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We consider the k-party communication complexity of the problem of determining if a word

w is of the form w0a1w1a2 . . . wk−1akwk , for fixed letters a1, . . . , ak . Using the well-known

theorem of Hindman (a Ramsey-type result about finite subsets of natural numbers), we

prove that for k = 4 and 5 the communication complexity of the problem increases with

the length of the word w.

1. Introduction

Let f(x1, x2, . . . , xk) be a function of k variables. The variables range over some finite

domains, usually strings of bits, but the structure of the domains is not important. The

k-party communication complexity of the function is defined as follows. Suppose there are

k computers, numbered by 1, . . . , k, that are to compute f. Suppose that, for i = 1, . . . , k,

computer i gets all inputs except for xi. The k-party communication complexity of f is

the amount of information, measured by bits, that any such computers need to exchange

in order to compute the value of f for given inputs. More generally, one may consider

the k-party communication complexity of any function f(y1, . . . , yn) with n ≥ k, yj ranging

over finite domains (e.g., {0, 1}, if f is a boolean function). In such a case one takes the

maximum of the communication complexities over all partitions of the string y1y2 . . . yn
into k blocks.

We are mostly concerned with asymptotic behaviour of the complexity; thus we study

sequences of functions and estimate the dependence of the complexity on the size of the

inputs. We shall study the following problem.
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The k-letter problem. Let A = {η, a1, . . . , ak}. For a given word w ∈ A∗ determine if it is

of the form w0a1w1a2 . . . wk−1akwk .

Raymond, Tesson and Thérien [5] studied multiparty communication complexity of

regular languages. In this regard Denis Thérien considered the k-party communication

complexity of this problem. Very little is known about it; in particular, we do not know

if, for some k, the communication complexity can be bounded by a constant independent

of the size of the input. We shall show that the communication complexity is not constant

for k = 2, 3, 4 and 5. For k > 5 it is an open problem; furthermore, the k-letter problem is

only a special case of a more general problem posed by Thérien.

We shall use Hindman’s theorem [1] to prove our lower bounds for k = 4, 5. The

original version of this theorem speaks about sums of natural numbers. We need the

set-theoretical version that talks about unions of finite sets.

Theorem 1.1. (Hindman’s theorem) Let φ be a colouring of all finite subsets of natural

numbers by a finite number of colours. Then there exists an infinite set D of finite pairwise

disjoint sets such that all sets that are finite unions of sets of D have the same colour.

As we are going to prove a theorem about finite structures, we could surely do with

the finite version of Hindman’s theorem, but it seems that the proof would be more

complicated, since we would have to control dependence among many parameters.

2. Multiparty communication complexity

Multiparty communication complexity is an important concept studied in complexity

theory: see, e.g., [2]. Since we are only going to prove that the communication complexity

is not bounded by a constant, we can consider a simplified model. It is well known that

in such a case it suffices to use the model in which all computers send, independently of

each other, one message to a referee that determines the value of the function knowing

only these messages. Such a model has a very simple combinatorial characterization.

Let Dj be the finite domain of possible values of xj , for j = 1, . . . , k. Thus the function

that the k computers should cooperatively compute is a mapping of the form f : D1 ×
· · · × Dk → {0, 1}. The function f determines a partition P of D1 × · · · × Dk into two

blocks which correspond to the two values of f (the kernel of f). The action of computer i

(called the protocol of computer i) can be described as a mapping gi : D1 × · · · × Di−1 ×
Di+1 × · · · × Dk → Ei, where gi(x1, . . . , xi−1, xi+1, . . . , xk) is the message that it sends when

the computers get (x1, . . . , xk) as input. The function gi determines a partition Pi of D1 ×
· · · × Di−1 × Di+1 × · · · × Dk , whose blocks correspond to the messages sent by computer i.

Extend Pi to a partition Qi of D1 × · · · × Dk by ignoring the ith coordinates. Then the

referee can compute the value of the function f from the messages sent by the computers

if and only if the least common refinement of Q1, . . . , Qk is a refinement of P .

Thus the question whether a sequence of functions fn : Dn,1 × · · · × Dn,k → {0, 1} has

constant k-party communication complexityreduces to the following one: Is it possible to
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find partitions Pn,i of Dn,1 × · · · × Dn,i−1 × Dn,i+1 × · · · × Dn,k such that they have a constant

number of blocks, and the least common refinement of their extensions to Dn,1 × · · · × Dn,k

is a refinement of the kernel of fn?

For proving lower bounds on the k-letter problem, the following version seems to be

more convenient. For a given word w ∈ A∗ and i = 1, . . . , k, computer i gets the entire

word w, but all occurrences of letter ai are replaced by η. A lower bound for this model

easily translates to a lower bound for the standard model with at most constant factor

reduction. For those who are used to the standard model of multiparty communication

complexity, it is important to keep in mind that throughout the paper we are using a

different model because some arguments use essential properties of this modification!

3. k = 2 and 3

For k = 2 the problem is trivial. The property is equivalent to the condition that the first

occurrence of a1 precedes the last occurrence of a2. Thus the communication problem is

equivalent to the problem in which each of the two computers has a number and they are

to determine if one is less than the other. It is a well-known and easy fact that they need

log n bits, where n is the length of the word.

For k = 3 the property is equivalent to the condition that there is an occurrence of a2

between the first occurrence of a1 and the last occurrence of a3. Also in this case we are

able to determine the number of bits they need (up to a multiplicative constant). Though

the proof is easy, it may be instructive to read it before studying more difficult lower

bounds for k = 4 and 5.

First we prove a lower bound. Let the protocols of the three computers be given. As

noted above, for a1, only the first occurrence is important, and for a3, it is only the last

one. Thus we can restrict ourselves to words that contain only one occurrence of a1 and

only one occurrence of a3; furthermore we shall assume that a1 precedes a3. Then the

protocol for computer 2, the one that does not see letters a2, is simply a mapping from

pairs of numbers i < j ≤ n (n being the length of the word) into a finite set of messages.

Using Ramsey’s theorem for pairs (see, for example, [3]), we can find a set of numbers

X ⊆ [n] such that the message sent by computer 2 on words with a1 on position i and

a3 on position j is the same for all i, j ∈ X, i < j, and such that the size of X is at least
1
r
logr n, where r denotes the number of messages. Let X = {x0, . . . , xq−1}, x0 < · · · < xq−1.

Without loss of generality, assume q is even and the difference between every two elements

is at least two. Consider words that for some i, j ∈ X, i < j, have a single occurrence of a1

on position i, a single occurrence of a3 on position j, and letter a2 occurs on all positions

between x2t−1 and x2t, for t = 1, . . . , q/2 − 1, but nowhere else. Now, consider only those

words with i = x2t, j = x2t+1 for t = 0, 1, . . . , q/2 − 1. All these should be rejected. If the

number of pairs of messages that computer 1 and 3 can send is less than q/2 − 1,

there are two such words on which they send the same messages. Let these two words

be determined by x2t, x2t+1 and x2t′ , x2t′+1 respectively, t < t′. Computer 2 also sends the

same message on these two words, as we have chosen positions from X. But if we now

take the word determined by x2t, x2t′+1 they will send exactly the same messages again,
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because:

• computer 1 cannot distinguish it from the word determined by x2t′ , x2t′+1,

• computer 3 cannot distinguish it from the word determined by x2t, x2t+1,

• computer 2 sends the same message for every pair of positions i, j ∈ X, i < j.

Hence computers 1 and 3 must send at least q/2 − 1 different pairs of messages. Let

� be the number of possible messages that the three computers can send. Then we get

� = Ω(1
�
log� n), hence � = Ω(

√
log2 n/ log2 log2 n). Thus the communication complexity is

estimated to be Ω(log log n).

Now we show an upper bound; the idea of this proof is due to Jiřı́ Sgall. Without loss

of generality, assume that the length n of the words is a number of the form 2k . The

distance of two positions i < j on the word will be the number j − i (e.g., the distance

between the first and the last positions is 2k − 1). We shall use binary representation of

distances. The protocol for computers will be as follows.

(1) Computer 1 looks for the last occurrence of a3 and the last occurrence of a2 before

it. If it fails to find such a pair, it sends a message saying that. Otherwise it computes

the distance d1 of the two positions and sends the position of the most significant bit

of d1.

(2) Computer 2 looks for the first occurrence of a1 and the last occurrence of a3. If the

former is after the latter, or one of the two letters does not occur, it sends a message

saying that. Otherwise it computes the distance d2 of the two positions and sends the

position of the most significant bit of d2.

(3) Computer 3 looks for the first occurrence of a1 and the first occurrence of a2 after it.

If it fails to find such a pair, it sends a message saying that. Otherwise it computes

the distance d3 of the two positions and sends the position of the most significant bit

of d3.

Given these messages, one can determine if the word contains occurrences of a1, a2, a3 in

this order as follows. If any of the three computers sends an ‘error message’, then the

answer is ‘no’. Otherwise, we know the most significant digit of d1 and d3 and two most

significant digits of d2. Let d̃1, d̃2, d̃3 be d1, d2, d3 rounded down to the first, resp. first two,

resp. first most significant digits. The information that we have is equivalent to knowing

d̃1, d̃2, d̃3. Then we say ‘yes’ if d̃1 ≤ d̃2/2 or d̃3 ≤ d̃2/2; otherwise we say ‘no’. We shall

prove that this is correct.

(1) If the word has the property, then clearly d1 + d3 ≤ d2. Hence either d1 ≤ d2/2 or

d3 ≤ d2/2. Then also d̃1 ≤ d̃2/2 or d̃3 ≤ d̃2/2.

(2) If the word does not have the property, then d1 > d2 and d3 > d2. Hence d̃1 ≥ d̃2 > d̃2/2

and d̃3 ≥ d̃2 > d̃2/2.

Thus we have proved the following result.

Theorem 3.1. The communicationcomplexity of the 3-letter problem is Θ(log log n).
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The same upper bound holds for k > 3. Our lower bounds for k = 4, 5 are much smaller

than log log n and we believe that the true value is also smaller, but we do not know of a

better protocol than the one above.

4. Definitions and notation

We let N = {0, 1, 2, . . .}. For n ∈ N, n > 1, [n] will denote the set {1, . . . , , n}; for a set X,

we let [X]n denote the set of n-element subsets of X; we let Pfin(X) be the set of all finite

subsets of X; we shall use P(X) if X is finite.

For a set of sets A we let FU(A) be the set of nonempty sets that are unions of finitely

many subsets of A.

For a number n and subsets X,Y of natural numbers we shall write X < Y if maxX <

minY ; n < X if n < minX, etc.

A set X of sets will be called a disjoint family if the sets in X are pairwise disjoint.

We shall mostly consider sets of finite subsets of natural numbers. For such sets one

can often replace the disjointness by the following stronger condition. We shall say that

X ⊆ Pfin(N) is separated if, for every X,Y ∈ X, X 	= Y , either X < Y or Y < X. It is

an easy exercise to show that every infinite disjoint family of finite subsets of N contains

an infinite separated family. Note that in a separated family the sets are linearly ordered

by the relation < defined above. Another easy fact is that, for every two infinite disjoint

families A1,A2 that contain only finite sets, one can find infinite families B1 ⊆ A1,

B2 ⊆ A2 such that B1 and B2 are disjoint.

Hindman’s theorem, stated above, immediately implies the following formally stronger

statement: for every φ : FU(C) → [�], with C ⊆ Pfin(N) an infinite disjoint family, there

exists an infinite disjoint family D ⊆ FU(C) such that φ is constant on FU(D).

5. A reduction to a Ramsey-type statement

Conjecture 5.1. For every r, �, m ∈ N, r ≥ 2, there exists an n ∈ N such that, for every

φ1, . . . , φr : [n]2 × (P([n])r−1 → [�],

there exists X ⊆ [n], |X| = m, B1, . . . , Br ⊆ [n], c1, . . . , cr ∈ [�] such that:

(1) X,B1, . . . , Br are pairwise disjoint,

(2) for every two consecutive elements x, x′ of X there exist j0 = x < j1 < · · · < jr−1 < jr =

x′ such that

(a) Bi ∩ (ji−1, ji] = ∅ for i = 1, . . . , r,

(b) Bi′ ∩ (ji−1, ji] 	= ∅ for i, i′ = 1, . . . , r, i 	= i′,

(3) for every x, y ∈ X, x < y, i = 1, . . . , r,

φi(x, y, B1, . . . , Bi−1, Bi+1, . . . , Br) = ci.

Proposition 5.2. If the conjecture holds for r ≥ 2, then for k = r + 2 the k-party commu-

nication complexity of the k-letter problem is not constant.
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Proof. Let r ≥ 2 be given, and let k = r + 2. Suppose that the k-letter problem can be

solved by k computers, each using at most � different messages. Let m = �2 + 1. Take n

given to r, �, m by the conjecture. We shall consider words of length n that contain exactly

one a1 and one ak and a1 is before ak . Then the strategies of computers 2 to k − 1 can be

represented as mappings φ1, . . . , φr : [n]2 × (Pfin([n]))
r−1 → [�], where the two numerical

inputs correspond to the positions of letters a1 and ak , and the set inputs correspond to the

letters a2, . . . , ak−1. More precisely, for φi, the input sets are sets of indices of occurrences

of letters a2, . . . , ai−1, ai+1, . . . , ak−1. Let X,B1, . . . , Br be given by the conjecture. Then we

consider words such that a1, resp. ak , is in the position x, resp. y, for x, y ∈ X, x < y,

and for i = 2, . . . , k − 1, letter ai occurs in the positions determined by the set Bi−1. Thus

the positions of letters a2, . . . , ak−1 are fixed, while there are several possibilities for letters

a1, ak , determined by a choice of x, y ∈ X, x < y. The condition on the φis says that the

messages sent by computers 2 to k − 1 will be the same on all these words. The messages

of computer 1 will depend only on the position of ak and the messages of computer k will

depend only on the position of a1. Hence there are two pairs x, x′ and y, y′ of consecutive

elements of X such that the messages sent by computer 1 and k will be the same for x, x′

and y, y′. Thus they will send the same messages also for x, y′. Consequently, the messages

of all computers will be the same for x, x′ and x, y′.

To get a contradiction we shall show that the word determined by two consecutive

elements of X should be rejected, while if x, y ∈ X are not consecutive, it should be

accepted. Let x, x′ be two consecutive elements. Take the partition j0 = x < j1 < · · · <
jr−1 < jr = x′ of the interval [x, x′]. Suppose the word w determined by x, x′ is of the form

w0a1w1a2 . . . wk−1akwk . Then a1 is on position j0 and ak on jr . Since a2 does not occur in

the first interval of the partition, the occurrence of a2 displayed in w0a1w1a2 . . . wk−1akwk

is in the second or later intervals. Since a3 does not occur in the second interval of the

partition, the occurrence of a3 is in the third or later intervals, etc. Thus ak−2 must occur

in the (k − 2)nd, which is the last, the rth interval. But then for ak−1 there is no more

room. Now it is also clear that for nonconsecutive elements x, y we can find a1, . . . , ak in

this order in the word.

6. A common generalization of Ramsey’s and Hindman’s theorems

We shall prove a lemma that is in some sense a common generalization of Ramsey’s and

Hindman’s theorems. A slightly weaker version was proved in [4].

We shall consider the types of arrangements of n + 1 finite subsets of natural numbers.

A type will be a word in the alphabet {x, a1, . . . , an} that does not contain subwords

aiai for i = 1, . . . , n (however, it may contain xx and every letter may occur more than

once). For disjoint subsets of natural numbers X,A1, . . . , An, we define the type of this set

arrangement, denoted by type(X,A1, . . . , An), as follows.

(1) type(∅, ∅, . . . , ∅) = Λ (the empty word).

(2) If m < X,A1, . . . , An, and type(X,A1, . . . , An) = τ, then type({m} ∪ X,A1, . . . , An) = xτ.

(3) If ∅ 	= B < X,A1, . . . , An, and type(X,A1, . . . , An) = τ, then

(a) type(X,A1, . . . , Ai−1, B ∪ Ai, Ai+1, . . . , An) = τ, if τ starts with ai,

(b) type(X,A1, . . . , Ai−1, B ∪ Ai, Ai+1, . . . , An) = aiτ otherwise.
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Less formally, write the word with letters in order as indicated by the sets X,A1, . . . , An,

and eliminate successive occurrences of letters other than x.

Example. Let n = 3, X = {1, 4, 6}, A1 = {2, 3, 11}, A2 = ∅ and A3 = {8, 14, 15, 16}. Then

type(X,A1, A2, A3) = xa1xxa3a1a3.

Lemma 6.1. Let s, �, n ∈ N, let X ⊆ N be an infinite set, and let A1, . . . ,An ⊆ Pfin(N \ X)

be infinite separated families. Let

φ : [N]s × Pfin(N)n → [�],

and let τ be a type with s occurrences of letter x and at least one occurrence of every ai,

i = 1, . . . , n. Then there exist an infinite subset Y ⊆ X, infinite separated pairwise disjoint

families Bi ⊆ FU(Ai), i = 1, . . . , n, and c ∈ [�] such that, for every z ⊆ Y , |z| = s, Ai ∈
FU(Bi), i = 1, . . . , n, if type(z, A1, . . . , An) = τ, then φ(z, A1, . . . , An) = c.

Note that Lemma 6.1 can be used repeatedly; thus one can ensure the homogeneity

condition for any finite number of types.

Proof. We shall prove the lemma by induction on the length of the type. For the empty

type the lemma is trivial.

(1) Suppose τ = xσ and the lemma holds for the type σ. Let y1 be the first element

of X. Take φy1
: [N]s−1 × Pfin(N)n → [�] obtained from φ by fixing the first argument

to y1. By the induction assumption, we can find an infinite subset Y1 ⊆ X, infinite

disjoint families B1
i ⊆ FU(Ai), i = 1, . . . , n, and c1 ∈ [�] such that, for every z ⊆ Y1,

|z| = s − 1, Ai ∈ FU(B1
i ), i = 1, . . . , n, if type(z, A1, . . . , An) = σ, then φ(z, A1, . . . , An) = c1.

For i = 1, . . . , n, let B1
i be the first element of Bi after y1, that is, y1 < B1

i .

Now suppose we have already chosen y1 < · · · < ym, X ⊇ Y1 ⊇ · · · ⊇ Ym, B1
i , . . . ,Bm

i ,

such that Bj+1
i ⊆ FU(Bj

i ) for i = 1, . . . , n, j = 1, . . . , m − 1, cm ∈ [�] and B1
i < · · · < Bm

i , for

i = 1, . . . , n. Then we choose ym+1, Ym+1, Bm+1
i ⊆ FU(Bm

i ), i = 1, . . . , n, using the lemma

for the type σ, in the same way as we did for the base case, except for the following. We

require, moreover, that ym+1 is after all Bm
i s, i.e., Bm

i < ym+1 for i = 1, . . . , n. The sets Bm+1
i ,

i = 1, . . . , n, are again the first elements of Bm+1
i s that are after ym+1.

Let Y ′ = {y1, y2, . . .}, Bi = {B1
i , B

2
i , . . .}, i = 1, . . . , n. Note that

y1 < B1
1 , . . . , B

1
n < y2 < B2

1 , . . . , B
2
n < y3 < · · · ,

and hence every Bi is infinite. The construction ensures that, for every z ⊆ Y ′, |z| = s,

Ai ∈ FU(Bi), i = 1, . . . , n, if type(z, A1, . . . , An) = τ, then φ(z, A1, . . . , An) depends only on

the min z. Namely, if min z = yj , then φ(z, A1, . . . , An) = φyj (z \ {yj}, A1, . . . , An) = cj . Thus,

taking Y as those elements of Y ′ that correspond to a c ∈ [�] that occurs infinitely many

times, we get the statement of the lemma.

(2) Suppose τ = arσ (thus the first letter of σ is not ar) and the lemma holds for the

type σ. We shall consider two cases according to whether or not ar occurs in σ. First we
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assume that ar does occur in σ. The proof is similar to the one above with the role of yms

now played by Bm
r s.

Define

φB(z, A1, . . . , An) = φ(z, A1, . . . , Ar−1, B ∪ Ar, Ar+1, . . . , An). (6.1)

We shall construct sets and numbers

B1
r < y1, B

1
1 , . . . , B

1
r−1, B

1
r+1, . . . , B

1
n < B2

r < y2, B
2
1 , . . . , B

2
r−1, B

2
r+1, . . . , B

2
n < B3

r < · · ·

and disjoint families Bm
1 , . . . , B

m
n , m = 1, 2, . . . as follows. B1

r is simply the first element

of Ar . Then we take φB1
r
: [N]s × Pfin(N)n → [�]. By the induction assumption we get

sets Y1,B1
1, . . . ,B1

n with the homogeneity property for φB1
r

with respect to the type σ.

We define y1 to be the first element of Y1 after B1
r , and B1

i to be the first element of

B1
i after B1

r , for i ∈ [n], i 	= r. The next set B2
r is the first element of B1

r that is after

y1, B
1
1 , . . . , B

1
r−1, B

1
r+1, . . . , B

1
n .

At the mth step we proceed similarly, but we do not use φBm
r

alone. We have to take all

φB for B ∈ FU({B1
r , . . . , B

m
r }) such that Bm

r ⊆ B. Since FU({B1
r , . . . , B

m
r }) is finite, we can

ensure the homogeneity property for all these colourings by repeated application of the

induction assumption for the type σ.

Now put Y = {y1, y2, . . .}, Bi = {B1
i , B

2
i , . . .}, for i ∈ [n], i 	= r and B′

r = {B1
r , B

2
r , . . .}. Then

the construction ensures that, for every z ⊆ Y , |z| = s, Ai ∈ FU(Bi), i ∈ [n], i 	= r and

Ar ∈ FU(B′
r), if type(z, A1, . . . , An) = τ, Ar = B ∪ A′

r , A
′
r, B ∈ FU(Br), and

B < z, A1, . . . , Ar−1, A
′
r, Ar+1, . . . , An,

then φ(z, A1, . . . , An) depends only on B. Indeed, if min z = ym, then B ∈ FU({B1
r , . . . ,

Bm
r }). Also

B1 ⊆ Bm
1 , . . . ,Br−1 ⊆ Bm

r−1,B′
r ⊆ Bm

r ,Br+1 ⊆ Bm
r+1, . . . ,Bn ⊆ Bm

n

and A′
r ∈ Bm

r . Hence φ(z, A1, . . . , An) depends only on B by (6.1) and the construction of

the families Bm
1 , . . . , B

m
n .

Finally, we colour elements Ar ∈ FU(B′
r) by φ(z, A1, . . . , An) for some z ⊆ Y , |z| = s,

Ai ∈ FU(Bi), i ∈ [n], i 	= r such that type(z, A1, . . . , An) = τ and take, using Hindman’s

theorem, an infinite separated family Br ⊆ FU(B′
r) such that all sets in FU(Br) have the

same colour.

(3) Now suppose that τ = arσ, and ar does not occur in σ. Instead of (6.1), we define

φ′
B(z, A1, . . . , Ar−1, Ar+1, . . . , An) = φ(z, A1, . . . , Ar−1, B, Ar+1, . . . , An). (6.2)

Then we argue in the same way as in part (2).

7. k = 4 and 5

Theorem 7.1. Conjecture 5.1 is true for r = 2 and 3. Hence for k = 4 and 5 the k-party

communication complexity of the k-letter problem is not constant.
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Proof. (r = 2) Suppose the conjecture is false. Let �, m be such that for every n there

exist mappings φ1, φ2 : [n]2 × P([n]) → [�] that violate the conclusion of the conjecture.

By König’s lemma, there exist mappings φ1, φ2 : N
2 × Pfin(N) → [�] such that for every

n their restrictions to [n]2 × Pfin([n]) violate the conclusion of the conjecture. We shall

use Lemma 6.1 with s = 2, � as above, n = 1 and the type axaxa. (We shall use letters

a, b, . . . instead of a1, a2, . . . for denoting types.) First we apply the theorem to φ1 and

X = N, A1 = Pfin(N). Thus we obtain some Y1 ⊆ N and B1. Then we apply it again

to φ2, and X = Y1, A1 = Pfin(N). Thus we get some Y2 ⊆ Y1 and B2. Hence for both

i = 1, 2, and for every A1 < x1 < A2 < x2 < A3, A1, A2, A3 ∈ FU(Bi), x1, x2 ∈ Y2, the value

of φi(x1, x2, A1 ∪ A2 ∪ A3) is the same.

Now we choose Ai,0, . . . , Ai,m+1 ∈ Bi, for i = 1, 2, and x1, . . . , xm ∈ Y2 such that

A2,0 < A1,0 < x1 < A2,1 < A1,1 < x2 < · · · < xm < A2,m+1 < A1,m+1.

In terms of types it means that we choose a configuration of type (bax)mba, where a

stands for sets in B1, b stands for sets in B2 and x for elements of Y2. Then, for i = 1, 2

and every 1 ≤ p < q ≤ m, the value of φi(xp, xq, Ai,0 ∪ · · · ∪ Ai,m+1) is the same, because

the sets Ai,0 ∪ · · · ∪ Ai,p−1, Ai,p ∪ · · · ∪ Ai,q−1, Ai,q ∪ · · · ∪ Ai,m+1 are in FU(Bi). Hence φ1, φ2

restricted to the interval [0,maxA1,m+1], X = {x1, . . . , xm}, Bi = Ai,0 ∪ · · · ∪ Ai,m+1, i = 1, 2

satisfy the statement of Conjecture 5.1, which is a contradiction.

(r = 3) Suppose the conjecture is false for r = 3 and some �, m. Using the same argument

as above we get mappings φ1, φ2, φ3 : N
2 × (Pfin(N))2 → [�], such that for every n their

restrictions to [n]2 × (Pfin([n]))
2 violate the conclusion of the conjecture. Let t be the

Ramsey number such that t − 2 → (m)2�. We shall use Lemma 6.1 with s = 2, � as above,

n = 2 and all types of the form (ab)ix(ab)j−ix(ab)t−j with 1 < i < j < t. First we apply it

to φ1 and X = N, A1 = A2 = Pfin(N). Thus we get some Y , C and D. Then we apply it

to φ2 and X = Y , A1 = Pfin(N), A2 = D. Thus we get some Y ′, B and D′. Finally we

apply it to φ3 and X = Y ′, A1 = B, A2 = C. Thus we get some Y ′′, B′ and C′. Now

we have to be more precise about the types in which we are interested: for example, in

(ab)ix(ab)j−ix(ab)t−j , a may stand for elements of FU(C) and b for elements of FU(D),

or b may stand for elements of FU(C) and a for elements of FU(D). Therefore, we shall

use letters b, c, d in the types for B′,C′,D′. The letter x stands, of course, for elements of

Y ′′. Now the requirements can be stated briefly as follows:

(1) for every type (dc)ix(dc)j−ix(dc)t−j with 1 < i < j < t, φ1 is constant on all arrange-

ments of this type,

(2) for every type (db)i
′
x(db)j

′−i′x(db)t−j ′
with 1 < i′ < j ′ < t, φ2 is constant on all ar-

rangements of this type,

(3) for every type (cb)i
′′
x(cb)j

′′−i′′x(cb)t−j ′′
with 1 < i′′ < j ′′ < t, φ3 is constant on all

arrangements of this type.

Applying Ramsey’s theorem to the pairs of indices in [2, t − 1], we get sets I, I ′, I ′′ ⊆
[2, t − 1], |I | = |I ′| = |I ′′| = m, such that:

(1) φ1 is constant on all arrangements of types (dc)ix(dc)j−ix(dc)t−j with i < j, i, j ∈ I ,

(2) φ2 is constant on all arrangements of types (db)i
′
x(db)j

′−i′x(db)t−j ′
with i′ < j ′, i′, j ′ ∈ I ′,
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(3) φ3 is constant on all arrangements of types (cb)i
′′
x(cb)j

′′−i′′x(cb)t−j ′′
with i′′ < j ′′,

i′′, j ′′ ∈ I ′′.

Let i1, . . . , im denote the elements of I in increasing order; similarly i′1, . . . , i
′
m for I ′ and

i′′1 , . . . , i
′′
m for I ′′.

Now we are ready to choose an arrangement from Y ′′, B′,C′,D′ that will violate our

initial assumption. We take an arrangement of type

(dc)i1−1(bd)i
′
1−1(cb)i

′′
1−1x(dc)i2−i1−1(bd)i

′
2−i′1−1(cb)i

′′
2−i′′1−1x . . .

. . . (dc)im−im−1−1(bd)i
′
m−i′m−1−1(cb)i

′′
m−i′′m−1−1x(dc)t−im−1(bd)t−i′m−1(cb)t−i′′m−1.

Let X ⊆ Y ′′, |X| = m, B ∈ B′, C ∈ C′ and D ∈ D′ be the sets that form the arrangement

of this type. If we take only sets X, C , D, then their type is

(dc)i1x(dc)i2−i1x . . . (dc)im−im−1x(dc)t−im

Hence φ1(x, y, C, D) has the same value for all x, y ∈ X, x < y. The same argument shows

that also φ2(x, y, B, D) and φ3(x, y, B, C) have the same value for all x, y ∈ X, x < y. Thus,

if we restrict φ1, φ2, φ3 to [n]2 × (P([n]))2, for n = maxB, we get a contradiction to our

initial assumption.
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