduce anything about z from G(z). Then there is a 2-DB O(α(n/m) +m lg n) PIR
scheme (based on the same limits as the of the original scheme plus the limits about G).
Applying this to the 2-DB O(n1/4 lg n)-bit PIR scheme from Theorem 4.5, with m = n1/5,
yields a 2-DB O(n1/5 lg n)-bit PIR scheme.

Corollary 4.7. Assume that, for all δ < 1, there exists G : {0, 1}nδ → {0, 1}n such that
Alice and the databases can compute G but the databases cannot deduce anything about z
from G(z). Then, for all ε, there is a 2-DB, O(nε)-bit PIR scheme.

If 1-DB PIR's are desired then a stronger assumption is needed. In particular, the
following are known:

1. Stern [57] and Mann [50] have shown that any homomorphic encryption scheme implies
nε (any ε > 0) 1-DB PIR schemes exist.

2. Kushilevitz and Ostrovsky [48] show that if there exists a One-way Trapdoor Permu-
tation then there is an n− o(n) 1-DB PIR scheme.

3. Certain assumptions about oblivious transfer imply 1-DB polylog-bits PIR schemes [46].
(Added at last minute- this Scheme has recently been broken. Details will appear.)



5 What Do 1-DB Sublinear PIRs Imply?

In this section we sketch a proof that 1-DB Sublinear PIR Implies OneWay Functions Exist
and then summarize what else is known.

5.1 1-DB Sublinear PIR Implies OneWay Functions Exist

In Section 4 we show that one-way functions imply sublinear 2-DB PIR schemes exist. We
also noted that some conjectures imply 1-DB sublinear PIR schemes exist. The question
arises as to what primitives are necessary. Beimel et al. [11] show that if 1-DB sublinear
PIR's exist then one-way functions exist. It is known that bit-commit (see [35]) implies
one-way functions [38]. We sketch a weak version of `sublinear 1-DB PIR's imply one-way'
by showing the following.

Theorem 5.1. [11] If there is a 1-DB (n/2)-bit PIR scheme then there is a weak bit-
commitment scheme.

Proof sketch:
Recall that IP (x, y) is the inner product mod 2 of x and y.
We will have Carol committing to a bit and David be the one she commits to (we do not

use Alice and Bob since Alice is being used in another capacity throughout this paper.)
Assume that there is 1-DB (n/2)-bit PIR scheme P . We use it to build the following

bit-commit scheme.
PHASE ONE: Carol commits to bit b.

1. Carol has bit b.

2. Carol generates x, y ∈ {0, 1}n. David generates i ∈ [n].

3. Carol and David exercise the PIR scheme P with Carol having database x and David
having index i. Note that at the end David knows xi and Carol does not know i.

4. Carol sends David y and IP(x, y)⊕ b.

Before giving phase two we claim that David cannot possibly deduce anything about b
after Phase one. Assume that he could. Then the following is a communication protocol
(no privacy involved) for the IP problem where Carol has x, David has y, and at the end of
the protocol they both know something about IP(x, y). The protocol takes n/2 bits, which
violates the lower bound on the randomized communication complexity of IP of Chor and
Goldreich [21].

1. Carol has x, David has y.

2. David generates i ∈ [n].

3. Carol and David exercise the PIR scheme P with Carol having database x and David
having index i. Note that at the end David knows xi and Carol does not know i.



4. David generates c ∈ {0, 1} (independent of everything else) and uses it as the bit sent
from Carol at step 4 of the Commit protocol.

5. Using the above together with y, David outputs his prediction b′ for b as we are as-
suming he can.

6. David computes b′⊕c as a prediction for IP(x, y) and transmits this prediction to Carol.
(Since Carols choice of b in the commit protocol is uniformly distributed, Davids view
here is identical to his view in the commit protocol. Hence c conveys just as much
information as b⊕ IP(x, y) did.)

We now exhibit
PHASE TWO

1. Carol has x, y ∈ {0, 1}n and b ∈ {0, 1}. David has i, xi, y, and IP(x, y)⊕ b .

2. Carol sends David x.

3. David veri�es that xi is what it should be. (Carol did not know i so she must give
David the correct x.)

4. David computes IP(x, y) and can then deduce b easily.

�

5.2 Summary of What is Known about Computational PIR

Notation 5.2.

1. One-Way means there exists a one-way function. This is known to be equivalent to
the existence of pseudorandom generators.

2. One-Way-Perm-Trap means that there exists a one-way permutation with a trapdoor.
Intuitively this means that if you know the trapdoor (e.g., the factors of a number)
then you can compute the inverse.

3. HES means that there exists a homomorphic encryption scheme.

4. OT is oblivious transfer. It is known that 1-out-of-2 OT and 1-out-of- n OT are equiv-
alent [26]. It is clear that 1-out-of-n sublinear OT and SPIR (see Section 7.2) are
equivalent.

The following summarizes what is known about assumptions for sublinear 1-DB PIR.
One-Way-Perm-Trap =⇒ 1-DB (n− o(n))-bit PIR [48]
(n− o(n))-bit PIR =⇒ OT [29]
OT =⇒ One-Way
One-Way =⇒ 2-DB o(n)-bit PIR [19]



HES =⇒ 1-DB nε-bit PIR [50, 57]

Impaglizzo and Rudich [39] show that a proof that OT can be implemented using one-way
functions only (without trapdoor), which does not relativize, would, roughly speaking, lead
to a proof that P 6= NP that does not relativize. They consider this evidence that proving
such a result is going to be di�cult. Since OT is equivalent to SPIR, and SPIR is close to
PIR, it is unlikely that we can obtain sublinear PIR from one-way functions.

6 Retrieving Di�erent Types of Data

6.1 PIR by Blocks

In the standard model Alice only wants one bit. It is more realistic that Alice wants a block
of bits. What if the data is partitioned into blocks of m each and Alice wants an entire block.
She could invoke a PIR scheme m times. Can she do better? This question was raised by
Chor et al. [23].

De�nition 6.1. [23] Let `, n, k, n ∈ N. The PIR(`, n, k) problem is as follows: There are
k databases each with the same x ∈ {0, 1}n. The x is broken up into n/` blocks of ` each.
Alice wants to privately retrieve ` consecutive bits. Note that PIR(`, n, k) problem can be
solved by ` iterations of a k-DB PIR scheme.

The following theorem appeared in [23]. We give a di�erent proof, from [42], which we
will need in Section 8

Theorem 6.2. [23, 42] The PIR(`, n, 2) problem can be solved with O(n/`+ `) bits.

KEY IDEA: Use ⊕ on blocks

Proof. The database consists of n/` blocks of ` bits each. View it as an n/` by ` array. We
denote the blocks B1, . . . , Bn/`.
PIR(`, n, 2) Scheme

1. Alice wants the ith row.

2. Alice generates σ ∈ {0, 1}n/`. Alice sets σ′ = σ ⊕ i. Alice sends σ to DB1 and σ′ to
DB2. (Alice sends O(n/`+ `) bits.)

3. DB1 returns τ = ⊕σ(j)=1Bj. DB2 returns η = ⊕σ′(j)=1Bj. (The databases send O(`)
bits.

4. Alice computes Bi = τ ⊕ η.

The number of bits communicated is O(n/`+ `).



Note 6.3. If ` = nδ then the above PIR scheme takes O(nmax{δ,1−δ}). Contrast this to using
the O(n1/3)-bit PIR scheme (Theorem 3.3) nδ times which results in a O(n1/2+δ)-bit PIR
scheme, which is clearly worse.

The proof can be generalized to obtain the following.

Theorem 6.4. [23, 20]

1. For any constant k ≥ 2, and for any `, ` ≥ n1/k−1, there exists an O(`)-bit PIR(`, n, k)
scheme.

2. For any constant k ≥ 2, and for any `, there exists an O(n1/2k−1`k/2k−1)-bit PIR(`, n, k)
PIR scheme.

6.2 PIR by Keyword

What if the database is a list of good stocks to buy and Alice just wants to know if BEATCS
Inc. is a good stock? This does not �t our framework since she does not know exactly
where in the database that information would be. This problem was considered by Chor and
Gilboa [20].

De�nition 6.5. [20] Let `,N, k ∈ N. The PrivatE Retrieval by KeYwords problem with
parameters, (henceforth PERKY(`,N, k)) is as follows. There are k databases and they
each have the same list of N strings of length `. Alice has a string w ∈ {0, 1}`. Alice wants
to determine if w is on the list without the databases knowing anything about w.

Theorem 6.6. [20] There exists an O((N + `)(lgN))-bit PERKY(`,N, k) scheme.;

KEY IDEA: The words are sorted. Alice uses block PIR and binary search

Proof. The databases store the strings in lexicographic order. Both Alice and the database
can view the set of strings as one string of length N`. Alice will �rst retrieve the middle
string on the list using the PIR-block scheme of Theorem 6.2. (This takes O(N + `) bits.)
If the string is retrieved is lexicographically less than w then Alice knows that w is in the
second half. If the string is retrieved is lexicographically more than w then Alice knows that
w is in the second half. If the string is retrieved is w then Alice knows that w is in the list but
cannot stop here or else the database will know what she was looking for (so she �ips a coin
to decide to go right or left). In all three cases Alice proceeds on either a real or fake binary
search to determine if w is in the database. The entire process takes O((N/` + `)(lgN))
bits.

Note 6.7. Using perfect hash functions PERKY(`,N, k) can be solved in O(N+`) bits [20].



7 Variants of PIR and CPIR

7.1 Robust PIR Schemes

In the standard PIR model the databases never break down (return no answer) and are never
Byzantine (return a false answer). Beimel and Stahl [14] consider what can be done if some
of the databases break down or return false answers.

De�nition 7.1. [14] A k-out-of-m PIR scheme is an m-DB PIR scheme that works even if
only k of the databases send back answers (the rest return nothing). Note that a standard
k-DB PIR scheme is a k-out-of-k database PIR scheme. Note also that if there is a k-DB
b(n)-bit PIR scheme then there is an easy

(
m
k

)
b(n)-bit k-out-of-m PIR scheme (have each

k-sized subset of the m databases execute the original PIR scheme). Note also that the
following 2-round solution works: in the �rst round send one bit to each DB and ask it to
return that bit, which su�ces to see which DB's are functioning. In this section we only
consider 1-round solutions.

Theorem 7.2. [14] If there is a 2-DB 1-round b(n)-bits PIR scheme then there is a 2-
out-of-m databases O(b(n)m lgm)-bit PIR scheme. Hence, using Theorem 3.3, there is a
2-out-of-m O(n1/3m lgm)-bit PIR scheme.

Proof. We assume m is a power of 2. Number the databases DBσ as σ ∈ {0, 1}lgm.

1. Alice wants xi.

2. Alice generates questions for two databases as though she is going to execute the 2-DB
PIR scheme. Repeat this (lgm)−1 times. Now Alice has lgm query pairs (Qj[0], Qj[1])
as j = 1, . . . , lgm. Note that Alice has not sent anything yet.

3. For each σ Alice sends database DBσ one query from the pair (Qj[0], Q1[1]) by sending

Q1[σ(1)]Q2[σ(2)] · · ·Qlgm[σ(lgm)].

This takes O(b(n)m lgm) bits.

4. Each DBσ sends back the answers it would send back to those queries. This takes
O(b(n)m lgm) bits.

Note that, for all σ and j, database DBσ does not get both a Qj[0] and Qj[1]. Hence this
is private. Also note that even if only two databases DBσ and DBτ respond, and if j is such
that σ(j) 6= τ(j), then these two databases will give you some pair of queries (Qj[0], Q1[1]).
This will su�ce to �nd xi.

Note 7.3. There is an alternative proof of Theorem 7.2 that uses Shamir's secret sharing [56].

For the general case perfect hash families are used to obtain the following.



Theorem 7.4. [14] There is a k-out-of-m 2Õ(k)n2 lg lg k/k lg km lgm-bit PIR scheme.

We now look at the case where some databases can answer with the wrong information.

De�nition 7.5. [14] Let b, k,m ∈ N. A b-Byzantine k-out-of-m PIR scheme is an m-DB
PIR scheme that works even if only k of the PIR schemes return answers and ≤ b of them
return incorrect answers. (Note that the b bad databases do not collude.)

Theorem 7.6. [14] There is a k/3-Byzantine robust k-out-of-m O(kn1/(bk/3cm lgm)-bit PIR
scheme.

What if the b bad databases collude? In this case we will allow any b databases to collude
and hence we can use the terminology of Section 7.4.

Theorem 7.7. [14] Assume b < k/3. There is a b-private b-Byzantine k-out-of-m
O( k

3b
n1/b(k−1)/3tcm lgm)-bit PIR scheme.

These last two theorems use polynomial interpolation.

7.2 Symmetric PIR Schemes

In the standard model Alice may end up learning more than the one bit she is curious about.
Gertner et al. [34] considered the the question of preventing Alice from learning any more
than xi.

De�nition 7.8. [34] A Symmetric PIR scheme (henceforth SPIR) is a PIR scheme where, at
the end, Alice learns nothing more than xi. We will allow the databases to share a common
random string; however, the length of that string will be one of our parameters. There are
two types of SPIR:

1. Those where Alice is honest-but-curious (she will follow the PIR scheme but will try
to use the information gathered to �nd out more information).

2. Those where Alice is dishonest (she may choose to not follow the PIR scheme in order
to �nd out some information).

We will need to look at the complexity of a PIR scheme slightly di�erently than usual to
state the next theorem.

De�nition 7.9. A 1-round (α(n), β(n))-bit PIR scheme is a PIR scheme where Alice sends
a string of length α(n) and then receives, from each database, a string of length β(n).

Theorem 7.10. [34] Let k ≥ 2. Assume there exists P, a k-DB 1-round (α(n), β(n))-bit
PIR scheme. Then there exists a 1-round (k+1)-DB (α(n)+(k+1) dlg ne , β(n)+1)-bit SPIR
scheme P ′ that uses a shared random string of length n. P ′ works in the honest-but-curious
model. We obtain, using Theorem 3.3, a 3-DB O(n1/3)-bit SPIR scheme.



Proof sketch:
We prove the k = 2 case; the extension is obvious. We do not include the proofs of

security. The databases are DB0, DB1, DB2 and all have x ∈ {0, 1}n as well as a shared
random string r ∈ {0, 1}n. It will turn out that DB0 does not need r.

1. Alice has i. We take i ∈ {0, . . . , n− 1} since we will be using mod n arithmetic. Alice
sends queries to DB1 and DB2 as she would in PIR scheme P (this takes 2α(n) bits).
She then generates 4 ∈ {0, . . . , n − 1}. Alice sends 4 to DB1 and DB2, and sends
i′ ≡ i−4 (mod n) to DB0 (this takes lg n bits).

2. DB1 and DB2 compute r′ which is r shifted cyclically 4 places to the right. Then
DB1 and DB2 compute x′ = x ⊕ r′. DB1 and DB2 answer the query Alice sent to
them as if the database was x′. (This takes β(n) bits.)

3. DB0 sends ri′ . (This takes one bit.)

4. Alice reconstructs x′i and then computes xi = x′i ⊕ ri′ . (Note that x′i = xi ⊕ ri′ so
x′i ⊕ ri′ = xi ⊕ ri′ ⊕ ri′ = xi.)

�
For the case where Alice is dishonest a new primitive is introduced called Conditional

Disclosure of Secrets which is a generalization of t-out-of-m secrets sharing [56]. It is used
to obtain the following results.

Theorem 7.11. [34] Assume there exists P, a 1-round k-DB (α(n), β(n))-bit PIR scheme.
Then there exists a 1-round (k+1)-DB (α(n)+(k+1) dlg ne , 2β(n))-bit SPIR scheme P ′ that
uses a shared random string of length O(n + β(n)). P ′ and works when Alice is dishonest.
We obtain, using Theorem 3.3, a 3-DB O(n1/3)-bit SPIR scheme.

The above theorems are very general in that they take any PIR schemes and modify them
to form a SPIR scheme. The next theorem is proven by taking a particular PIR scheme, the
one from Theorem 3.7, and modifying it.

Theorem 7.12. [34] For every constant k ≥ 2 there exists a k-DB SPIR scheme with
communication complexity and shared randomness O(n1/2k−1) which works when Alice is
dishonest.

Theorem 7.13. [34] There exists a dlg n+ 1e database O(lg2 n lg lg n)-bit SPIR scheme with
communication complexity and shared randomness O(lg2 n lg lg n) which works when Alice is
dishonest.

The notion of SPIR has also been looked at in the context of computational PIR by
Mishra and Sarkar [51, 52]. Their main result assumes that both quadratic residue (see
De�nition 4.1) is hard, and the XOR assumption (to be de�ned below) is true. The XOR as-
sumption was �rst articulated in [51]. They claim to have theoretical results and simulations
as evidence for it.



De�nition 7.14. [51, 52] The following is the XOR assumption. Let N be the product of
two primes that are roughly the same length. Let x, y be picked from {0, . . . , N} at random.
Let z = x⊕ y. Then

Prob(x ∈ QR ∧ y ∈ QR | z) = 1/4
Prob(x ∈ QR ∧ y /∈ QR | z) = 1/4
Prob(x /∈ QR ∧ y ∈ QR | z) = 1/4
Prob(x /∈ QR ∧ y /∈ QR | z) = 1/4

We state the following informally.

Theorem 7.15. [51, 52] If the quadratic residue problem is hard and the XOR assumption
is true then there is a 1-DB SPIR of complexity O(nε) where ε depends on the particu-
lar hardness assumption for quadratic residue problem. This scheme works when Alice is
dishonest.

The above Theorem follows more generally (and under weaker assumptions) from a gen-
eral PIR to SPIR transformation by Naor and Pinkas [53]. This transformation takes any
PIR scheme and, using a logarithmic number of oblivious transfers, turns it into a (compu-
tational) SPIR scheme. Since PIR implies OT, we get that in the computational setting PIR
implies SPIR with no further assumptions and with a minor increase to the communication
complexity. (NOTE- the above paragraph is quoted word for word from an email from Yuval
Ishai.)

7.3 Information-Theoretic PIR without Replication

In the standard model there are several copies of the database, which may be a security
risk. This problem was addressed by Gertner et al. [33]. Ideally we would like the databases
themselves to not be able to (separately) deduce anything about x. Even more ideal� we
want no t databases to be able to collude to �nd out anything about x.

Theorem 7.16. [33] Assume there exists a k-DB α(n)-bit PIR scheme. Assume further that
the only queries that Alice asks are of the form �give me ⊕a∈Txa� Then there is a (t+1)k-DB
2α(n)-bit PIR scheme such that if any t databases collude they still cannot deduce anything
about x.

Proof sketch: We will do the t = 2 case; the generalization is obvious. The databases
will be called DB1

1 , DB
1
2 , DB

2
1 , DB

2
2 , DB

3
1 , DB

3
2 , . . . , DB

k
1 , DB

k
2 . For 1 ≤ j ≤ k the database

DBj
1 will have a random string rj1 ∈ {0, 1}n and DBj

2 will have rj2 such that rj1 ⊕ r
j
2 = x.

Note that none of the databases have any information about x.

1. Alice has i.

2. Alice simulates the PIR scheme P as follows: if she wants to make the query ⊕a∈Txa
of database j, she makes it to both DBj

1 and DBj
2. She gets back bits b1 and b2. The

bit b = b1 ⊕ b2 is the answer to her query. Note that this takes 2α(n) bits.



�
The paper also considers the case where one of the databases has x but the others,

even if they work together, cannot obtain any information about x. This is called �total
independence�

Theorem 7.17. [33] Assume there exists P k-DB α(n)-bit PIR scheme. Then there is a
2k + 1-DB α(n) lg n-bit SPIR scheme such that one of the database has x and all the rest,
even if they collude, cannot learn anything about x.

7.4 t-private PIR Schemes

In the basic model we assumed that none of the databases talk to each other. Chor et al.
raised the question of what happens if some of the databases talk to each other. A PIR
scheme is t-private [22] if no subset of t of them can determine anything about i. Note that
standard PIR schemes are 1-private.

Let k, t ∈ N.

1. Chor et al. [22] show that there is a t-private, k-DB, O(tnt/k) PIR scheme [22]. This
paper uses polynomial interpolation.

2. Ishai and Kushilevitz [40, 10] have shown the following. Let d be such that

k = min

{⌊
dt− d+ t− 3

2

⌋
, dt− t+ 1− (d mod 2)

}
.

Then there is a t-private, k-DB, O(k2
(
k
t

)
n1/d)-bit PIR scheme. This paper uses linear

algebra and secret sharing [56].

3. Beimel and Ishai [9, 10] show that there is a t-private, k-DB, O(n1/b(2k−1)/tc)-bit PIR
scheme. This papers uses polynomials in a manner similar to that of Theorem 3.10,
combined with secret sharing [56]. The technique can be seen as a precursor to the
proof of Theorem 3.10.

4. Blundo et al [16] show that there is a t-private, k-DB, O(k
√
n)-bit PIR scheme. This

uses blocks of bits and XOR. The result is of interest when t > k/2.

7.5 PIR's with Preprocessing

In all of the PIR schemes discussed in the prior sections the database has to do O(n) work,
usually taking the XOR of n bits. Can the amount of work the database does be cut down?
This question was raised and partially answered by Beimel et al. [13]. The key is that some
XORs of blocks of bits are precomputed and prestored. This requires additional space. The
following are known and are proven in [13].

Let k ≥ 2 and 0 < ε < 1.



1. There is a k-DB, O(k3n1/(2k−1))-bit PIR scheme where the databases does O(n/ε(lg n)2k−2)
work and use O(n1+ε) additional storage. This is a variant of the PIR scheme in [10, 40].
It is possible that a variant of Theorem 3.10 yields better results.

2. If there is a k-DB PIR scheme in which the length of the query sent to each database is
α and the length of the answer of each database is β, then there is a k-DB PIR scheme
with kβ work, k(α + β) communication, and k2α extra bits to store.

3. There is a k-DB, O(n1/(k+ε))-bit PIR scheme where the databases do O(n1/(k+ε)) work
and use O(nO(1)) additional storage. This follows from Item 2 and a construction
from [9, 10].

4. Suppose that homomorphic encryption exists. Then there exists a k-DB CPIR scheme
with polynomially many extra bits, O(nε) communication, and O(n1/k+ε) work. This
follows from Item 2 and a generalization of the PIR scheme from Theorem 4.3.

7.6 Commodity Based PIR

In the standard model of PIR there is a lot of communication between Alice and the
databases. Beaver [5] began a line of research which aimed at minimizing direct commu-
nication between parties in cryptographic schemes. The main ideas was that a third party
would be able to help facilitate the scheme but would not learn anything (e.g., the third
party might just supply random bits to all parties). DiCrescenzo [28] applied this approach
to PIR's.

In the results below the third party gives to Alice and the databases a random string.
The length of that string is called the Commodity Complexity . We want the number of bits
communicated between Alice and the databases to be low and we are willing to make the
commodity complexity high to obtain that (though we also want to keep it low).

Theorem 7.18. [5] Let k ∈ N. There is a k-DB PIR scheme where (1) The bits sent between
Alice and the databases is O(lg n), and (2) the commodity complexity is O(n1/k−1).

Theorem 7.19. [5] Assume the Quadratic Residue problem is hard (see De�nition 4.1). Let
κ be a security parameter. There is a 1-DB PIR scheme where (1) The bits send between
Alice and the databases is O(lg n+ poly(κ)), and (2) the commodity complexity is O(κn).

8 Lower Bounds

Lower bounds on Private Information Retrieval Protocols have been hard to obtain. Lower
bounds are (mostly) only known for 2-DB protocols with one round and restrictions on the
number of bits returned by the database. Even then, prior to Kerenidis and de Wolf [44] all
lower bounds had restrictions on the type of answers the database could return.



8.1 Lower Bounds For 2-DB 1-Round PIR Schemes

The following list summarizes lower bounds results for 2-DB 1-round PIR schemes.

1. Assume only linear answers are allowed. (That is, the answer is an XOR of some of
the bits of the database). Goldreich et al. [36] show that if the database sends back a
query of length a then Alice must send a query of length Ω( n

2a
). This proof uses the

equivalence between PIR's and locally decodable codes.

2. Assume only linear queries are allowed. Chor et al. [23] show that if the database sends
back an answer of length one then each database must get a query of length at least
n− 1 bits. This matches an upper bound also in [23].

3. (No restrictions on the query.) Kerenidis and de Wolf [44] show that if Alice only uses
a of the bits send back then Alice must send a query of length at least Ω(n/26a). In
the case a = 1 at least (1 − H(11/14))n − 4 ∼ 0.25n bits are required. Their proof
�rst converts a 2-DB PIR scheme to a 1-DB quantum PIR scheme and then they show
lower bounds on the quantum PIR scheme.

4. (No restrictions on the query.) Beigel et al. [8] show that if the database sends back a
query of length one then Alice must send a query of length least n − 2, which nearly
matches an n − 1 upper bound (upper bound in [23]). The lower bound proof avoids
quantum techniques of [44]. Rather it builds on classical tools developed by Yao [60]
and Fortnow and Szegedy [31] for studying locally-random reductions, a complexity-
theoretic tool for information hiding that predates private information retrieval.

8.2 Other Lower Bounds

If privacy was not a concern, then Alice could obtain the bit she wants in lg n communication.
Hence the next result, by Mann [50], is important in that it shows that privacy does increase
the costs. It is also the only bound that holds for multi-round and one of the few bounds
(the only other one is later in this section) that holds for k databases instead of just two.

Theorem 8.1. [50] Let k ≥ 2 and ε > 0. Every k-DB α(n)-bit PIR scheme where every
database receives the same number of bits has α(n) ≥ ( k2

k−1
− ε) lg n. In particular, taking

k = 2 and ε = 1/2, any 2-DB PIR scheme where every database receives the same number
of bits has complexity at least 3.5 lg n.

Itoh [42] proves lower bounds on certain types of PIR schemes.

De�nition 8.2. Let k, n ∈ N. Let ((q1, . . . , qk), (ANS1, . . . , ANSk), φ) be a k-DB 1-round
r-random bit PIR for databases of size n with m-bit queries and a-bit answers.

1. The PIR scheme is linear if, for all j, 1 ≤ j ≤ k, the function ANSj, viewed as a func-
tion from Zm

2 to Za
2 is linear in each variable. That is, if b1, . . . , bp−1, b, c, bp+1, . . . , bm ∈

{0, 1} then

ANSj(b1, . . . , bp−1, b+ c, bp+1, . . . , bm) = ANSj(b1, . . . , bp−1, b, bp+1, . . . , bm)
+ ANSj(b1, . . . , bp−1, c, bp+1, . . . , bm)



2. Let ` ∈ N. The PIR scheme is `-multilinear if, for all j, 1 ≤ j ≤ k, the function ANSj,
viewed as a function from ((Z2)`)m/` to Za

2 is linear in each variable. That is, if

b1, . . . , bp−1, b, c, bp+1, . . . , bm/` ∈ {0, 1}` then

ANSj(b1, . . . , bp−1, b+ c, bp+1, . . . , bm/`) = ANSj(b1, . . . , bp−1, b, bp+1, . . . , bm/`)
+ ANSj(b1, . . . , bp−1, c, bp+1, . . . , bm/`)

3. Let ` ∈ N. The PIR scheme is `-a�ne if, for all j, 1 ≤ j ≤ k, the function ANSj,
viewed as a function from ((Z2)`)m/` to Za

2 is a�ne with constant 0` in each variable.
That is, if b1, . . . , bp−1, b, c, bp+1, . . . , bm/` ∈ {0, 1}` then

ANSj(b1, . . . , bp−1, b+ c, bp+1, . . . , bm/`) = ANSj(b1, . . . , bp−1, b, bp+1, . . . , bm/`)
+ANSj(b1, . . . , bp−1, c, bp+1, . . . , bm/`)
+ANSj(b1, . . . , bp−1, 0

`, bp+1, . . . , bm/`).

Note 8.3. There is a k-DB O(k3n1/k)-bit PIR scheme from [40, 10, Section 3.2] is `-
multilinear with ` = (k − 1)2. There is a k-DB O(k3n1/2k−1)-bit PIR scheme from [40, 10,
Section 3.3] is `-a�ne with ` = (2k − 1)(k − 1).

We prove a weak version of a theorem in [42] and then state several other theorems
from [42].

The following is an information-theoretic argument that we leave to the reader.

Theorem 8.4. [23] In a 1-DB PIR scheme the complexity is at least n.

Theorem 8.5. [42] Any k-DB linear PIR scheme has complexity at least
√

n
2k
.

Proof. Assume, by way of contradiction, that there is a k-DB linear PIR scheme
KEY IDEAS: Using linearity Alice can reconstruct the answers to any queries
she wants. This enables her to obtain a 1-DB sublinear PIR scheme, which
contradicts Theorem 8.4.
((q1, . . . , qk), (ANS1, . . . , ANSk), φ) with complexity

√
n
2k
. We will assume that qj returns a

string of length mj and that ANSj returns a string of length aj. We will use this to build a
1-DB PIR scheme of complexity < n, which contradicts Theorem 8.4.
1-DB PIR Scheme

1. Alice has i. The database has x. Alice generates ρ at random and forms the queries

q1(i, ρ), q2(i, ρ), . . . , qk(i, ρ). Alice does not send anything!

2. The database returns the following:

(a) ANS1(x, 10m1−1), ANS1(x, 010m1−2), ANS1(x, 0010m1−3), . . ., ANS1(x, 0m1−11),

(b) ANS2(x, 10m2−1), ANS2(x, 010m2−2), ANS2(x, 0010m2−3), . . ., ANS2(x, 0m2−11).

(c) etc until ANSk(x, 10m2), ANSk(x, 010m2−1), ANSk(x, 0010m2−2), . . ., ANSk(x, 0m2−11).



3. (This is the real key.) Since the PIR scheme is linear Alice can, for every j 1 ≤ j ≤ k,
deduce ANSj(x, qj(i, ρ)).

4. Alice can easily compute φ and hence xi.

This PIR scheme sends a total of m1a1+m2a2+· · ·+mkak bits. Hence we are interested in
the maximum value

∑k
j=1 mjaj can take on. We know that

∑k
j=1(mk +ak) ≤

√
n
2k
. One can

show that the maximum value that m1a1 +m2a2 + · · ·+mkak, given
∑k

j=1(mk +ak) ≤
√

n
2k
,

occurs when, for all j, 1 ≤ j ≤ k, aj = mj =
√

n
4k2 . In this case we get

m1a1 +m2a2 + · · ·+mkak = k(n/4k) = n/4 < n.
This is a contradiction.

Theorem 8.5 is tight since Theorem 6.2 has a 2-DB O(
√
n)-bit PIR linear scheme.

In Theorem 8.5 the k can be replaced by an k − 1 by allowing the �rst query to be sent
and answered. Using this, and generalizing the proof, one can prove the following.

Theorem 8.6. [42] Let k, ` ∈ N. Let ε > 0. Let P be any k-DB `-multilinear PIR scheme.
Let α(n) be its complexity. For almost all n, α(n) ≥ (1/(k − 1)1/`+1 − ε)n1/`+1.

Theorem 8.6 is not tight. There is an (k−1)2- multilinear PIR scheme in [40, 10, Section
3.2] that has complexity O(k3n1/k). The lower bound implied by Theorem 8.6 is( 1

(k − 1)1/(k−1)2+1
− ε
)
n1/(k−1)2+1.

The proof can be further generalized to show the following.

Theorem 8.7. [42] Let k, ` ∈ N. Let ε > 0. Let P be any k-DB `-a�ne PIR scheme. Let
α(n) be its complexity. For almost all n α(n) ≥ ( 1

(k−1)1/`+1 − ε)n1/`+1.

Theorem 8.6 is not tight. There is an (2k − 1)(k − 1)- a�ne PIR scheme in [40, 10,
Section 3.3] that has complexity O(k3n1/k). The lower bound implied by Theorem 8.6 is( 1

(k − 1)1/(2k−1)(k−1)+1
− ε
)
n1/(2k−1)(k−1)2+1.

9 Open Problems

1. Find a k-DB PIR scheme that uses less than nO(lg lg k/k lg k) bits. The authors of [12]
claim that their method, properly formalized, might yield a k-DB nO(1/k2) scheme;
however, it cannot be pushed further than that. Hence one plausible goal is to use
their method (or others) to obtain a k-DB nO(1/k2) scheme. We conjecture that this
can be done.

2. The only lower bounds known are on fairly restrictive models. It is open to prove any
bounds on an unrestricted model. We conjecture that nΘ(1/k2) is both an upper and
lower bound.



3. All known PIR schemes are 1-round. We conjecture that if there is a k-DB, nα(k)-bit
PIR scheme then there is a 1-round k-DB, nO(α(k))-bit PIR scheme. It may even be
that there is a 1-round k-DB nα(k)-bit PIR.

4. What conjecture (e.g., the existence of 1-way functions) is equivalent to 1-DB o(n)-
bit PIR? 1-DB (n − o(n))-bit PIR? 1-DB (n − c)-bit PIR? We conjecture that these
questions do not have nice answers.

The biggest frustration about PIR's is the lack of good lower bounds. This is particularly
striking since we are dealing with communication complexity where lower bounds are possible
and plentiful (see [54]). We also note that hard results from Communication Complexity are
not used that much in PIR (the only exception known to the author is Theorem 5.1 which
uses randomized lower bounds for IP). Perhaps a more extensive use of these techniques
would help; however many people work in both �elds so it's not as though those results are
unknown to the researchers.

10 Commentary

I have been asked �Having read 27 papers on PIR what do you think of the �eld?� Well the
word `read' may be overly generous; however, I do have the following impressions:
(1) Some of the results are simple enough to present in an undergraduate cryptography class.
I have taught Theorems 3.3 and 4.3. towards the end of such a course (after the mandatory
material was covered) and it worked well.
(2) PIR is interesting in that it is a simple model and yet proving things about it seems
to require knowing material from other �elds. Communication Complexity, Computational
Number Theory, Complexity Theory, Cryptography, Combinatorics, all play a role. Hence
a course on it would be an excellent and motivated way to get into these other subjects.
(3) How interesting is PIR? A �eld is interesting if it answers a fundamental question, or
connects to other �elds that are interesting, or uses techniques of interest. While I don't
see PIR as being fundamental, I do see it as both connecting to �elds of interest and using
interesting techniques.
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