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1 Introduction

Multiparty communication complexity was first defined by Chandra, Furst, and Lipton [6]
and used to obtain lower bounds on branching programs. Since then it has been used to
get additional lower bounds and tradeoffs for branching programs [1, 3], lower bounds on
problems in data structures [3], time-space tradeoffs for restricted Turing machines [1], and
unconditional pseudorandom generators for logspace [1].

All results in this paper are from [6] or can be easily derived from their techniques unless
otherwise specified.

Def 1.1 Let f : {{0, 1}n}k → X. Assume, for 1 ≤ i ≤ k, Pi has all of the inputs except xi.
Let d(f) be the total number of bits broadcast in the optimal deterministic protocol for f .
At the end of the protocol all parties must know the answer. This is called the multiparty
communication complexity of f . The scenario is called the forehead model.

Note 1.2 Note that there is always the n + 1-bit protocol of (1) P1 broadcasts x2, (2) P2

computes and broadcasts f(x1, . . . , xk). The cases of interest are when d(f)� n.

We will need the following lemmas about multiparty protocols. The first one is the k = 3
case of the second one. We leave it for an exercise.

Lemma 1.3 Let P be a multiparty protocol for a function f : {0, 1}n×{0, 1}n×{0, 1}n → X.

1. Let TRAN be a possible transcript of the protocol P . There exists A1, A2, A3 ⊆ {0, 1}n
such that, for all x1, x2, x3 ∈ {0, 1}n the following holds: The protocol P on input
(x1, x2, x3) produces transcript TRAN iff (x1, x2, x3) ∈ A1 × A2 × A3.

2. Let x1, x2, x3 ∈ {0, 1}n, σ1, σ2, σ3 ∈ {{0, 1}n}3, TRAN be a transcript. Assume that
σ1 has x1 as its first element, σ2 has x2 as its second element, σ3 has x3 as its third
element. (In symbols, if ∗ means we don’t care about the element, then

σ1 = (x1, ∗, ∗)
σ2 = (∗, x2, ∗)
σ3 = (∗, ∗, x3).

) Further assume that σ1, σ2, σ3 all produces transcript TRAN . Then (x1, x2, x3) pro-
duces transcript TRAN .

Lemma 1.4 Let P be a multiparty protocol for a function f : {{0, 1}n}k → X.
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1. Let TRAN be a possible transcript of the protocol P . There exists A1, . . . , Ak ⊆ {0, 1}n
such that, for all x1, . . . , xk ∈ {0, 1}n the following holds: The protocol P on input
(x1, . . . , xk) produces transcript TRAN iff (x1, . . . , xk) ∈ A1 × · · · × Ak.

2. Let x1, . . . , xk ∈ {0, 1}n, σ1, . . . , σk ∈ {{0, 1}n}k, TRAN be a transcript. Assume that
σi has xi as its ith element. Further assume that each σi produces transcript TRAN .
Then (x1, . . . , xk) produces transcript TRAN .

We will study the following function.

Def 1.5 Let n ∈ N. We define EQ2n

n : {0, 1}n×{0, 1}n×{0, 1}n as follows (interpreting the
three inputs as numbers in binary):

EQ2n

n (x, y, z) =

{
Y ES if x+ y + z = 2n

NO if x+ y + z 6= 2n
(1)

We will first establish a connection between d(EQ2n

n ) and some concepts in Ramsey
Theory. We will then use results from Ramsey Theory to obtain upper and lower bounds on
d(EQ2n

n ). The lower bounds will be applied to obtain lower bounds on branching programs.
Here is what we will show.

1. d(EQ2n

n ) ≤
√

log(2n) =
√
n (First proven by Chandra, Furst, Lipton [6].) (This is

somewhat surprising since it would seem the best you could do is have Alice yell to
Bob what her bits are.)

2. d(EQ2n

n ) ≥ ω(1) (First proven by Chandra, Furst, Lipton [6].)

3. d(EQ2n

n ) ≥ log log log 2n + Ω(1) = log log n + Ω(1) (First proven by Beigel, Gasarch,
Glenn [5].)

2 Connections Between Multiparty Comm. Comp. and

Ramsey Theory

In this section we review the connections between the multiparty communication complexity
of f and Ramsey Theory that was first established in [6].

Def 2.1 Let c, T ∈ N.

1. A proper c-coloring of [T ] × [T ] is a function COL : [T ] × [T ] → [c] such that there
do not exist x, y ∈ [T ] and λ ∈ [T − 1] such that

COL (x, y) = COL (x+ λ, y) = COL (x, y + λ)

Another way to look at this: In a proper coloring there cannot be three vertices that
(a) are the same color, and (b) are the corners of a right isosceles triangle with legs
parallel to the axes and hypotenuse parallel to the line y = −x.)
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2. Let χ(T ) be the least c such that there is a proper c-coloring of [T ]× [T ].

Theorem 2.2 Let 2n : N→ N.

1. d(EQ2n

n ) ≤ 2 lg(χ(2n)) +O(1).

2. d(EQ2n

n ) ≥ lg(χ(2n) + Ω(1).

Proof:
1) Let COL be a proper c-coloring of [2n]× [2n]. We represent elements of [c] by lg(χ(2n))+
O(1) bit strings. P1, P2, P3 will all know COL ahead of time. We present a protocol for
this problem for which the communication is 2 lg(χ(2n)) + O(1). We will then show that it
is correct.

1. P1 has y, z. P2 has x, z. P3 has x, y.

2. P1 calculates x′ such that x′ + y + z = 2n. (If no such x′ exists then output NO and
thats the end of the protocol.) P1 broadcasts σ1 = COL (x′, y).

3. P2 calculates y′ such that x + y′ + z = 2n. (If no such y′ exists then output NO and
thats the end of the protocol.) P2 broadcasts σ2 = COL (x, y′).

4. P3 looks up σ3 = COL (x, y). P3 broadcasts YES if σ1 = σ2 = σ3 and NO otherwise.
(We will prove later that these answers are correct.)

Claim 1: If EQ2n

n (x, y, z) = Y ES then P1, P2, P3 will all think EQ2n

n (x, y, z) = Y ES.

Proof: If EQ2n

n (x, y, z) = Y ES then x′1 = x1, x
′
2 = x2, and x′3 = x3. Hence σ1 = σ2 = σ3

Therefore P1, P2, P3 all think EQ2n

n (x, y, z) = Y ES.
End of proof of Claim 1.

Claim 2: If P1, P2, P3 all think that EQ2n

n (x, y, z) = Y ES then EQ2n

n (x, y, z) = Y ES.

Proof: Assume that P1, P2, P3 all think EQ2n

n (x, y, z) = Y ES.
Hence

COL (x1, x2) = COL (x′1, x2) = COL (x1, x
′
2).

We call this The Coloring Equation.
Assume

x1 + x2 + x3 = λ.

We show that λ = 2n.
By the definition of x′1
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x′1 + x2 + x3 = 2n.

Hence

x′1 + (x1 + x2 + x3)− x1 = 2n.

x′1 + λ− x1 = 2n.

x′1 − x1 = 2n − λ

x′1 = x1 + 2n − λ

By the same reasoning

x′2 = x2 + 2n − λ.

Hence we can rewrite The Coloring Equation as

COL (x1, x2) = COL (x1 + 2n − λ, x2) = COL (x1, x2 + 2n − λ).

Since COL is a proper coloring, 2n − λ = 0, so λ = 2n.
End of proof of Claim 2.

2) Let P be a protocol for EQ2n

n . Let d be the maximum number of bits communicated. Note
that the number of transcripts is bounded by 2d. We use this protocol to create a proper
2d-coloring of [2n]× [2n].

We define COL (x, y) as follows. First find z such that x + y + z = 2n. Then run the
protocol on (x, y, z). The color is the transcript produced.

Claim 3: COL is a proper coloring of [2n]× [2n].
Proof: Let λ ∈ [2n] be such that

COL (x, y) = COL (x+ λ, y) = COL (x, y + λ).

We denote this value TRAN (for Transcript). We show that λ = 0.
Let z be such that

x+ y + z = 2n.

Since
COL (x, y) = COL (x+ λ, y) = COL (x, y + λ).

We know that the following tuples produce the same transcript TRAN :
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• (x, y, z).

• (x+ λ, y, z − λ).

• (x, y + λ, z − λ).

All of these input produce the same transcript TRAN and this transcript ends with a
YES. By Lemma 1.3.2 the tuple (x, y, z− λ) also goes to TRAN . Hence x+ y+ z− λ = 2n.
Since x+ y + z = 2n we have λ = 0.
End of Proof of Claim 3

We now have a really odd situation. We have d(EQ2n

n ) = Θ(lg(χ(2n)))
YEAH: We we have upper and lower bounds that match up to a multiplicative constant!
BOO: We don’t know that the function IS.
In the next two sections we get upper bounds and lower bounds on lg(χ(2n)).

3 Upper Bounds

We need to properly color [2n] × [2n] and keep the number of colors down. We will prove
lower bounds on W (3, c) on the way there.

Def 3.1 A 3-free set is a set with no 3-AP’s.

If X is a 3-free set and X ⊆ [T ] then X could be a color in a c-coloring of [T ] that has
no mono 3-AP’s. How can we get the other colors?

4 Lower Bounds

4.1 An ω(1) Lower Bound for d(EQ2n

n )

We will need the following theorem from Ramsey Theory.

Theorem 4.1 For all c there exists T such that, there are no proper c-colorings of [T ]× [T ].

Theorem 4.1 can be proven several ways. We enumerate them:

1. This can be proven from van der Waerden’s theorem.

2. This can be proven by the same techniques as van der Waerden’s theorem.

3. This follows from the Galai-Witt Theorem. This generalizes to coloring [T ]k.

4. We will give a concrete lower bound (rather than ω(1)) and is in Section 4.2. Other
ways generalize to k variables.
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Theorem 4.2 If limn→∞ 2n =∞ then d(EQ2n

n ) = ω(1).

Proof: By Theorem 2.2
d(EQ2n

n ) ≥ lg(χ(2n)) + Ω(1).

Hence we need to show that χ(T ) is not bounded by a constant (as T goes to infinity).
Assume, by way of contradiction, that there exists c such that, for all T , there is a proper

c-coloring of [T ]× [T ]. This contradicts Theorem 4.1.

We will need to look at k-party protocols for the following function.
MOD2n

n,k : ({0, 1}n)k → {0, 1}

MOD2n

n,k(x1, . . . , xk) =

{
1 if

∑k
i=1 xi = 2n

0 otherwise.
(2)

The following can be proven in a manner similar to the k = 3 case.

Theorem 4.3 Fix k. If limn→∞ 2n =∞ then d(MOD2n

n,k) = ω(1).

4.2 An Ω(log log log 2n) Lower Bound for d(EQ2n

n )

The following combinatorial lemma will allow us to prove a lower bound on d(EQ2n

n ). This
lemma is a reworking of a theorem of Graham and Solymosi [9].

Lemma 4.4

1. χ(2n) ≥ Ω(log log 2n).

2. d(EQ2n

n ) ≥ log log log 2n + Ω(1). (This follows from part 1 and Theorem 2.2.)

Proof: Assume that COL is a proper c-coloring of [2n] × [2n]. We find sets X1, Y1 ⊆
[2n]× [2n] such that COL restricted to X1×Y1 uses c−1 colors. We will iterate this process
to obtain Xc, Yc such that COL restricted to Xc × Yc uses 0 colors. Hence |Xc| = 0 which
will yield c = Ω(log log log 2n) = Ω(log log n).

For 0 ≤ s ≤ c we define Xs, Ys, hs, USED-COLs.

1. X0 = Y0 = [2n]. h0 = |X0| = |Y0| = 2n. USED-COL0 = [c].

2. Assume Xs, Ys, hs are defined and inductively USED-COLs = [c − s] (we will be
renumbering to achieve this). Also assume that Partition Xs× Ys (which is of size h2s)
into sets Pa indexed by a ∈ [2n] defined by

Pa = {(x, y) ∈ Xs × Ys | x+ y = a}.

(Pa is the ath anti-diagonal.) There exists an a such that |Pa| ≥ dh2s/2ne. There exists
a color, which we will take to be c− s by renumbering, such that at least ddh2s/2ne /ce
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of the elements of Pa are colored c − s. (We could use c − s in the denominator but
we do not need to.) Let m = ddh2s/2ne /ce. Let {(x1, y1), . . . , (xm, ym)} be m elements
of Pa such that, for 1 ≤ i ≤ m, COL (xi, yi) = c− s. We will later show that, for all
i 6= j, COL (xi, yj) 6= c− s.

3. Let
hs+1 = m′ = dm/3e
Xs+1 = {x1, x2, . . . , xm′}
Ys+1 = {ym+1−m′ , . . . , ym}

USED-COLs+1 = [c− (s+ 1)]

Note that for all (xi, yj) ∈ Xs+1×yj ∈ Ys+1, i < j hence i 6= j. Since we will show that
for all i 6= j, COL (xi, yj) 6= c− s, we will have that, for all (x, y) ∈ Xs+1× yj ∈ Ys+1,
COL (x, y) 6= c− s.

Claim 1: For all i 6= j, xi 6= xj and yi 6= yj.

Proof: If xi = xj then

xj + yj = a = xi + yi = xj + yi.

Hence yj = yi. Therefore (xi, yi) = (xj, yj). This contradicts Pa having m distinct points.
The proof that yi 6= yj is similar.

End of Proof of Claim 1
Claim 2: For all i 6= j, COL (xi, yj) 6= c− s.

Proof: Assume, by way of contradiction, that COL (xi, yj) = c− s. Note that

COL (xi, yj) = COL (xi, yi) = COL (xj, yj) = c− s.

We want a λ 6= 0 such that yi = yj + λ and xj = xi + λ. Using that xi + yi = xj + yj = a we
can take λ = (xj + yi − a). The element λ 6= 0: if λ = 0 then one can show yi = yj, which
contradicts Claim 1.

We now have

COL (xi, yj) = COL (xi + λ, yj) = COL (xi, yj + λ).

This violates COL being a proper coloring.

End of Proof of Claim 2
Note that, by Claim 2 above

{ COL (x, y) | x ∈ Xs+1, y ∈ Ys+1} ⊆ USED-COLs+1.

Look at what happens at stage c. |Xc| = |Yc| = hc and COL restricted to Xc × Yc
uses 0 colors. The only way this is possible is if hc = 0. We will see that this implies
c = Ω(log log 2n).
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We have h0 = 2n and

hs+1 =

⌈⌈⌈
h2s
2n

⌉
/c

⌉
/3

⌉
≥ h2s

3c2n
.

We show that for s ∈ N, hs ≥ 2n

(3c)2s−1 .

Claim 3: (∀s)[hs ≥ 2n

(3c)2s−1 ].

Base Case: h0 = 2n ≥ 2n

(3c)0
= 2n.

Induction Step: Assume hs ≥ 2n

(3c)2
s−1 . Since hs+1 ≥ (hs)

2/3c2n we have, by the induction

hypothesis

hs+1 ≥ (hs)
2/3c2n ≥

(2n)2

(3c)2s+1−2

3c2n
≥ 2n

(3c)2s+1−1 .

End of proof of Claim 3
Taking s = c we obtain hc ≥ 2n

(3c)2c−1 . Hence there is a set of h2c points that are 0-colored.

Therefore hc < 1. This yields c = Ω(log log 2n).

5 Applications to Lower Bounds on Branching Pro-

grams

Branching programs are a model of computation that are like decision trees except that
nodes can be gotten to by several paths; hence they are ‘skinny decision trees’. If a function
h : {0, 1}m → {0, 1} is computed by a branching program the key questions to ask are (1)
what is its length? and (2) what is its width? We think of m as being large.

Note 5.1 It is known, and surprising, that all sets in NC1 can be decided with poly-length,
width 5, branching programs [2]. See [2, 14] or a paper on Branching Programs for a formal
definition.

We will get lower bounds on the following function:

Def 5.2 Let M(m) : N→ N. Let modM(m)
m : {0, 1}m → {0, 1} be the function

modM(m)
m (x1, . . . , xm) =

{
1 if

∑m
i=1 xi ≡ 0 (mod M(m));

0 otherwise.
(3)

We will first need to connect branching programs to multiparty communication complex-
ity.
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5.1 Branching Programs and Multiparty Communication Com-
plexity

Def 5.3 A bipartite graph is a graph where there are two sets X and Y of vertices such that
the only edges are between X and Y . We denote such a graph (X, Y,E) where E is the set
of edges. The complement of bipartite graph G is bipartite graph G = (X, Y,X × Y − E).

Def 5.4 Let G = (X, Y,E) be a bipartite graph. Assume |X| ≤ |Y |. A matching of X into
Y is a set of |X| edges that share no vertices. Note that this is also an injection from X to
Y .

Notation 5.5 Let G = (X, Y,E) be a bipartite graph. If A ⊆ X then E(A) ⊆ Y is defined
by

{y | (∃x ∈ A)[(x, y) ∈ E].

The following is Hall’s theorem [10] and a corollary to it that we will be using.

Lemma 5.6 Let G = (X, Y,E) be a bipartite graph with |X| ≤ |Y |.

1. If for all A ⊆ X |E(A)| ≥ |A| then G has a matching of X into Y .

2. Let 0 < α < 1. Let k ∈ N. There exists m0 such that, for all m ≥ m0, for all bipartite
graphs G = (X, Y,E) with |X| = k, |Y | = m, and (∀x ∈ X)[deg(x) ≥ α|Y |], there is a
matching of X into Y .

Lemma 5.7 Let k ∈ N and 0 < α < 1. Let g : N → N be a monotone increasing function
such that g(m) << m. There exists m0 such that, for all m ≥ m0 the following holds. If
G = (X, Y,E) is a bipartite graph such that the following holds.

1. X = {v1, . . . , vk},

2. Y = {b1, . . . , bm}, and

3. for all i, 1 ≤ i ≤ k, deg(vi) ≤ αm,

then there exists sets R1, . . . , Rk ⊆ {b1, . . . , bm} such that the following hold.

1. For all 1 ≤ i ≤ k, |Ri| = g(m).

2. For all 1 ≤ i < j ≤ k, Ri ∩Rj = ∅.

3. For all i, E({vi}) ∩Ri = ∅.
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Proof: We construct R1, . . . , Rk in g(m) stages. During the construction we will comment
on how large m has to be to make it work. Let H = G. Since (∀x ∈ X)[degG(x) ≤ αm] we
have that, (∀x ∈ X)[degH(x) ≥ (1− α)m]. Let β = 1− α.
CONSTRUCTION

1. R0
1 = R0

2 = · · · = R0
k = ∅. β0 = β, X0 = X, Y0 = Y , E0 = E, H0 = (X0, Y0, E0). Note

that degH0(x) ≥ β0|Y0|.

2. Assume that Rs
1, R

s
2, · · · , Rs

k, ms, βs, Xs, Ys, Es, Hs are defined. Apply Hall’s theorem
to obtain a matching of Xs into Ys. Let the matching be

{(v1, bi1), (v2, bi2), . . . , (vk, bik)}.

Let

(∀1 ≤ j ≤ m)[Rs+1
j = Rs

j ∪ {bij}]
Xs+1 = Xs

Ys+1 = Ys − {bi1 , . . . , bik}
βs+1 = βs − β0

2s+1

Hs+1 is the induced bipartite graph of Hs on (Xs+1, Ys+1)

END OF CONSTRUCTION
Claim 1: If m is large enough then, for all 0 ≤ s ≤ g(m), the following hold.

1. Rs
1, R

s
2, · · · , Rs

k, ms, βs, Xs, Ys, Es, Hs are defined.

2. For all 1 ≤ i < j ≤ k, Rs
i ∩Rs

j = ∅

3. |Rs
i | = s,

4. Xs = X,

5. |Ys| = m− sk,

6. βs = (1− 1
2
− 1

22
− · · · − 1

2s
)β0, and

7. βs ≥ β0/2.

8. (∀x ∈ Xs)[degHs(x) ≥ βs|Ys|].

Proof of Claim 1:
All but the last item are proven by an easy induction. For the last item we need to show

that,

(∀x ∈ Xs+1)[degHs+1(x) ≥ βs+1|Ys+1|].
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Clearly

degHs+1(x) ≥ degHs(x)− k ≥ βs|Ys| − k ≥ βs(m− sk)− k ≥ βs(m− g(m)k)− k
|Ys+1| = m− (s+ 1)k ≤ m− (g(m) + 1)k

Hence we need

βs(m− g(m)k)− k ≥ βs+1(m− (g(m) + 1)k)

βs(m− g(m)k)− k
m− (g(m) + 1)k)

≥ βs+1

Since g(m) << m we can take m large enough so that

βs(m− g(m)k)− k
m− (g(m) + 1)k

≥ βs −
β0

2s+1
= βs+1.

End of Proof of Claim 1
For 1 ≤ i ≤ k let Ri = R

g(m)
i . These sets clearly satisfy the lemma.

Note 5.8 In the above lemma the size of the Ri does not depend on k. This is important
for applications.

Lemma 5.9 Let m ∈ N and f : {0, 1}m → {0, 1}. Assume there is a BP for f of length
L(m) = cm and width W (m) = d, where d is a power of 2 (this avoids ceiling-floor problems).
Let k = 2cd. Let g : N→ N be such that g(m) << m. Then there exists a multiparty protocol
for f(b1, . . . , bkg(m), 0, . . . , 0) with the following properties.

1. Player Pi has all of the bits except b1+(i−1)g(m), . . . , big(m).

2. The protocol takes 2cd log d = O(1) bits.

Proof: Divide the BP into k = 2cd segments of L(m)
2cd

= cm
2cd

= m
2d

levels each. Since each
level has at most d variables, each segment has at most m

2
variables. Let the set of variables

in the ith segment be denoted Si. Let X = {S1, . . . , Sk} and Y = {b1, . . . , bm}. Form a
bipartite graph (X, Y,E) with

E = {(Si, bj) | bj ∈ Si}.

Note that deg(Si) ≤ m
2

. Hence this graph satisfies the premise of Lemma 5.7. Apply
Lemma 5.7 to this graph to obtain sets R1, . . . , Rk such that the following happens:

1. For all 1 ≤ i ≤ k, |Ri| = g(m).
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2. For all 1 ≤ i < j ≤ k, Ri ∩Rj = ∅.

3. For all i, Xi ∩Ri = ∅.

Note that Xi, the variables in the ith segment, contains none of the variables in Ri. Hence,
if I gave you the values of the variables in R1 ∪ . . . Ri−1, Ri+1, . . . ,Rk and what node was
reached at the beginning of the ith segment, you could compute what happens in the ith
segment.

By renumbering let R1 = {b1, . . . , bg(m)}, R2 = {b1+g(m), . . . , b2g(m)}, etc.
We now say which players get which variables. For 1 ≤ i ≤ k player Pi gets all of the

variables except those in Ri. Note that he will have all of the variables in segment
Si.

We now set up the multiparty protocol of k players to compute

f(b1, . . . , bkg(m), 0, . . . , 0).

First, take the BP for h and set all of the variables that are not in R1∪· · ·∪Rk to 0. Because
of the renumbering this is setting bj = 0 for kg(m)+1 ≤ j ≤ m. The new branching program
computes f(b1, . . . , bkg(m), 0, . . . , 0). All of the players know this branching program.

We now describe the multiparty protocol. P1 executes the Branching Program in segment
S1. This does not take any communication. (Note that he has all of the variable to do this.
He may have more but this is not important.) The final node that is reached is one of at
most W (m) = d nodes. He broadcasts that node. This take log d bits. P2 starts at that
node and executes S2. At the end he broadcasts log d bits to tell P3 where he ended. This
continues until all k players have broadcast log d bits and have completed the BP. The total
number of bits transmitted is 2cd log d.

5.2 Lower Bound on Branching Program

Theorem 5.10 Let M(m) : N → N be such that limm→∞M(m) = ∞. Let modM(m)
m be

defined by

modM(m)
m (b1, . . . , bm)

{
1 if

∑m
i=1 bi ≡ 0 (mod M(m))

0 otherwise.
(4)

There is no linear-length constant-width BP for modM(m)
m .

Proof: Assume, by way of contradiction, that there is a linear-length constant-width BP
for h. Let g : N→ N be a monotone increasing function such that g(m) << m to be named
later. Then, by Lemma 5.9 there is a constant k such that there exists a multiparty protocol
for modM(m)

m (b1, . . . , bkg(m), 0, . . . , 0) with the following properties.

1. Player Pi has all of the bits except b1+(i−1)g(m), . . . , big(m).

2. The protocol takes O(1) bits.
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We will define a function 2n such that limn→∞ 2n =∞. We use the multiparty protocol
for modM(m)

m to obtain a multiparty protocol for EQ2n

n that takes O(1) bits. This contradicts
Theorem 4.3.

Let 2n : I → N be defined as follows: given n, find the least m such that n = dlg g(m)e,
then output M(m). Since limm→∞M(m) =∞, limn→∞ 2n =∞.

In order for 2n to be well defined we will need that, for all n, there exists m such that
n = lg g(m). We also need that g(m) << m. We take g(m) = 2lg lgm

1. Input is x1, . . . , xk ∈ {0, 1}n. Let m be such that n = lg g(m). We interpret each xi as
a number in binary. That number is between 0 and g(m)− 1.

2. For all 1 ≤ i ≤ k, Pi has all x’s except xi.

3. Intuition: For all 1 ≤ i ≤ k Pi will come up with (based on x1, . . . , xi−1, xi+1, . . . xk
k − 1 blocks of g(m) bits. Pi will think of his blocks of bits as being all but the ith
block.

4. For all 1 ≤ i ≤ k Pi sets, for all 1 ≤ j ≤ k, j 6= i, the first xj of the bits
b1+(j−1)g(m), . . . , bjg(m) to 1, and the rest to 0. Note that this is possible since xi ≤ g(m).

5. (Note that there are now bits b1, . . . , bkg(m) such that Player Pi has all but the ith block

of g(m) bits, and that the sum of the ith block is xi. Hence
∑k

i=1 xi =
∑kg(m)

i=1 bi.)

Players P1, . . . , Pk execute the O(1) bit protocol for modM(m)
m .

Since
∑k

i=1 xi =
∑kg(m)

i=1 bi,

MOD
M(m)
lg g(m)(x1, . . . , xk) = modM(m)

m (b1, . . . , bkg(m), 0, . . . , 0).

6 Upper Bounds: Connection to 3-free Sets

We bound χ(2n) and hence, by Theorem 2.2, bound d(EQ2n

n ).
We first find bounds on χ∗(2n) which is the following.

Def 6.1 Let c, T ∈ N. We think of [T ] as being {1, . . . , T} ( not mod T ).

1. A proper’ c-coloring of [T ] × [T ] is a function COL : [T ] × [T ] → [c] such that there
do not exist x, y, z ∈ [T ] and λ ∈ [T − 1] such that

COL (x, y, z) = COL (x+ λ, y, z) = COL (x, y + λ, z) = COL (x, y, z + λ)

(all of the additions are NOT mod T ). Another way to look at this: In a proper’
coloring there cannot be three vertices that (a) are the same color, and (b) are the
corners of a right isosceles triangle with legs parallel to the axes and hypotenuse parallel
to the line y = −x.)
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2. Let χ∗(T ) be the least c such that there is a proper’ c-coloring of [T ]× [T ].

We will need the following definition from Ramsey Theory.

Def 6.2

1. A 3-AP is an arithmetic progression of length 3.

2. Let ψT3 be the minimum number of colors needed to color {1, . . . , T} such that there
are no monochromatic 3-AP ’s.

3. A set A ⊆ [T ] is 3-free if there do not exist any 3-AP’s in A.

4. Let r3(T ) be the size of the largest 3-free subset of [T ].

Lemma 6.3

1. χ∗(T ) ≤ ψ3T
3 .

2. There exists a constant c such that ψT3 ≤ cT log T
r3(T )

.

3. There exists a constant c such that χ∗(T ) ≤ cT log(T )
r3(T )

. (This follows from 1 and 2.)

Proof:
1) Let c = ψ3T

3 . Let COL’ be a c-coloring of [3T ] with no monochromatic 3-AP’s. Let
COL be the following c-coloring of [T ]× [T ].

COL (x, y) = COL’ (x+ 2y).

Assume, by way of contradiction, that COL is not a proper’ c-coloring. Hence there
exist x, y, z ∈ [T ] and λ 6= 0 such that

COL (x, y) = COL (x+ λ, y) = COL (x, y + λ).

By the definition of COL the following are equal.

COL’ (x+ 2y) = COL’ (x+ λ+ 2y) = COL’ (x+ 2λ+ 2y)

Hence x + 2y, x + 2y + λ, x + 2y + 2λ form a monochromatic 3-AP. which yields a
contradiction.

2) Let A ⊆ [T ] be a set of size rk(T ) with no 3-AP ’s. We use A to obtain a 3-free coloring
of [T ]. The main idea is that we use randomly chosen translations of A to cover all of [T ].

Let x ∈ [T ]. Pick a translation of A by picking t ∈ [T ]. The probability that x ∈ A + t

is |A|
T

. Hence the probability that x /∈ A + t is 1− |A|
T

. If we pick s translations t1, . . . , ts at
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random (s to be determined later) then the expected number of x that are not covered by
any A+ ti is

T

(
1− |A|

T

)s
≤ Te−s

|A|
T .

We need to pick s such that this quantity is < 1 We take s = 2T lnT
|A| which yields

Te−s
|A|
T = Te−2 lnT = 1/T < 1.

We color T by coloring each of the s translates a different color. If a number is in
two translates then we color it by one of them arbitrarily. Clearly this coloring has no
monochromatic 3-APs. Note that it uses T lnT

|A| = O(T log T
rk(T )

) colors.

7 Three Free Sets

In this section we review several constructions of 3-free sets. Our notation will be to take
them to be subsets of {1, . . . , n}. In particular, r3(n) will be the largest 3-free subset of
{1, . . . , n}. Do not confuse this n with the n we have used before.

We present constructions in order of how large a 3-free set they give us. This is not the
same order they were discovered.

The following are trivial to prove; however, since we use it throughout the paper we need
a shorthand way to refer to it:

Fact 7.1 Let x ≤ y ≤ z. Then x, y, z is a 3-AP iff x+ z = 2y.

7.1 r3(n) = Ω(n0.63: The Base 3 Method

The following theorem appeared in [7] but they do not take credit for it; hence we can call
it folklore.

Theorem 7.2 r3(n) ≥ nlog3 2 ≈ n0.63.

Proof:

An = {m | 0 ≤ m ≤ n and all the digits in the base 3 representation of m are in the set {0, 1} }.
The following is a (large) subset of An: every number in base 3 of length blog3 nc that

only yas 0’s and 1’s. Hence

|An| ≥ Ω(2log3 n) = Ω(nlog3 2) ≥ n0.63.

We show that An is 3-free. Let x, y, z ∈ An form a 3-AP. Let x, y, z in base 3 be
x = xk−1 · · ·x0, y = yk−1 · · · y0, and z = zk−1 · · · a0, By the definition of An, for all i,
xi, yi, zi ∈ {0, 1}. By Fact 7.1 x+z = 2y. Since xi, yi, zi ∈ {0, 1} the addition is done without
carries. Hence we have, for all i, xi + zi = 2yi. Since xi, yi, zi ∈ {0, 1} we have xi = yi = zi,
so x = y = z.
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7.2 r3(n) ≥ Ω(n0.68−ε): The Base 5 Method

According to [7], G. Szekeres conjectured that r3(n) = Θ(nlog3 2). This was disproven by
Salem and Spencer [13] (see below); however, in 1999 Ruzsa (Section 13 of [12]) noticed that
a minor modification to the proof of the Theorem 7.2 yields the following theorem which
also disproves the conjecture. His point was that this is an easy variant of Theorem 7.2 so
it is surprising that it was not noticed earlier.

Theorem 7.3 For every ε > 0 there exists n0 such that, for all n ≥ n0, r3(n) ≥ n(log5 3)−ε ∼
n0.68−ε.

Proof: Let L be a parameter to be chosen later. Let k = blog5 nc − 1. Let A be the set
of positive integers that, when expressed in base 5,

1. use at most k digits,

2. use only 0’s, 1’s, and 2’s, and

3. use exactly L 1’s.

One can show, using Fact 7.1, that A ⊆ [n] and A is 3-free. If we take L = bk/3c one
can show that |A| ≥ n(log5 3)−ε.

Consider the following variant of the Base 5 method. Use Base 5, but use digits {−1, 0, 1}
and require that every numbers has exactly L 0’s. If (bk−1, . . . , b0) is a number expressed
in Base 5 with digits {−1, 0, 1} and with exactly L digits 0, then

∑k−1
i=0 b

2
i = n − L. This

method, expressed this way, is a our version of the Sphere Method (see Section 7.5) with
parameters d = 1 and s = n− L.

7.3 Ω(n1−
c

lg lgn ): The KD Method

The first disproof of Szekeres’s conjecture (that r3(n) = Θ(nlog3 2)) was due to Salem and
Spencer [13].

Theorem 7.4 There exists c such that r3(n) ≥ Ω(n1− c
lg lgn ).

Proof:
Let d, n ∈ N. Let k =

⌊
log2d−1 n

⌋
− 1. Assume that d divides k. KDd,n is the set of all

x ≤ n such that

1. when expressed in base 2d− 1 only uses the digits 0, . . . , d− 1, and

2. each digit appears the same number of times, namely k/d.

16



We leave it to the reader to show that, for all d, n KDd,n is 3-free.
An easy calculation shows that, for any d, n, KDd,n ⊆ [n]. Clearly

|KDd,n| =
k!

[(k/d)!]d
.

By picking d such that (2d)d(lg d)
2 ∼ n one can show that |A| ≥ Ω(n1− c

lg lgn ) for some c.

Note 7.5 The c in c
lg lgn

can be replaced by 1 + ε.

7.4 Ω(n1−
c√
lgn : The Block Method

Behrend [4] and Moser [11] both proved r3(n) ≥ n
1− c√

lgn , for some value of c. Behrend proved
it first and with a smaller (hence better) value of c, but his proof was nonconstructive (i.e,
the proof does not indicate how to actually find such a set). Moser’s proof was constructive.
We present Moser’s proof here; Behrend’s proof is presented later.

Theorem 7.6 [11] r3(n) ≥ Ω(n
1− c√

lgn ).

Proof: Let r be such that 2r(r+1)/2− 1 ≤ n ≤ 2(r+1)(r+2)/2− 1. Note that r ≥
√

2 lg n− 1.
We write the numbers in [n] in base 2. We think of a number as being written in r blocks

of bits. The first (rightmost) block is one bit long. The second block is two bits long. The
rth block is r bits long. Note that the largest possible number is r(r + 1)/2 1’s in a row,
which is 2r(r+1)/2−1 ≤ n. We call these blocks x1, . . . , xr. Let Bi be the number represented
by the ith block. The concatenation of two blocks will represent a number in the natural
way.

Example: We think of (1001110101)2 as (1001 : 110 : 10 : 1) so x1 = (1)2 = 1, x2 =
(10)2 = 2, x3 = (110)2 = 6, and x4 = (1001)2 = 9. We also think of x4x3 = (1001110)2 = 78.
End of Example

The set A is the set of all numbers xrxr−1 . . . x1 such that

1. For 1 ≤ i ≤ r − 2 the leftmost bit of xi is 0. Note that when we add together two
numbers in A the first r − 2 blocks will add with no carries.

2.
∑r−2

i=1 x
2
i = xrxr−1

Example: Consider the number (10110011011000101011010)2. We break this into blocks to
get (0000010 : 110011 : 01100 : 0101 : 011 : 01 : 0)2. Note that there are r = 7 blocks and the
rightmost r− 2 = 5 of them all have a 0 as the leftmost bit. The first 5 blocks, reading from
the right, as base 2 numbers, are 0 = 0, 01 = 1, 011 = 3, 0101 = 5, 01100 = 12. The leftmost
two blocks merged together are 0000010110011 = 179. Note that 02+12+32+52+122 = 179.
Hence the number (10110011011000101011010)2 is in A.
End of Example
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We omit the proof that A is 3-free, but note that it uses Fact 7.1.
How big is A? Once you fill in the first r − 2 blocks, the content of the remaining two

blocks is determined and will (by an easy calculation) fit in the allocated r + (r − 1) bits.
Hence we need only determine how many ways the first r − 2 blocks can be filled in. Let
1 ≤ i ≤ r−2. The ith block has i places in it, but the leftmost bit is 0, so we have i−1 places
to fill, which we can do 2i−1 ways. Hence there are

∏r−2
i=1 2i−1 =

∏r−3
i=0 2i = 2(r−2)(r−3)/2.

(r − 2)(r − 3) ≥ (
√

2 lg n− 3)(
√

2 lg n− 4) = 2 lg n− 7
√

2 lg n+ 12
So
(r − 2)(r − 3)/2 ≥ lg n− 3.5

√
2 lg n+ 6

So

2(r−2)(r−3)/2 ≥ 2lgn−3.5
√
2 lgn+6 ∼ n

1− 3.5
√
2√

lgn

7.5 r3(n) ≥ Ω(n1−
c√
lgn): The Sphere Methods

In Sections 7.1, 7.2, 7.3, and 7.4 we presented constructive methods for finding large 3-free
sets of [n] for large n. In this section we present the Sphere Method which is nonconstructive.

The result and proof in this section are a minor variant of what was done by Behrend [4, 8].
We will express the number in a base and put a condition on the representation so that the
numbers do not form a 3-AP. It will be helpful to think of the numbers as vectors.

Def 7.7 Let x, b ∈ N and k = blogb xc. Let x be expressed in base b as
∑k

i=0 xib
i. Let

~x = (x0, . . . , xk) and |~x| =
√∑k

i=0 x
2
i .

Behrend used digits {0, 1, 2 . . . , d} in base 2d + 1. We use digits {−d,−d + 1, . . . , d} in
base 4d+ 1. This choice gives slightly better results since there are more coefficients to use.
Every number can be represented uniquely in base 4d+ 1 with these coefficients. There are
no carries since if a, b ∈ {−d, . . . , d} then −(4d+ 1) < a+ b < (4d+ 1).

We leave the proof of the following lemma to the reader.

Lemma 7.8 Let x =
∑k

i=0 xi(4d + 1)i, y =
∑k

i=0 yi(4d + 1)i, z =
∑k

i=0 zi(4d + 1)i, where
−d ≤ xi, yi, zi ≤ d. Then the following hold.

1. x = y iff (∀i)[xi = yi].

2. If x+ y = 2z then (∀i)[xi + zi = 2yi]

The set Ad,s,k defined below is the set of all numbers that, when interpreted as vectors,
have norm s (norm is the square of the length). These vectors are all on a sphere of radius√
s. We will later impose a condition on k so that Ad,s,k ⊆ [−n/2, n/2].

Def 7.9 Let d, s, k ∈ N.

Ad,s,k =

{
x : x =

k−1∑
i=0

xi(4d+ 1)i ∧ (∀i)[−d ≤ xi ≤ d] ∧ (|~x|2 = s)

}
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Def 7.10 Let d, s,m ∈ N.

Bd,s,k =

{
x : x =

k−1∑
i=0

xi(4d+ 1)i ∧ (∀i)[0 < xi ≤ d] ∧ (|~x|2 = s)

}

Lemma 7.11 Let n, d, s, k ∈ N.

1. Ad,s,k is 3-free.

2. If n = (4d+ 1)k then Ad,s,k ⊆ {−n/2, . . . , n/2}.

Proof: a) Assume, by way of contradiction, that x, y, z ∈ Ad,s,k form a 3-AP. By Fact 7.1,
x + z = 2y. By Lemma 7.8 (∀i)[xi + zi = 2yi]. Therefore ~x + ~z = 2~y, so |~x + ~z| = |2~y| =
2|~y| = 2

√
s. Since |~x| = |~z| =

√
s and ~x and ~z are not in the same direction |~x + ~z| < 2

√
s.

This is a contradiction.

b) The largest element of Ad,s,k is at most

k−1∑
i=0

d(4d+ 1)i = d
k−1∑
i=0

(4d+ 1)i =
(4d+ 1)k − 1

2
=
n− 1

2
≤ n/2.

Similarly, the smallest element is ≥ −n/2.

Lemma 7.12 For all d, s, k

|Ad,s,k| =
k∑

m=0

(
k

m

)
2m|Bd,s,m|.

Proof:
Define

Amd,s,k =

{
x : x =

k−1∑
i=0

xi(4d+ 1)i ∧ (∀i)[−d ≤ xi ≤ d]

∧( exactly m of the xi’s are nonzero ) ∧ (|~x|2 = s)

}
Clearly |Ad,s,k| =

∑k
m=0 |Amd,s,k|.

Note that |Amd,s,k| can be interpreted as first choosing m places to have non-zero elements

(which can be done in
(
k
m

)
ways), then choosing the absolute values of the elements (which

can be done in |Bd,s,m| ways) and then choosing the signs (which can be done in 2m ways).
Hence |Amd,s,k| =

(
k
m

)
2m|Bd,s,m|. So

|Ad,s,k| =
k∑

m=0

(
k

m

)
2m|Bd,s,m|.
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Theorem 7.13 There is a c such that r3(n) ≥ Ω(n
1− c√

lgn ).

Proof:
Let d, s, k be parameters to be specified later. We use the set Ad,s,k which, by Lemma 7.11,
is 3-free. We seek values of d, k, s such that |Ad,s,k| is large and contained in [−n/2, n/2].
Note that once k, d are set the only possibly values of s are {0, 1, . . . , kd2}.

A calculation shows that if k ≈
√

lg n and d is such that n = (4d+ 1)k then
⋃kd2

s=0 |Ad,s,k|
is so large that there exists a value of s such that |Ad,s,k| ≥ n

1− c√
lgn for some value of c. Note

that the proof is nonconstructive in that we do not specify s; we merely show it exists.

8 The Upper Bound

We leave the following lemma to the reader.

Lemma 8.1 For all 2n there is a constant c such that χ(2n) ≤ cχ∗(2n).

Theorem 8.2 d(EQ2n

n ) =

Proof: By Theorem 2.2

d(EQ2n

n ) ≤ 2 lg(χ(2n)) +O(1).

By Lemma 8.1 there exists a constant c such that χ(2n) = cχ∗(2n). Hence

d(EQ2n

n ) ≤ 2 lg(χ∗(2n)) +O(1).

By Lemma 6.3 there exists a constant c such that

χ∗(2n) ≤ c
2n log(2n)

r3(2n)
+O(1).

Hence

d(EQ2n

n ) ≤ 2 lg
(2n log(2n)

r3(2n)

)
+O(1).

By Theorem 7.13 there exists a constant c such that

r3(2
n) ≥ Ω((2n)

1− c√
lg 2n ).

Hence

d(EQ2n

n ) ≤ 2 lg
(2n log(2n)

r3(2n)

)
+O(1).
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9 HW

1. k-party case.

2. Prove that if (x+λ, y, z) and (x, y+λ, z) and (x, y, z+λ) produce the same transcript,
then (x, y, z) also produces that transcript.

3. Show that non-constant in k-dim case (need Gallai-Witt).

4. What about the case of f(x, y, z) = T . For what T is this.... .

5. What happens over a group?

6. Prove that for all c there exists N such that for all c-colorings of [N ]× [N ] there exists
a monochromatic isos L. A square.

7. Use the result for three parties to get some lower bound on some branching program.

8. Prove Hall’s Theorem.

9. Prove that corollary to Hall’s theorem.
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