The Distinct Volumes Problem

David Conlon- Cambridge (Prof) Jacob Fox-MIT (Prof)
William Gasarch-U of MD (Prof)
David Harris- NSA
Douglas Ulrich- U of MD (Grad Student)
Sam Zbarsky- Mont. Blair (Grad Student-Princeton)

INITIAL MOTIVATION

1. Infinite Ramsey Theorem: For any 2-coloring of the EDGES of K_{ω} there exists an infinite monochromatic K_{ω}.
2. Infinite Canonical Ramsey Theorem: For any ω-coloring of the EDGES of K_{ω} there exists an infinite monochromatic K_{ω} OR an infinite rainbow K_{ω} OR OTHER STUFF
3. Want an "application". Give an infinite set of points in the plane, color pairs by the distance between.
Result: For any infinite set of points in the plane there is an infinite subset where all distances are distinct. (Already known by Erdös via diff proof.)

Next Step: Finite version: For every set of n points in the plane there is a subset of size $\Omega(\log n)$ where all distances are distinct. (Much better is known.)

INITIAL MOTIVATION ABANDONED

1. Dumped Ramsey approach! Added co-authors! Got new results!
2. What about Area? If there are n points in \mathbb{R}^{2} want large subset so that all areas are distinct.
3. More general question: n points in \mathbb{R}^{d} and looking for all a-volumes to be different. (This question seems to be new.)

EXAMPLES with DISTANCES

The following is an EXAMPLE of the kind of theorems we will be talking about.
If there are n points in \mathbb{R}^{2} then there is a subset of size $\Omega\left(n^{1 / 3}\right)$ with all distances between points DIFF.

EXAMPLES with AREAS

If there are n points in \mathbb{R}^{2} then there is a subset of size $\Omega\left(n^{1 / 5}\right)$ with all triangle areas DIFF.

EXAMPLES with AREAS

If there are n points in \mathbb{R}^{2} then there is a subset of size $\Omega\left(n^{1 / 5}\right)$ with all triangle areas DIFF.

FALSE: Take n points on a LINE. All triangle areas are 0 .

EXAMPLES with AREAS

If there are n points in \mathbb{R}^{2} then there is a subset of size $\Omega\left(n^{1 / 5}\right)$ with all triangle areas DIFF.

FALSE: Take n points on a LINE. All triangle areas are 0 .
Two ways to modify:

1. If there are n points in \mathbb{R}^{2}, no three collinear, then there is a subset of size $\Omega\left(n^{1 / 5}\right)$ with all triangle areas DIFF.
2. If there are n points in \mathbb{R}^{2}, then there is a subset of size $\Omega\left(n^{1 / 5}\right)$ with all nonzero triangle areas DIFF.
We state theorems in no three collinear form.

Maximal Rainbow Sets

Definition: A (2)-Rainbow Set is a set of points in \mathbb{R}^{d} where all of the distances are distinct. Also called a dist-rainbow.
Definition: A 3-Rainbow Set is a set of points in \mathbb{R}^{d} where all nonzero areas of triangles are distinct. Also called an area-rainbow.
Definition: An a-Rainbow Set is a set of points in \mathbb{R}^{d} where all nonzero a-volumes are distinct. An a-volume is the volume enclosed by a points. Also called a vol-rainbow.

Definition: Let $X \subseteq \mathbb{R}^{d}$. A Maximal Rainbow Set is a rainbow set $Y \subseteq X$ such that if any more points of X are added then it STOPS being a rainbow set.
Definition: Let $X \subseteq \mathbb{R}^{d}$. An a-Maximal Rainbow Set is a a-rainbow set $Y \subseteq X$ such that if any more points of X are added then it STOPS being an a-rainbow set.

Easy Lemma

Lemma If there is a MAP from X to Y that is $\leq c$-to- 1 then $|Y| \geq|X| / c$.
We will call this LEMMA.

The $d=1$ Case

Theorem: For all $X \subseteq \mathbb{R}^{1}$ of size n there exists a dist-rainbow subset of size $\Omega\left(n^{1 / 3}\right)$.
Proof: Let M be a MAXIMAL DIST-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2} \in M\right)\left[\left|x-x_{1}\right|=\left|x-x_{2}\right|\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\left|x-x_{1}\right|=\left|x_{2}-x_{3}\right|\right]$.
f maps an element of $X-M$ to reason $x \notin M$. $f: X-M \rightarrow\binom{M}{2} \cup M \times\binom{ M}{2}$
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\}\right)$?

The $d=1$ Case

Theorem: For all $X \subseteq \mathbb{R}^{1}$ of size n there exists a dist-rainbow subset of size $\Omega\left(n^{1 / 3}\right)$.
Proof: Let M be a MAXIMAL DIST-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2} \in M\right)\left[\left|x-x_{1}\right|=\left|x-x_{2}\right|\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\left|x-x_{1}\right|=\left|x_{2}-x_{3}\right|\right]$.
f maps an element of $X-M$ to reason $x \notin M$. $f: X-M \rightarrow\binom{M}{2} \cup M \times\binom{ M}{2}$
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\}\right)$? It's ≤ 1 POINT.

The $d=1$ Case

Theorem: For all $X \subseteq \mathbb{R}^{1}$ of size n there exists a dist-rainbow subset of size $\Omega\left(n^{1 / 3}\right)$.
Proof: Let M be a MAXIMAL DIST-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2} \in M\right)\left[\left|x-x_{1}\right|=\left|x-x_{2}\right|\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\left|x-x_{1}\right|=\left|x_{2}-x_{3}\right|\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \cup M \times\binom{ M}{2}$
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\}\right)$? It's ≤ 1 POINT.
What is $f^{-1}\left(x_{1},\left\{x_{2}, x_{3}\right\}\right)$?

The $d=1$ Case

Theorem: For all $X \subseteq \mathbb{R}^{1}$ of size n there exists a dist-rainbow subset of size $\Omega\left(n^{1 / 3}\right)$.
Proof: Let M be a MAXIMAL DIST-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2} \in M\right)\left[\left|x-x_{1}\right|=\left|x-x_{2}\right|\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\left|x-x_{1}\right|=\left|x_{2}-x_{3}\right|\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \cup M \times\binom{ M}{2}$
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\}\right)$? It's ≤ 1 POINT.
What is $f^{-1}\left(x_{1},\left\{x_{2}, x_{3}\right\}\right)$? It's ≤ 2 POINTS.

The $d=1$ Case

Theorem: For all $X \subseteq \mathbb{R}^{1}$ of size n there exists a dist-rainbow subset of size $\Omega\left(n^{1 / 3}\right)$.
Proof: Let M be a MAXIMAL DIST-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2} \in M\right)\left[\left|x-x_{1}\right|=\left|x-x_{2}\right|\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\left|x-x_{1}\right|=\left|x_{2}-x_{3}\right|\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \cup M \times\binom{ M}{2}$
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\}\right)$? It's ≤ 1 POINT.
What is $f^{-1}\left(x_{1},\left\{x_{2}, x_{3}\right\}\right)$? It's ≤ 2 POINTS.
$f: X-M \rightarrow\binom{M}{2} \cup M \times\binom{ M}{2}$ is ≤ 2-to- 1 .

The $d=1$ Case- Cont

$f: X-M \rightarrow\binom{M}{2} \cup M \times\binom{ M}{2}$ is \leq 2-to-1.
Case 1: $|M| \geq n^{1 / 3}$ DONE!
Case 2: $|M| \leq n^{1 / 3}$. So $|X-M|=\Theta(|X|)$. By LEMMA

$$
\begin{aligned}
\left|\binom{M}{2}+M \times\binom{ M}{2}\right| & \geq 0.5|X-M|=\Omega(|X|)=\Omega(n) \\
M & \geq \Omega\left(n^{1 / 3}\right)
\end{aligned}
$$

On Circle

Theorem: For all $X \subseteq \mathbb{S}^{1}$ (the circle) of size n there exists a dist-rainbow subset of size $\Omega\left(n^{1 / 3}\right)$.
Proof: Use MAXIMAL DIST-RAINBOW SET. Similar Proof.

Better is known

Better is known: In 1975 Komlos, Sulyok, Szemeredi showed: Theorem: For all $X \subseteq \mathbb{S}^{1}$ or \mathbb{R}^{1} of size n there exists a dist-rainbow subset of size $\Omega\left(n^{1 / 2}\right)$.

This is optimal in \mathbb{S}^{1} and \mathbb{R}^{1}
Theorem: If $X=\{1, \ldots, n\}$ then the largest dist-rainbow subset is of size $\leq(1+o(1)) n^{1 / 2}$.

The $d=2$ Case

Theorem: For all $X \subseteq \mathbb{R}^{2}$ of size n there exists a dist-rainbow subset of size $\Omega\left(n^{1 / 6}\right)$.
Proof: Let M be a MAXIMAL DIST-RAINBOW SET. Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2} \in M\right)\left[\left|x-x_{1}\right|=\left|x-x_{2}\right|\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\left|x-x_{1}\right|=\left|x_{2}-x_{3}\right|\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \cup M \times\binom{ M}{2}$
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\}\right)$?

The $d=2$ Case

Theorem: For all $X \subseteq \mathbb{R}^{2}$ of size n there exists a dist-rainbow subset of size $\Omega\left(n^{1 / 6}\right)$.
Proof: Let M be a MAXIMAL DIST-RAINBOW SET. Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2} \in M\right)\left[\left|x-x_{1}\right|=\left|x-x_{2}\right|\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\left|x-x_{1}\right|=\left|x_{2}-x_{3}\right|\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \cup M \times\binom{ M}{2}$
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\}\right)$? Lies on LINE.

The $d=2$ Case

Theorem: For all $X \subseteq \mathbb{R}^{2}$ of size n there exists a dist-rainbow subset of size $\Omega\left(n^{1 / 6}\right)$.
Proof: Let M be a MAXIMAL DIST-RAINBOW SET. Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2} \in M\right)\left[\left|x-x_{1}\right|=\left|x-x_{2}\right|\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\left|x-x_{1}\right|=\left|x_{2}-x_{3}\right|\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \cup M \times\binom{ M}{2}$
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\}\right)$? Lies on LINE.
What is $f^{-1}\left(x_{1},\left\{x_{2}, x_{3}\right\}\right)$?

The $d=2$ Case

Theorem: For all $X \subseteq \mathbb{R}^{2}$ of size n there exists a dist-rainbow subset of size $\Omega\left(n^{1 / 6}\right)$.
Proof: Let M be a MAXIMAL DIST-RAINBOW SET. Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2} \in M\right)\left[\left|x-x_{1}\right|=\left|x-x_{2}\right|\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\left|x-x_{1}\right|=\left|x_{2}-x_{3}\right|\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \cup M \times\binom{ M}{2}$
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\}\right)$? Lies on LINE.
What is $f^{-1}\left(x_{1},\left\{x_{2}, x_{3}\right\}\right)$? Lies on CIRCLE.

The $d=2$ Case

Theorem: For all $X \subseteq \mathbb{R}^{2}$ of size n there exists a dist-rainbow subset of size $\Omega\left(n^{1 / 6}\right)$.
Proof: Let M be a MAXIMAL DIST-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2} \in M\right)\left[\left|x-x_{1}\right|=\left|x-x_{2}\right|\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\left|x-x_{1}\right|=\left|x_{2}-x_{3}\right|\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \cup M \times\binom{ M}{2}$
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\}\right)$? Lies on LINE.
What is $f^{-1}\left(x_{1},\left\{x_{2}, x_{3}\right\}\right)$? Lies on CIRCLE.
All INVERSE IMG's lie on LINES or CIRCLES.

The $d=2$ Case- Cont

$f: X-M \rightarrow\binom{M}{2} \cup M \times\binom{ M}{2}$
All INVERSE IMG's lie on LINES or CIRCLES. δ TBD.
Cases 1 and 2 induct into line and circle case.
Case 1: $\left(\exists x_{1}, x_{2}\right)\left[\left(f^{-1}\left(\left\{x_{1}, x_{2}\right\}\right) \mid \geq n^{\delta}\right]\right.$.
$\geq n^{\delta}$ points on a line, so rainbow set size $\geq \Omega\left(n^{\delta / 3}\right)$.
Case 2: $\left(\exists x_{1}, x_{2}, x_{3}\right)\left[\left|f^{-1}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right)\right| \geq n^{\delta}\right]$.
$\geq n^{\delta}$ points on a circle, so rainbow set size $\geq \Omega\left(n^{\delta / 3}\right)$.
Case 3: $|M| \geq n^{1 / 6}$ DONE!
Case 4: Map is $\leq n^{\delta}$-to-1 AND $|X-M|=\Theta(|X|)$. By LEMMA

$$
\begin{aligned}
\left|\binom{M}{2} \cup M \times\binom{ M}{2}\right| & \geq n / n^{\delta}=n^{1-\delta} \\
|M| & \geq \Omega\left(n^{(1-\delta) / 3}\right)
\end{aligned}
$$

Set $\delta / 3=(1-\delta) / 3 . \delta=1 / 2$. Get $\Omega\left(n^{1 / 6}\right)$.

On Sphere

Theorem: For all $X \subseteq \mathbb{S}^{2}$ (surface of sphere) of size n there exists a dist-rainbow subset of size $\Omega\left(n^{1 / 6}\right)$. Proof: Use MAXIMAL DIST-RAINBOW SET. Similar Proof.

Note: Better is known: Charalambides showed $\Omega\left(n^{1 / 3}\right)$.

General d Case

Theorem:

For all $X \subseteq \mathbb{R}^{d}$ of size $n \exists$ dist-rainbow subset of size $\Omega\left(n^{1 / 3 d}\right)$.
For all $X \subseteq \mathbb{S}^{d}$ of size $n \exists$ dist-rainbow subset of size $\Omega\left(n^{1 / 3 d}\right)$.
Proof: Use MAXIMAL DIST-RAINBOW SET and induction. Need result on \mathbb{S}^{d} and \mathbb{R}^{d} to get result for \mathbb{S}^{d+1} and \mathbb{R}^{d+1}.

Note: Better is known. In 1995 Thiele showed $\Omega\left(n^{1 /(3 d-2)}\right)$. But WE improved that!

General d Case- Much Better

Theorem: For all $d \geq 2$, for all $X \subseteq \mathbb{R}^{d}$ of size n there exists a dist-rainbow subset of size $\Omega\left(n^{1 /(3 d-3)}(\log n)^{\frac{1}{3}-\frac{2}{3 d-3}}\right)$. Proof: Use VARIANT ON MAX DIST-RAINBOW SET

d	$n^{1 / 3 d}$	$n^{1 /(3 d-3)}(\log n)^{\frac{1}{3}-\frac{2}{3 d-3}}$
1	$n^{1 / 3}$	--
2	$n^{1 / 6}$	$n^{1 / 3}(\log n)^{-1 / 3}$
3	$n^{1 / 9}$	$n^{1 / 6}(\log n)^{0}$
4	$n^{1 / 12}$	$n^{1 / 9}(\log n)^{1 / 12}$
5	$n^{1 / 15}$	$n^{1 / 12}(\log n)^{1 / 6}$
6	$n^{1 / 18}$	$n^{1 / 15}(\log n)^{1 / 5}$

Can we do better? Best we can hope for is roughly $n^{1 / d}$.

Area-d $=2$ Case

Theorem: For all $X \subseteq \mathbb{R}^{2}$ of size n, no three colinear, \exists area-rainbow set of size $\Omega\left(n^{1 / 5}\right)$.
Proof: Let M be a MAXIMAL AREA-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{1}, x_{3}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$. Recall that
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\}\right)$? SEE NEXT SLIDE FOR GEOM LEMMA.

Lemma On Area

Lemma: Let L_{1} and L_{2} be lines in R^{2}.

$$
\left\{p: \operatorname{AREA}\left(L_{1}, p\right)=A R E A\left(L_{2}, p\right)\right\}
$$

is a line.
Sketch: $\operatorname{AREA}\left(L_{1}, p\right)=\operatorname{AREA}\left(L_{2}, p\right)$ iff
$\left|L_{1}\right| \times\left|L_{1}-p\right|=\left|L_{2}\right| \times\left|L_{2}-p\right|$ iff $\frac{\left|L_{1}-p\right|}{\mid L_{2}-p}=\frac{\mid L_{1}}{\left|L_{2}\right|}$. This is a line.

(Reboot) Area-d $=2$ Case

Theorem: For all $X \subseteq \mathbb{R}^{2}$ of size n, no three colinear, \exists area-rainbow set of size $\Omega\left(n^{1 / 5}\right)$.
Proof: Let M be a MAXIMAL AREA-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{1}, x_{3}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$. Recall that

(Reboot) Area-d $=2$ Case

Theorem: For all $X \subseteq \mathbb{R}^{2}$ of size n, no three colinear, \exists area-rainbow set of size $\Omega\left(n^{1 / 5}\right)$.
Proof: Let M be a MAXIMAL AREA-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{1}, x_{3}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$. Recall that
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\}\right)$?

(Reboot) Area-d $=2$ Case

Theorem: For all $X \subseteq \mathbb{R}^{2}$ of size n, no three colinear, \exists area-rainbow set of size $\Omega\left(n^{1 / 5}\right)$.
Proof: Let M be a MAXIMAL AREA-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M !? Either

- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{1}, x_{3}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$. Recall that
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\}\right)$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

(Reboot) Area-d $=2$ Case

Theorem: For all $X \subseteq \mathbb{R}^{2}$ of size n, no three colinear, \exists area-rainbow set of size $\Omega\left(n^{1 / 5}\right)$.
Proof: Let M be a MAXIMAL AREA-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{1}, x_{3}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$. Recall that
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\}\right)$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)$?

(Reboot) Area-d $=2$ Case

Theorem: For all $X \subseteq \mathbb{R}^{2}$ of size n, no three colinear, \exists area-rainbow set of size $\Omega\left(n^{1 / 5}\right)$.
Proof: Let M be a MAXIMAL AREA-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M !? Either

- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{1}, x_{3}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$. Recall that
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\}\right)$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

(Reboot) Area-d $=2$ Case

Theorem: For all $X \subseteq \mathbb{R}^{2}$ of size n, no three colinear, \exists area-rainbow set of size $\Omega\left(n^{1 / 5}\right)$.
Proof: Let M be a MAXIMAL AREA-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M !? Either

- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{1}, x_{3}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$. Recall that
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\}\right)$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}, x_{5}\right\}\right)$?

(Reboot) Area-d $=2$ Case

Theorem: For all $X \subseteq \mathbb{R}^{2}$ of size n, no three colinear, \exists area-rainbow set of size $\Omega\left(n^{1 / 5}\right)$.
Proof: Let M be a MAXIMAL AREA-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{1}, x_{3}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$. Recall that
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\}\right)$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}, x_{5}\right\}\right)$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE. $f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$ FINITE-to- 1 .

Area $d=2$ Case- Cont

$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$ is FINITE-to-1.
Case 1: $|M| \geq n^{1 / 5}$ DONE!
Case 2: $|M| \leq n^{1 / 5}$. Then $|X-M|=\Theta(|X|)$. Since MAP is finite-to-1, by LEMMA

$$
\begin{aligned}
\left|\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}\right| & \geq \Omega(|X-M|)=\Omega(|X|)=\Omega(n) \\
|M| & \geq \Omega\left(n^{1 / 5}\right)
\end{aligned}
$$

Volume $d=3$

Theorem: For all $X \subseteq \mathbb{R}^{3}$ of size n, no four on a plane, there exists Vol-rainbow set of size $\Omega\left(n^{\delta}\right)$. (δ TBD)
Similar. Left for the reader.

Key to These Proofs

1. Used MAXIMAL a-RAINBOW SET M.
2. Used Map f from $x \in X-M$ to the reason x is NOT in M.
3. Looked at INVERSE IMAGES of that map.
4. Either:

All INVERSE IMG's are small, so use LEMMA.
OR
Some INVERSE IMG's are large subsets of \mathbb{R}^{d} or \mathbb{S}^{d}, so induct.

Area-d $=3$ Case

Theorem: For all $X \subseteq \mathbb{R}^{3}$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega\left(n^{\delta}\right)$. (δ TBD)
Proof: Let M be a MAXIMAL AREA-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M ?? Either

- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{1}, x_{3}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in M\right)\left[A\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$.
What is $f^{-1}\left(\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\}\right)\right.$?

Area-d $=3$ Case

Theorem: For all $X \subseteq \mathbb{R}^{3}$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega\left(n^{\delta}\right)$. (δ TBD)
Proof: Let M be a MAXIMAL AREA-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M !? Either

- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{1}, x_{3}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in M\right)\left[A\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$.
What is $f^{-1}\left(\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\}\right)\right.$? THIS IS HARD!

Area-d $=3$ Case

Theorem: For all $X \subseteq \mathbb{R}^{3}$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega\left(n^{\delta}\right)$. (δ TBD)
Proof: Let M be a MAXIMAL AREA-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M !? Either

- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{1}, x_{3}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in M\right)\left[A\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$.
What is $f^{-1}\left(\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\}\right)\right.$? THIS IS HARD!
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)$?

Area-d $=3$ Case

Theorem: For all $X \subseteq \mathbb{R}^{3}$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega\left(n^{\delta}\right)$. (δ TBD)
Proof: Let M be a MAXIMAL AREA-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M ?? Either

- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{1}, x_{3}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in M\right)\left[A\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$.
What is $f^{-1}\left(\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\}\right)\right.$? THIS IS HARD!
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)$? THIS IS HARD!

Area-d $=3$ Case

Theorem: For all $X \subseteq \mathbb{R}^{3}$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega\left(n^{\delta}\right)$. (δ TBD)
Proof: Let M be a MAXIMAL AREA-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{1}, x_{3}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in M\right)\left[A\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$.
What is $f^{-1}\left(\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\}\right)\right.$? THIS IS HARD!
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)$? THIS IS HARD!
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}, x_{5}\right\}\right)$?

Area-d $=3$ Case

Theorem: For all $X \subseteq \mathbb{R}^{3}$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega\left(n^{\delta}\right)$. (δ TBD)
Proof: Let M be a MAXIMAL AREA-RAINBOW SET.
Let $x \in X-M$. WHY IS x NOT IN M!? Either

- $\left(\exists x_{1}, x_{2}, x_{3} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{1}, x_{3}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4} \in M\right)\left[A\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right]$.
- $\left(\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in M\right)\left[\operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
f maps an element of $X-M$ to reason $x \notin M$.
$f: X-M \rightarrow\binom{M}{2} \times\binom{ M}{2} \cup\binom{M}{2} \times\binom{ M}{3}$.
What is $f^{-1}\left(\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\}\right)\right.$? THIS IS HARD!
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right)$? THIS IS HARD!
What is $f^{-1}\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}, x_{5}\right\}\right)$? THIS IS HARD!
What to do?

What Changed?

Why is this proof harder?
KEY statement about prior proof:

1. If INVERSE IMG's are all finite so M is large.
2. If INVERSE IMG's are subsets of \mathbb{R}^{d} or \mathbb{S}^{d} then induct.

KEY: We cared about $X \subseteq \mathbb{R}^{d}$ but had to work with \mathbb{S}^{d} as well.
NOW we will have to work with more complicated objects.

What Do Inverse Images Look Like?

$$
\begin{aligned}
& \left\{x: \operatorname{AREA}\left(x, x_{1}, x_{2}\right)=\operatorname{AREA}\left(x, x_{3}, x_{4}\right)\right\}= \\
& \left\{x:\left|\operatorname{DET}\left(x, x_{1}, x_{2}\right)\right|=\left|\operatorname{DET}\left(x, x_{3}, x_{4}\right)\right|\right\}
\end{aligned}
$$

Definition: (Informally) An Algebraic Variety in \mathbb{R}^{d} is a set of points in \mathbb{R}^{d} that satisfy a polynomial equation in d variables.

General Theorem

Theorem Let $2 \leq a \leq d+1$. Let $r \in \mathbb{N}$. For all varieties V of dim d and degree r for all sets of n points on V there exists an a-rainbow set of size $\Omega\left(n^{1 /(2 a-1) d}\right)$.
Corollary Let $2 \leq a \leq d+1$. For all $X \subseteq \mathbb{R}^{d}$ of size n there exists an a-rainbow set of size $\Omega\left(n^{1 /(2 a-1) d}\right)$.
Corollary For all $X \subseteq \mathbb{R}^{d}$ of size n there exists a 2-rainbow set (dist. distances) of size $\Omega\left(n^{1 / 3 d}\right)$.
Corollary For all $X \subseteq \mathbb{R}^{d}$ of size n there is a 3-rainbow set (dist. areas) of size $\Omega\left(n^{1 / 5 d}\right)$.
Corollary For all $X \subseteq \mathbb{R}^{d}$ of size n there is a 4-rainbow set (dist. volumes) of size $\Omega\left(n^{1 / 7 d}\right)$.

Comments on the Proof

1. Proof uses Algebraic Geometry in Proj Space over \mathbb{C}.
2. Proof uses Maximal subsets in same way as easier proofs.
3. Proof is by induction on d.

Open Questions

1. Better Particular Results: e.g., want for all $X \subseteq \mathbb{R}^{2}$ of size n, there exists a rainbow set of size $\Omega\left(n^{1 / 2}\right)$.
2. General Better Results: e.g., want Let $1 \leq a \leq d+1$. For all $X \subseteq \mathbb{R}^{d}$ of size n there exists a rainbow set of size $\Omega\left(n^{1 / a d}\right)$.
3. Get easier proofs of general theorem.
4. Find any nontrivial limits on what we can do. (Trivial: $n^{1 / d}$).
5. Algorithmic aspects.
