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1. Introduction

This paper deals with the analysis of the performance of randomized online algorithms
in the context of two fundamental online problems—metrical task systems and the K-
server problem.

A metrical task system (MTS), introduced by Borodin, Linial, and Saks [BLS92], is a
system that may be in one of a set of n internal states. The aim of the system is to perform
a given sequence of tasks. The performance of each task has a certain cost that depends
on the task and the state of the system. The system may switch states; the cost of such a
switch is the distance between the states in a metric space defined on the set of states. After
a switch, the cost of the service is the one associated with the new state.

In the K-server problem, defined by Manasse, McGeoch, and Sleator [MMS90], K mo-
bile servers reside in points of a given metric space. A sequence of requests for points in the
space is presented to the servers. To satisfy a request, one of the K servers must be moved
to the point associated with the request. The cost of an algorithm for serving a sequence of
requests is the total distance traveled by the servers.

An online algorithm receives requests one by one and must serve them immedi-
ately without knowledge of future requests. A randomized online algorithm is called
r-competitive if on every sequence its expected cost is at most r times the optimal offline
cost plus an optional constant additive term.

The MTS and K-server problems have been studied extensively with the aim of deter-
mining the best competitive ratio of online algorithms. Borodin et al. [BLS92] have shown
that the deterministic competitive ratio for MTS on an n-point metric space is exactly
2n − 1. Manasse et al. [MMS90] proved a lower bound of K on the competitive ratio of
deterministic K-server algorithms. The best upper bound for arbitrary metric spaces and
any K is currently 2K − 1 [KP95].

The randomized competitive ratio for these problems is not as well understood. For
the uniform metric space, where all distances are equal, the randomized competitive ra-
tio is known to within a constant factor, and is Θ(logn) [BLS92,IS98] for MTS and
Θ(logK) [FKL+91,MS91,ACN00] for the K-server problem. In fact, it has been conjec-
tured that, in any metric space, the randomized competitive ratio is Θ(logn) for MTS and
Θ(logK) for the K-server problem. Previous lower bounds were Ω(log logn) [KRR94],
and Ω(

√
logn/ log logn) [BKRS00] for MTS and similar lower bounds for the K-server

problem in metric spaces with more than K points. The upper bound for MTS was
improved in a sequence of papers [Bar96,BBBT97,Bar98,FM03,BM03,FRT03], and is
currently O(log2 n log logn). The upper bound for MTS implies a similar bound for the
K-server problem on K + c points, when c is a constant. However, no “general” random-
ized upper bound for the K-server problem better than 2K − 1 [KP95] is currently known.
Seiden [Sei01] has a result in this direction, showing sublinear bounds for certain spaces
with certain number of servers.

In this paper we give lower bounds on the randomized competitive ratios that get closer
to the conjectured bounds. We prove that, in any n-point metric space, the randomized
competitive ratio of the MTS problem is Ω(logn/ log2 logn). For the K-server problem,
we prove that the randomized competitive ratio is Ω(logK/ log2 logK) for any metric
space on more than K points. Slightly better bounds are obtained for specific metric spaces
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such as �-dimensional meshes. We also prove for any ε > 0, a lower bound of Ω(logK)

for the K-server problem in any n-point metric space where n � K logε K , improving a
lower bound from [KRR94] of Ω(min{logK, log logn}). We note that the improved lower
bounds for the K-server problem also imply improved lower bounds for the distributed
paging problem, as shown in [ABF93]. The lower bounds for the K-server problem follow
from a general reduction from MTS on a metric space of K + 1 points to the K-server
problem in the same metric space. The rest of the discussion is therefore in terms of the
MTS problem.

In [KRR94,BKRS00,Bar96] it is observed that the randomized competitive ratio for
MTS is conceptually easier to analyze on “decomposable spaces,” spaces that are com-
posed of subspaces with small diameter compared to that of the entire space. Bartal [Bar96]
introduced a class of decomposable spaces he called hierarchically well-separated trees
(HST). A k-HST is a metric space defined on the leaves of a tree such that, for each level
of the tree, the diameters of the subtrees decrease by a factor of k between the levels.
Consider a particular level of an HST. The distances to all subtrees are approximately the
same and thus it is natural to use a recursive solution for the HST where the problem at a
particular level is essentially on a uniform space.

In order to analyze the competitive ratio for a specific metric space M , it is helpful
to consider how close it is to a simpler metric space N (such as HST). We say that N

α-approximates M if the distances in N are within a factor α from those in M . Clearly,
if there is a r-competitive algorithm for N then there is αr-competitive algorithm for M .
This notion can be generalized to a probabilistic metric approximation [Bar96] by con-
sidering a set of approximating metric spaces that dominate the original metric space and
bounding the expectation of the distances. Any metric space on n points can be O(logn)-
probabilistically approximated by HSTs [Bar96,Bar98,FRT03], thus reducing the problem
of devising algorithm for MTS on any metric space to devising an algorithm for HSTs only
[BBBT97,FM03]. HSTs and their probabilistic approximation of metric spaces have found
many other applications in online and approximation algorithms, for example [Bar96,
AA97,KT99]. See [Ind01, Sections 2.4 and 5] for a survey on this topic.

The first step toward obtaining a lower bound for arbitrary metric spaces is showing
that a lower bound for HSTs implies a lower bound for arbitrary metric spaces. Proba-
bilistic approximations are not useful for this purpose. One of the reasons for this is that
the approximation bound is at least logarithmic, and therefore a logarithmic lower bound
for HSTs would not imply any non-trivial lower bound for arbitrary metrics. What makes
the reduction in this paper possible is the observation that a lower bound for a subspace
implies a lower bound for the entire space. Therefore, in order to get a lower bound for a
specific metric space M , we need to find a large subspace which is a good approximation
of an HST. Such theorems are called Ramsey-type theorems for metric spaces [KRR94].
The main Ramsey-type theorem in this paper states that in any metric space on n points
there exists a subspace of size nΩ(log−1 k) points that O(log logn)-approximates a k-HST.
In fact, we further show that the approximated k-HST can have the additional property
that any internal vertex of the underlying tree of the HST, either has only two children
or all the children’s subtrees are of almost equal size (in terms of the number of leaves).
It is worth noting that HSTs are ultrametrics and thus embed isometrically in �2. There-
fore, our Ramsey-type theorems give subspaces in Euclidean space. Previously, Bourgain
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et al. [BFM86], Karloff et al. [KRR94] and Blum et al. [BKRS00] proved other Ramsey-
type theorems, showing the existence of special types of HSTs on significantly smaller
subspaces. In Section 7 we elaborate on these results and relate our constructions to their
constructions. Subsequent work is discussed in Section 1.1. Different Ramsey-type prob-
lems for metric spaces appear in [Mat92].

The lower bound for HST spaces follows a general framework originated in [BKRS00]
and explicitly formulated in [Sei99,BBBT97]: The recursive structure of the HST is mod-
eled via the unfair metrical task system (UMTS) problem [Sei99,BBBT97] on a uniform
metric space. This concept is presented in greater details in Section 2. For readers already
familiar with the concept, the rest of this paragraph provides a brief summary of our results
for this model. In a UMTS problem, every point vi of the metric space is associated with
a cost ratio ri which multiplies the online costs for processing tasks in that point. Offline
costs remain as before. The cost ratio ri roughly corresponds to the competitive ratio of the
online algorithm in a subspace of the HST. We prove a lower bound for the randomized
competitive ratio of a UMTS on the uniform metric space for the entire range of cost ratios
(ri)i , ri � 1. This lower bound is tight assuming the conjectured Θ(logn) competitive ra-
tio for MTS. Previously, tight lower bounds (in the above sense) were only known for two
point spaces [BKRS00,Sei99] and fair MTS, where r1 = r2 = · · · = rn = 1 [BLS92]. Upper
bounds for UMTS problems were given for two point spaces [BKRS00,Sei99,BBBT97]
and when all the cost ratios are equal r1 = r2 = · · · = rn [BBBT97]. Our lower bound
matches these upper bounds in these cases.

By making use of the lower bounds for UMTSs on uniform metric spaces, we compose
lower bounds to obtain a lower bound of Ω(logn) for HSTs. Our main lower bound result
follows from the lower bound on HST and the Ramsey-type theorem.

1.1. Subsequent work

Subsequent to this paper, metric Ramsey problems have been further studied in a se-
quence of papers [BLMN04a,BLMN03b,BLMN04b,BLMN03a]. The main theorem in
[BLMN04a] states that any n-point metric space contains a subspace of size n1−(c logα)/α

which α-approximates a 1-HST for α > 2 and an appropriate value c > 0. Since a 1-HST
is equivalent to an ultrametric which isometrically embeds in �2 this theorem gives nearly
tight Ramsey-type theorem for embedding metrics spaces in Euclidean space. The proof
of the theorem uses techniques developed in this paper, but is more involved and requires
new ingredients as well.

It follows from [BLMN04a] that the main Ramsey theorem in this paper (Theorem 2)
can be improved to the following: there exists c > 0 such that any n-point metric space
contains a subset of size nc/ log(2k) which 3-approximates a k-HST. Together with the
lower bounds for k-HSTs in the current paper (Theorem 3), the lower bound on the ran-
domized competitive ratio for the MTS problem on n-point metric space (Theorem 1) is
improved to Ω(logn/ log logn), and the lower bound for the K-server problem is improved
to Ω(logK/ log logK). Also, the results of Section 7 are complemented in [BLMN03b],
where tight bounds on these metric Ramsey problems are given.

Also related is work on multi-embeddings [BM03] which studies a concept that can be
viewed as dual to the Ramsey problem. In a multi-embedding a metric space is embedded
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in a larger metric space where points embed into multiple points. That paper also uses
techniques very similar to the ones developed here. It is shown there how this concept can
be used to obtain upper bounds for the MTS problem.

1.2. Outline of the paper

In Section 2 the problems and the main concepts are formally defined along with an out-
line of the proof of the lower bound. Section 3 is devoted to present our main Ramsey-type
theorem for metric spaces. In Section 4 we prove a lower bound for UMTSs on a uniform
metric spaces, and use it in Section 5 to deduce a lower bound for HSTs. In Section 6
we apply these lower bounds to the K-server problem. In Section 7 we discuss additional
Ramsey-type theorems and tight examples. We also relate our work to previous known
constructions. Finally, in Section 8, we present a number of open problems that arise from
the paper.

2. Overview and definitions

In this section we outline the proof of the lower bounds for the metrical task systems
problem on arbitrary metric spaces. We start with defining the MTS problem.

Definition 1. A metric space M = (V , d) consists of a set of points V and a metric distance
function d :V × V → R

+ such that d is symmetric, satisfies the triangle inequality and
d(u, v) = 0 if and only if u = v.

For α > 0, we denote by αM the metric space obtained from M by scaling the distances
in M by a factor α.

Definition 2. A metrical task system (MTS) [BLS92] is a problem defined on a metric
space M = (V , dM) that consists of |V | = b points, v1, . . . , vb. The associated online prob-
lem is defined as follows. Points in the metric space represent internal states of an online
algorithm A. At each step, the algorithm A occupies a point vi ∈ M . Given a task, the
algorithm may move from vi to a point vj in order to minimize costs. A task is a vector
(c1, c2, . . . , cb) ∈ (R+ ∪ {∞})b , and the cost for algorithm A associated with servicing the
task is dM(vi, vj ) + cj . The cost for A associated with servicing a sequence of tasks σ ,
denoted by costA(σ ), is the sum of costs for servicing the individual tasks of the sequence
consecutively. An online algorithm makes its decisions based only upon the tasks seen so
far.

We define costOPT(σ ) to be the minimum cost, for any off-line algorithm, to start at
the initial state and process σ . A randomized online algorithm A for an MTS is an online
algorithm that decides upon the next state using a random process. The expected cost of a
randomized algorithm A on a sequence σ is denoted by E[costA(σ )].
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Definition 3. [ST85,KMRS88,BDBK+94] A randomized online algorithm is called r-
competitive against an oblivious adversary if there exists a constant c such that for every
task sequence σ , E[costA(σ )] � r · costOPT(σ ) + c.

The main result of this paper is the following theorem.

Theorem 1. Given a metric space M on n points, the competitive ratio (against oblivious
adversaries) of any randomized online algorithm for the MTS defined on M , is at least
Ω(logn/ log2 logn).

We first observe the fact that a lower bound for a subspace of M implies a lower bound
for M . Therefore if we have a class of metric spaces S for which we have a lower bound
we can get a lower bound for a metric space M if it contains a metric space, M ′ ∈ S as a
subspace. This may also be done if the subspace approximates the metric space M ′.

Definition 4. A metric space M over V α-approximates a metric space M ′ over V if for
all u,v ∈ V , dM ′(u, v) � dM(u, v) � αdM ′(u, v).

Note that Definition 4 is essentially symmetric in a sense that if M α-approximates M ′,
then M ′ α-approximates α−1M .

Proposition 1. Given a metric space M on V that α-approximates a metric space M ′ on V ,
a lower bound of r ′ for the MTS on M ′ implies a lower bound of r ′/α for the MTS on M .

Proof. Assume there exists an r-competitive algorithm A for M . Let A′ be the algorithm
that simulates A on M ′. Let B ′ be an optimal algorithm for M ′ and let B be its simulation
in M . Then

E
[
costA′(σ )

]
� E

[
costA(σ )

]
� r costB(σ ) + c � αr costB ′(σ ) + αc.

Therefore A′ is αr competitive. �
Next, we define the class of metric spaces for which we will construct lower bounds

for the MTS problem. Following Bartal [Bar96],3 we define the following class of metric
spaces.

Definition 5. For k � 1, a k-hierarchically well-separated tree (k-HST) is a metric space
defined on the leaves of a rooted tree T . To each vertex u ∈ T there is associated a label
Δ(u) � 0 such that Δ(u) = 0 if and only if u is a leaf of T . The labels are such that if a
vertex u is a child of a vertex v then Δ(u) � Δ(v)/k. The distance between two leaves
x, y ∈ T is defined as Δ(lca(x, y)), where lca(x, y) is the least common ancestor of x and
y in T . Clearly, this function is a metric on the set of vertices. We call a vertex with exactly
one child, a degenerate vertex. For a non-degenerate vertex u, Δ(u) is the diameter of the

3 The definition given here for k-HST differs slightly from the original definition in [Bar96]. For k > 1 the
metric spaces given by these two definitions approximate each other to within a factor of k/(k − 1).
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subspace induced on the subtree rooted by u. Any k-HST can be transformed into a k-HST
without degenerate vertices and with the same metric.

Any k-HST is also a 1-HST. We use the term HST to denote any 1-HST. An HST is
usually referred to as ultrametric, but note that for k > 1, a k-HST is a stronger notion.

In Section 3 we prove a generalized form of the following Ramsey-type theorem for
metric spaces.

Theorem 2. Given a metric space M = (V , d) on |V | = n points and a number k � 2, there
exists a subset S ⊆ V such that |S| � nΩ(1/ logk) and the metric space (S, d) O(log logn)-
approximates a k-HST.

It follows that it suffices to give lower bounds for the MTS problem on HST metric
spaces. A natural method for doing that is to recursively combine lower bounds for sub-
spaces of the HST into a lower bound for the entire metric space. Consider an internal
vertex u at some level of the HST. Let v1, v2, . . . , vb be its children and assume we have
lower bounds of r1, r2, . . . , rb on the competitive ratio for the subspaces rooted at the vis.
We would like to combine the lower bounds for these subspaces into a lower bound of
r for the subspace rooted at u. Recall that the distances between points in the subspaces
associated with different vis are equal to Δ(u). We would like to think of such a subspace
rooted at vi as being replaced by a single point and the subspace rooted at u being a uni-
form metric space. Given a task of cost δ at the point associated with the subspace rooted
at vi the cost charged to the online algorithm is at least riδ. Informally speaking, given a
lower bound for this metrical task system with unfair costs on a uniform metric space we
can obtain a lower bound for the subspace rooted at u. This serves as a motivation for the
following definition.

Definition 6. [BKRS00,Sei99,BBBT97] An unfair metrical task system (UMTS) U =
(M; r1, . . . , rb; s) consists of a metric space M on b points, v1, . . . , vb, with a metric dM ,
a sequence of cost ratios r1, r2, . . . , rb ∈ R

+, and a distance ratio s ∈ R
+. For s = 1, we

omit the parameter s from the notation.
The UMTS problem differs from the regular MTS problem in that the cost of the online

algorithm for servicing a task (c1, c2, . . . , cb) by switching from vi to vj is s ·dM(vi, vj )+
rj cj , whereas the offline cost remains as before.

Observation 2. It is sufficient to analyze UMTSs with distance ratio equals one since a
UMTS U = (M; r1, . . . , rb; s) has a competitive ratio r if and only if U ′ = (M; r1s

−1,

. . . , rbs
−1;1) has a competitive ratio rs−1. This is so since the adversary costs in U and

U ′ are the same, whereas the online costs in U are s times larger than in U ′.

Our goal is to obtain lower bounds for the UMTS problem on a uniform metric space
(where all distances between different points are equal). Consider attempting to prove an
Ω(logn) lower bound for fair MTS problem on HST metric. If our abstraction is correct,
it is reasonable to expect that for UMTS U = (UΔ

b ; r1, . . . , rb) (where UΔ
b is the uniform

metric space on b points with distance Δ), if ri � c logni then there is a lower bound of r
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for U such that r � c log(
∑

i ni). Indeed we prove such a claim in Section 4 (Lemma 13).
In Section 5 we combine the lower bounds for the uniform UMTS and obtain an Ω(logn)

lower bound on a k-HST along the lines outlined above. In order to avoid interference
between the levels this applies only for k = Ω(log2 n). We prove

Theorem 3. Given an Ω(log2 n)-HST M on n points, the competitive ratio (against oblivi-
ous adversaries) of any randomized online algorithm for the MTS defined on M , is at least
Ω(logn).

Theorems 3, 2 and Proposition 1 imply a lower bound of Ω(logn/ log2 logn) for any
metric space, which concludes Theorem 1.

3. Ramsey-type theorems for metric spaces

Lemma 3. Given a metric space M = (V , d) on |V | = n points, and β > 1, there exists a
subset S ⊆ V , such that |S| � n1/β and (S, d) O(logβ logn)-approximates a 1-HST.

Proof. We may assume that β � logn and n > 2 (otherwise the claim is trivial). Let Δ be
the diameter of M , and let t = 
logβ logn+1�. Choose an endpoint of the diameter x ∈ M .
Define a series of sets Ai = {y ∈ M | d(x, y) � Δ(i/(2t + 1))}, for i = 0,1,2, . . . ,2t + 1,
and “shells” S0 = {x}, Si = Ai \ Ai−1. Choose Si , 1 � i � 2t , and delete it. Denote by
B = Ai−1 and C = V \ Ai . The root of the 1-HST is associated with label Δ/(2t + 1),
the two subtrees are built recursively by applying the same procedure on (B,d|B) and
(C,d|C). Let S be the resulting set of points that are left at the end of the recursive process.
Since distances in the 1-HST are at most 1/(2t + 1) smaller than those in M we get that
the subspace (S, d) indeed 2t + 1 = O(logβ logn)-approximates the resulting 1-HST. We
are left to show how to choose i such that |S| � n1/β .

Let εi = Ai/n. Note that n−1 � ε0 � ε2t � 1 − n−1. Without loss of generality we may
assume that εt � 1/2, since otherwise we may consider the sequence A′

i = V \ A2t−i and
ε′
i = 1 − ε2t−i . After deleting Si we are left with two subspaces, |B| = εi−1n, and |C| =

(1 − εi)n. Inductively, assume that the recursive selection leaves at least (εi−1n)1/β points
in B and at least ((1 − εi)n)1/β points in C. So |S| � (ε

1/β

i−1 + (1 − εi)
1/β)n1/β points. To

finish the proof it is enough to show the existence of i0 for which ε
1/β

i0−1 + (1 − εi0)
1/β � 1.

If exists 0 � i0 < t for which εi0−1 � ε
β
i0

then ε
1/β

i0−1 + (1 − εi0)
1/β � εi0 + (1 − εi0) = 1

and we are done. Otherwise, we have that εi−1 < ε
β
i for all 0 � i < t , and since εt � 1/2,

we conclude by induction on i that εi � (1/2)β
(t−i)

. But then

ε0 �
(

1

2

)βt

<

(
1

2

)β
logβ logn

= 1

n
,

which contradicts ε0 � 1/n. �
We also need the following lemma from [Bar98].
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Lemma 4. For any � > 1, any 1-HST �-approximates some �-HST.4

Proof (sketch). Let T be a 1-HST. We construct a �-HST by incrementally changing T

as follows. Scan the vertices of T in top–down fashion. For any non-root vertex v, and
its father u, if Δ(v) � Δ(u)/� then delete v and connects v’s children directly to u. The
resulting tree is clearly an �-HST and a �-approximation of T . �

Next, we show how to prune an �-HST on n leaves, to get a subtree which is a k-HST
with n1/
log� k� leaves. This follows from the following combinatorial lemma for arbitrary
rooted trees. Recall that a vertex in a rooted tree is called non-degenerate if the number of
its children is not one.

Definition 7. A rooted tree is h-sparse if the number of edges along the path between any
two non-degenerate vertices is at least h.

Lemma 5. Given a rooted tree T on n leaves, there exists a subtree T ′ with at least n1/h

leaves that is h-sparse.

Proof. For a tree T and i ∈ {0,1, . . . , h − 1} let fi(T ) be the maximum number of leaves
in h-sparse subtree of T for which any vertex of depth less than i has out degree at most
one. Clearly f0(T ) = maxi fi(T ).

We prove by induction on the height of T that
∏h−1

i=0 fi(T ) � n, and thus f0(T ) � n1/h.
The base of the induction is a tree T of height 0, for which fi(T ) = 1 for any i, as required.
For T with height at least 1, denote by {Tj }j the subtrees of T rooted at the children of the
root of T . Assume that Tj has nj leaves, and n = ∑

j nj . One possible way to obtain an
h-sparse subtree of T would be to include the root in the tree and the union of the solutions
of fh−1(Tj ). Therefore

f0(T ) �
∑
j

fh−1(Tj ).

Consider the case i > 0. Let vj be a child of the root and let Tj be the subtree rooted at vj .
Let Sj be an h-sparse subtree of Tj , with maximum number of leaves, for which any vertex
of depth less than i − 1 has out degree at most one. Construct a subtree S by concatenating
the edge from the root to vj with the subtree Sj . This results in an h-sparse subtree of T

for which any vertex of depth less than i has out degree at most one. Hence

fi(T ) = max
j

fi−1(Tj ) ∀i ∈ {1, . . . , h − 1}.

Thus

h−1∏
i=0

fi(T ) �
(∑

j

fh−1(Tj )

)
·
h−1∏
i=1

max
j

fi−1(Tj ) �
∑
j

(
fh−1(Tj ) ·

h−1∏
i=1

fi−1(Tj )

)

4 In [Bar98], 1-HST is referred as “hierarchical partition metric.”
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=
∑
j

h−1∏
i=0

fi(Tj ) �
∑
j

nj = n.

The last inequality follows from the induction hypothesis. �
Lemma 6. Given a 1-HST N on n points there exists a subspace of N on n1/
log� k� points
which �-approximates a k-HST.

Proof. As a first step we construct, using Lemma 4, an �-HST M that is � approximated
by N .

Let h = 
log� k�. Let T be the underlying tree of M . Applying Lemma 5 on T we get a
subtree S of T which is h-sparse. Let S′ be the tree resulting from coalescing pairs of edges
with a common degenerate vertex in S. Consider the metric space M ′ defined on the leaves
of S′ with the associated labels. Clearly, M ′ is a subspace of M . Consider any internal node
u in S′ and let v be a child of u in S′. If v is a leaf then Δ(v) = 0. Otherwise both u and v

are non-degenerate and therefore the number of edges on the path in T between u and v is
at least h. This implies that Δ(u)/Δ(v) � �h � k. Thus M ′ is a k-HST. �
Theorem 4. For any metric space M = (V , d) on |V | = n points, any β > 1, any k > 1,
and any 1 < � � k there exists a subset S ⊆ V , such that |S| � n1/(β
log� k�) and (S, d)

O(� logβ logn)-approximates a k-HST.

Proof. Given a metric space M on n points, from Lemma 3, we get a subspace of M

with n1/β points that O(logβ logn) approximates an 1-HST S. We then apply Lemma 6
to obtain a subspace of S on n1/(β
log� k�) points which O(� logβ logn)-approximates a
k-HST. �

Theorem 2 is a corollary of Theorem 4 when substituting β = � = 2.
As discussed in Section 1.1, Lemma 3 has been recently improved in [BLMN04a].

Lemma 6 is tight as shown in Proposition 29. Furthermore we show in Proposition 26
that in order to get a Ramsey-type theorem with a constant approximation for HSTs, the
subspace’s size must be at most nc for some constant c ∈ (0,1).

For specific metric spaces, better approximations are possible. Here we consider the
�-dimensional mesh. The result is based on the Gilbert–Varshamov bound from coding
theory (see [MS77, Chapter 17, Theorem 30]).

Lemma 7 (Gilbert–Varshamov bound). For any h ∈ N, and α ∈ (0,0.5), there exists a
binary code C ⊂ {0,1}h on h-bit words such that the minimum Hamming distance between
any two codewords is at least αh, and |C| � 2h(1−H2(α)), where H2(x) = −(x log2 x +
(1 − x) log2(1 − x)) is the binary entropy.

Lemma 8. Given an h-dimensional mesh M = [s]h = {0,1, . . . , s − 1}h with the �p-norm
(p ∈ [1,∞]) on n = sh points. Then, there exists a subspace S ⊂ [s]d that 12-approximates
a 9-HST, and |S| � nc for a constant c = 0.08 log9 2.
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Proof. We construct an HST T by induction on s. For s = 1, T is simply one point.
For s > 1 we construct T as follows. Fix α = 1/3. By Lemma 7, there exists an h-

bit binary code C with a minimum Hamming distance of h/3, and |C| � 2h(1−H2(1/3)) �
20.08h. For each codeword w = (a1, . . . , ah) ∈ C, we choose a submesh of size 
s/9�h with
a corner located at (s − 1)w. More specifically,

Sw =
(

a1

(
s −

⌈
s

9

⌉)
+

[⌈
s

9

⌉])

×
(

a2

(
s −

⌈
s

9

⌉)
+

[⌈
s

9

⌉])
× · · · ×

(
ah

(
s −

⌈
s

9

⌉)
+

[⌈
s

9

⌉])
,

where for a set of numbers Y and a number x, x + Y = {x + y | y ∈ Y } is the Minkowski
sum.

Let x ∈ Sw and y ∈ Sw′ where w,w′ ∈ C and w �= w′. Obviously d(x, y) � p
√

h (s − 1),
but also, by the triangle inequality, d(x, y) is at least

d(x, y) �
(

max
a∈Sw, b∈Sw′

d(a, b)
)

− diam(Sw) − diam(Sw′)

� p

√
h

3
(s − 1) − 2 p

√
h

(⌈
s

9

⌉
− 1

)

�
{ p√

h
3 (s − 1) − 2 p

√
h s

9 �
p√

h(s−3)
9 �

p√
h(s−1)

12 , s � 9,
p√

h
3 (s − 1), 2 � s < 9.

Hence, the distances between points in different subspaces are approximately the same,
up-to a factor of 12. T has a root labeled with p

√
h(s − 1)/12. Its children correspond to

the subspaces Sw for w ∈ C. For each subspace an HST is constructed inductively with
s ← 
s/9�.

From the construction, T is a 9-HST, and from the previous discussion, the distances
in T are 12 approximated by the original distances in the mesh. T is also a complete and
balanced tree. Its height is at least log9 s, and the out-degree of each internal vertex is |C|.
Hence, the number of leaves in T is at least |C|log9 s � 20.08h log2 s log9 2 = nc. �

In Proposition 26 we show the above lemma to be tight.

4. Lower bounds for uniform UMTS

Our goal is to construct a lower bound on HSTs. This is done in the next section by
combining lower bounds for subtrees of the HST, using a lower bound for a corresponding
unfair MTS problem on a uniform metric space. In this section we formally define the type
of the lower bounds we use, and prove such a lower bound for the uniform metric space.

Our lower bounds are based on Yao’s principle (Theorem 5), by which adversaries pro-
duce a distribution over sequences against deterministic algorithms. However, since the
adversaries for (sub)spaces would be part of a larger adversary, we need to be more careful
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about their structure. In particular, since the expected cost of the adversary on the distrib-
ution would serve as the task for UMTS abstracting a higher level view of the space, and
since the lower bounds for UMTS rely crucially on the tasks being relatively small, we
need to maintain upper bounds on the expected cost of the optimal offline algorithm. We
formalize it in the following definitions.

Given an algorithm AU for UMTS U = (M; r1, . . . , rb), define costAU
(σ,u0) to be the

cost of AU on the task sequence σ when starting from point u0 ∈ M . Let OPT0 be the
optimal offline algorithm for servicing a task sequence and returning to the starting point.
An elementary task (v, δ), where v ∈ M , is a task that assigns cost δ to the point v and 0
to every other point. Our lower bound argument uses only elementary tasks.

Definition 8. Given a UMTS U = (M; r1, . . . , rb) on a metric space with diameter Δ > 0,
define an (r, β)-adversary D to be a distribution on finite elementary task sequences for U

such that

• minu0∈M Eσ∈D[costOPT0(σ,u0)] � βΔ;
• for any online algorithm A, minu0∈M Eσ∈D[costA(σ,u0)] � rβΔ.

Yao’s principle (cf. [BLS92,BEY98]), as applied to (unfair) metrical task systems im-
plies the following result.

Theorem 5. If there exists an (r, β)-adversary for a UMTS U , then r is a lower bound on
the randomized competitive ratio for U against oblivious adversaries.

Proof. The proof is standard and can be found, e.g., in [BEY98]. The only issue here is to
generate a sequence of unbounded cost for the online algorithm. As we can repeatedly and
independently sample from the same distribution over and over again, we can make the
cost of the online unbounded. Note that the offline costs indeed sum up as required since
OPT0 always return to the same point. �

Our basic adversaries can only use discrete tasks. We formalize it in the following defi-
nition.

Definition 9. Given a UMTS U = (M; r1, . . . , rb) on a metric space with diameter Δ, an
(r, β;α1, . . . , αb)-discrete adversary is an (r, β)-adversary that uses only tasks of the form
(vi, αiΔ).

Observation 9. For γ > 0, denote by γM a metric in which the distances are scaled
by a factor of γ compared to M . A UMTS U = (M; r1, . . . , rb; s) and a UMTS
U ′ = (γM; r1, . . . , rb; s) have the same competitive ratio. Moreover (r, β)-adversary and
(r, β;α1, . . . , αb)-discrete adversary for U are easily transformed into (r, β)-adversary and
(r, β;α1, . . . , αb)-discrete adversary (respectively) for U ′ by scaling the tasks by a factor
of γ .
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Lemma 10. There exist constants5 λ3, ρ > 0 such that for any UMTS U = (UΔ
b ; r1, . . . , rb),

r1 � r2 � · · · � rb � 1 satisfying r1 � 1
4 lnb, there exists an (r, β; r−1

1 , r−1
2 , . . . , r−1

b )-
discrete adversary, where β � λ3r1, and

r � ρ ln

(
b∑

i=1

eρ−1ri

)
. (1)

Formula (1) is better understood in the following context. Let ni = eρ−1ri , where ni

should be thought of as a (lower bound) estimate on the number of points in the sub-
space that corresponding to vi , and “generates” a lower bound on the competitive ratio of
ri = ρ logni . Let n = ∑

i ni , and thus formula (1) implies a lower bound of ρ lnn on the
competitive ratio for the whole space, represented by U . This is the recursive argument we
need in order to prove a ρ logn lower bound.

Without loss of generality (due to Observation 9), we may assume that Δ = 1. To prove
Lemma 10 we use the following distribution. Let m be a parameter to be determined later.
A task sequence of length m is generated by repeatedly and independently picking a ran-
dom point vi and generating an elementary task (vi, r

−1
i ). The expected cost of any online

algorithm on this distribution is at least μ = m/n.
We give an upper bound for OPT0 on this sequence by presenting the following offline

algorithm PHASE. PHASE starts at v1 ∈ U1
b . It chooses in hindsight a point vi , moves to

vi at the beginning of σ , stay there for the entire duration of σ , and at the end returns to
v1. The point vi is chosen so as to minimize the cost of PHASE, i.e., the local cost on vi

during σ plus zero if i = 1 and plus two if i > 1. Denote by Xi the number of tasks given
to point vi . Thus the total local cost for vi is Xi/ri , and the expected cost of PHASE (which
is an upper bound on the cost of OPT0) is

E

[
min

{
X1

r1
,2 + min

i�2

Xi

ri

}]
. (2)

The analysis of formula (2) is rather complicated. Fortunately, in order to prove inequal-
ity (1), it is sufficient to establish it in only two cases: when b = 2 and when r1 = · · · = rb .
This is due to the following proposition.

Proposition 11. Given a non-increasing sequence of positive real numbers (ni)i�1. Denote
by n = ∑

i ni and assume n < ∞. Then either
√

n1 +√
n2 � √

n, or there exists � � 3 such
that � · √n� >

√
n.

Proof. We first normalize by setting xi = ni/n. Thus,
∑

i xi = 1, and we need to prove
that either

√
x1 + √

x2 � 1 or there exists � � 3 such that �
√

x� > 1.
Assume that the second condition does not holds, i.e., ∀� � 3, x� � �−2. We will prove

that
√

x1 + √
x2 � 1. Let b = �x2

−0.5�. We may assume that x2 � 1/4 (otherwise
√

x1 +√
x2 � 1), and therefore b � 2. Hence

5 The constant ρ we achieve is quite small. We have made no serious attempt to optimize it, and preferred
simplicity whenever possible.
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∞∑
i=b+1

xi �
∞∑

i=b+1

i−2 � x2
(
x−0.5

2 − b
) +

∞∫
x−0.5

2

z−2 dz

= x2
(
x−0.5

2 − b
) + √

x2 = 2
√

x2 − bx2.

So,

x1 = 1 −
∞∑
i=2

xi � 1 − (b − 1)x2 − (
2
√

x2 − bx2
) = 1 − 2

√
x2 + x2 = (

1 − √
x2

)2
.

That is
√

x1 + √
x2 � 1, as needed. �

Proof of Lemma 10. We will use in the proof some elementary probabilistic arguments.
For the sake of completeness, we include their proofs in Appendix A. We derive an up-
per bound on formula (2) as follows. Fix δ1 ∈ [0,1], and denote by Y the event “∃i � 2,
Xi/ri � (1 − δ1)μ/r1,” i.e., one of the points in {v2, . . . , vn} has a local cost of at most
(1 − δ1)μ/r1. Let p̂ = Pr[Y ]. We can bound the cost for PHASE as follows: If Y does
not happen, PHASE can stay in v1, otherwise it moves to vi with a local cost at most
(1 − δ1)μ/r1. Hence its cost is at most (1 − p̂)E[X1 | ¬Y ]/r1 + p̂(2 + (1 − δ1)μ/r1). By
Proposition A.5 in Appendix A, E[X1 | ¬Y ] � E[X1] = μ, and so we derive the following
bound.

E
[
costOPT0(σ, v1)

]
� (1 − p̂)

μ

r1
+ p̂

(
(1 − δ1)μ

r1
+ 2

)
= μ

r1
(1 − p̂δ1) + 2p̂. (3)

Assuming 1 � δ1 � 4r1/μ, we have the following bound

E
[
costOPT0(σ, v1)

]
� μ

r1

(
1 − p̂

δ1

2

)
= β.

The lower bound on the competitive ratio we achieve is

r � μ
μ
r1

(1 − p̂ δ1
2 )

� r1

(
1 + p̂

δ1

2

)
.

Clearly, we need a lower bound on p̂. We define pi = Pr[Xi � (1 − δ1)μ/r1], and
analyze the lower bound in two special cases.

• In case r1 = · · · = rb , we have p1 = p2 = · · · = pb . We bound p̂ in terms of p1.

1 − p̂ � (1 − p1)
b−1 � exp

(−(b − 1)p1
)
� 1 − min

{
1

4
,

1

2
(b − 1)p1

}
.

The first inequality follows from Proposition A.4 in Appendix A, and the last inequal-
ity follows since e−τ � max{0.75,1 − 0.5τ } for τ � 0. Thus p̂ � min{0.25,0.5(b −
1)p1}.
To bound p1, we use a lower bound estimate on the tail probability of a binomial vari-
able. Lemma A.1 in Appendix A states that there exist constants λ2 � 1 � λ1 > 0 such
that, p1 � λ1e

−λ2δ
2
1μ, provided that μ � 4. Thus p̂ � min{0.25,0.5(b − 1)λ1e

−λ2δ
2
1μ}.
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Fix μ̃ = 16r2
1 λ2

lnb
. Note that μ̃ � 4, since r1 � (lnb)/4. We want to set μ ≈ μ̃, however,

we need to maintain m = nμ ∈ N, so we choose μ = 
μ̃� � 5
4 μ̃. In order to satisfy the

constraint on δ1, we choose δ1 = 4r1
μ̃

= lnb
4λ2r1

, so 1 � δ � 4r1
μ

.

Since δ1 =
√

lnb
μ̃λ2

, we have p̂ � 0.5λ1e
−5/4 � λ1/8. Thus, the lower bound we show is

r1 + p̂ δ1
2 r1 � r1 + λ1

8

lnb

8λ2r1
r1 = r1 + λ1

64λ2
lnb � λ ln

(
beλ−1r1

)
,

for λ � λ1
64λ2

. Note that β � μ
r1

� 20λ2r1.
• In case b = 2, let δ2 ∈ [0,1] such that (1 − δ1)

μ
r1

= (1 − δ2)
μ
r2

. We fix δ1 =
r1−r2+(20λ2)

−1

r1
, so

δ2 = r1 − r2

r1
+ δ1

r2

r1
= r1 − r2

r1
+ r1 − r2 + (20λ2)

−1

r1

r2

r1

� 2
r1 − r2 + (20λ2)

−1

r1
.

In order to satisfy the constraint on δ1, we choose μ = 
μ̃�, where μ̃ = 4r1
δ1

=
4r2

1
r1−r2+(20λ2)

−1 , so μ � 5
4 μ̃. In this case, by applying Lemma A.1,

p̂ = p2 � λ1e
−λ2δ

2
2μ � λ1e

−16 5
4 λ2(r1−r2+(20λ2)

−1) = λ1

e
e−20λ2(r1−r2).

Assuming λ � λ1
40eλ2

, the lower bound we show is

r1 + p̂
δ1

2
r1

� r1 + λ1

e
e−20λ2(r1−r2)

r1 − r2 + (20λ2)
−1

2r1
r1 � r1 + λ1

40eλ2
e−20λ2(r1−r2)

� r1 + λeλ−1(r2−r1) � r1 + λ ln
(
1 + eλ−1(r2−r1)

) = λ ln
(
eλ−1r1 + eλ−1r2

)
.

Note that β � μ
r1

� 100λ2r1.

In the general case, let ρ = λ/2, ni = eρ−1ri , and n = ∑b
i=1 ni . Applying Proposition 11,

we get one of the following two possible cases:

• ∃� such that �
√

n� � √
n. Note that min{X1

r�
,2 + mini: ��i�2

Xi

r�
} is an upper bound on

formula (2). Thus, our lower bound for � equal cost ratios (= r�) applies here, and we
get a lower bound of

λ ln
(
�eλ−1r�

) = λ ln
(
�
√

n�

)
� λ ln

√
n = ρ lnn.

• √
n1 + √

n2 � √
n. Again, min{X1

r1
,2 + X2

r2
} is an upper bound on formula (2). Thus,

our lower bound for b = 2 applies here, and we get a lower bound
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λ ln
(
eλ−1r1 + eλ−1r2

) = λ ln
(√

n1 + √
n2

)
� λ ln

√
n = ρ lnn.

We conclude that the claim is proved with the constants λ3 = 100λ2, and ρ = λ1
2·64eλ2

. �
Still, Lemma 10 requires r1 � 1

4 lnb. For a small r1 we use the standard (fair) MTS
lower bound.6

Lemma 12. For a UMTS U = (UΔ
b ;1, . . . ,1) there exists an (

Hb

2 ,2;1,1, . . . ,1)-discrete

adversary, where Hn = ∑b
i=1 i−1.

Proof. Without loss of generality, assume Δ = 1. The sequence is determined by a
random permutation π of the points in the space. Then, σ = τ1 τ2 · · · τb , where τi =
(vπ(1),1)(vπ(2),1) · · · (vπ(i),1).

Obviously, OPT0’s cost is at most 2, because it can move at the beginning of σ to vπ(b),
and return at the end of σ . The expected cost of the online on the other hand is at least

1
b−i+1 in τi , and thus at least

∑b
i=1 i−1 in σ . �

Lemma 13. There exist constants λ3, ρ > 0 satisfying the following. Given a UMTS U =
(UΔ

b ; r1, . . . , rb), with r1 � r2 � · · · � rb � 1, and (ni)i satisfying ri = ρ(1 + lnni), there
exists an (r, β;α1, . . . , αb)-discrete adversary such that r � ρ(1 + ln(

∑
i ni)), β � λ3r1,

and mini αi � r−1
b .

Proof. Let ρ � 1/4 and λ3 � 2 be the constants from Lemma 10. If r1 � lnb
4 then the

claim follows from Lemma 10.
For r1 � lnb

4 , we use the adversary from Lemma 12. Thus,

r � 0.5Hb � r1 + lnb

4
� ρ(1 + lnn1) + ρ lnb � ρ

(
1 + ln(n1b)

)
.

Also, β = 2 � λ3r1 and mini αi = 1 � r−1
b . �

5. Combining adversaries on HSTs

In this section we prove a lemma for combining adversaries for subspaces using the dis-
crete adversary of Lemma 13 as the combining adversary. We then construct adversaries
for HSTs by inductively combining adversaries for subtrees. When attempting to combine
(r, β) adversaries, we still have the following problem. The adversary of Lemma 13 can
only use specific task sizes, but the tasks we have from subtrees’ adversaries are not nec-
essarily of these sizes. Our solution is to inductively maintain “flexible” adversaries that

6 The adversary of Lemma 10 actually works for r1 � lnb
4 as well, by choosing μ ≈ lnb, δ = 1, and a simple

bound of Pr[X = 0] � 4−μ . We choose to present this lower bound using a different adversary, since the analysis
is simpler, and the bound is better.
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can generate lower bound sequences with associated optimal cost of value that may vary
arbitrarily in a specified range.

Definition 10. Given a UMTS U = (M; r1, . . . , rb) an (r, β;η)-flexible adversary for η ∈
[0,1] is defined as a collection A of (r, β ′)-adversaries, for all β ′ ∈ [ηβ,β].

Definition 11. Given a UMTS U , an (r, β;η;α1, . . . , αb)-flexible discrete adversary is a
collection A of discrete adversaries for U such that ∀β ′ ∈ [ηβ,β], ∃(α′

i )i such that α′
i �

αi and A includes an (r, β ′;α′
1, . . . , α

′
b)-discrete adversary. Obviously, A is an (r, β;η)-

flexible adversary.

We start by showing how to transform a discrete adversary into a flexible discrete ad-
versary with only a small loss in the lower bound obtained.

Lemma 14. Denote the UMTSs Us = (M; r1, . . . , rb; s) with Δ(M) = Δ, and as-
sume there exists an (r, ηβ;α1, . . . , αb) discrete adversary Dη for Uη, then there exists
(r, β;η;α1, . . . , αb) flexible discrete adversary A for U1.

Proof. Denote by Uη,α = (αM; r1, . . . , rb;η) (so Uη = Uη,1). Dη is (r, ηβ;α1, . . . , αb)

discrete adversary for Uη . Observation 9 implies the existence of (r, ηβ;α1, . . . , αb)

discrete adversary Dη,α−1 for Uη,α−1 that replaces each task (vi, αiΔ) of Dη with
(vi, αiα

−1Δ).
Consider the adversary Dη,α−1 , for α ∈ [η,1] when applied to U1,

min
u0∈M

Eσ∈D
η,α−1

[
costOPT0

U1
(σ,u0)

]
� min

u0∈M
Eσ∈D

η,α−1

[
costOPT0

U
η,α−1

(σ,u0)
]

� ηβα−1Δ.

The first inequality follows since the distances in Uη,α−1 are larger than in U1.
On the other hand, for any online algorithm AU1 for U1, consider AU

η,α−1 the simulation
of AU1 on Uη,α−1 . The moving costs for online algorithms in Uη,α−1 are smaller than in U1,
since ηα−1 � 1. So we have,

min
u0∈M

Eσ∈D
η,α−1

[
costAU1

(σ,u0)
]
� min

u0∈M
Eσ∈D

η,α−1

[
costAU

η,α−1
(σ,u0)

]
� rηβα−1Δ.

Hence, Dη,α−1 is (r, ηα−1β) adversary for U1. Note that for vi , Dη,α−1 uses the tasks
(vi, αiα

−1Δ), and thus it is actually (r, ηα−1β;α−1α1, α
−1α2, . . . , α

−1αb)-discrete ad-
versary for U1. Thus A = {Dη,α−1 |α ∈ [η,1]} is an (r, β;η;α1, . . . , αb) flexible discrete
adversary for U1. �
Lemma 15. The existence of an (rη−1, ηβ;α1, . . . , αb)-discrete adversary for U ′ =
(M; r1η

−1, . . . , rbη
−1) implies the existence of an (r, β;η;α1, . . . , αb)-flexible discrete ad-

versary for U = (M; r1, . . . , rb).
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Proof. Apply Observation 2 to deduce that the same adversary is an (r, ηβ;α1, . . . , αb)

discrete adversary for U ′′ = (M; r1, . . . , rb;η) and then apply Lemma 14 on U ′′ to get an
(r, β;η;α1, . . . , αb) flexible discrete adversary for U = (M; r1, . . . rb;1). �
Corollary 16. Given a UMTS U = (UΔ

b ; r1, . . . , rb), r1 � · · · � rb � 1, and (ni)i satisfying
ri = 0.5ρ(1 + lnni), there exists an (r, β;0.5;α1, . . . , αb)-flexible discrete adversary such
that r � 0.5ρ(1 + ln

∑
i ni), β � 4λ3r1, and mini αi � 0.5r−1

1 .

Proof. Fix η = 0.5. Let r̄i = riη
−1. By Lemma 13 we have an (r̄, β̄;α1, . . . , αb) discrete

adversary for (UΔ
b ; r̄1, . . . , r̄b), satisfying mini αi � r̄−1

1 , and β̄ � λ3r̄1. By Lemma 15,
there exists (r, β;η;α1, . . . , αb) flexible discrete adversary for U , where r = ηr̄ and β =
β̄η−1. Since r̄i = η−1ri = η−1ηρ(1+ lnni), by Lemma 13, r = ηr̄ � ηρ ln(1+∑

i ni). �
Next we show how to combine flexible adversaries.

Lemma 17 (Combining Lemma). Let U = (M; r̄1, . . . , r̄n) be an UMTS, where M is a k-
HST metric space of diameter δ on n points, and denote the root vertex of the HST by u.
Let (M1,M2, . . . ,Mb) be the partition of M to subspaces corresponding to the children u.

Let Uj be the UMTS induced by U on Mj . Assume that for each j ∈ {1, . . . , b} there ex-
ists (rj , βj ;η)-flexible adversary Aj for Uj . Let Û = (UΔ

b ; r1, . . . , rb) be the “combining

UMTS”. Assume there exists an (r, β;η;α1, . . . , αb)-flexible discrete adversary Â for Û .
If k � η

1−η
maxj

βj

αj
, then there exists a (r, β;η)-flexible adversary A for U .

Proof. We fix β ′ ∈ [ηβ,β], and the goal is to construct (r, β ′) adversary D for U .
We start by choosing a (r, β ′;α′

1, . . . , α
′
b)-discrete adversary D̂ from Â. Denote Δ =

Δ(M), and Δj = Δ(Mj) the diameters of M and Mj , respectively. Then, for each j , we
choose β ′

j ∈ (ηβj ,βj ] such that tj = α′
jΔ/(β ′

jΔj ) is a natural number. This is possible
since

α′
jΔ

ηβjΔj

− α′
jΔ

βjΔj

� αjΔ

ηβjΔj

− αjΔ

βjΔj

� αj

βj

1 − η

η
k � 1.

Let D′
j be an (rj , β

′
j )-adversary from Aj .

We construct a distribution D on elementary task sequences for U as follows: first we

sample σ̂ ∈ D̂; then we replace each task (zj , α
′
jΔ) in σ̂ with σj = σ

(1)
j σ

(2)
j · · ·σ (tj )

j where

each σ
(i)
j is independently sampled from D′

j .

Next, we bound OPT0
U . Let zq be the point in Û that minimizes E

σ̂∈D̂
[costOPT0

Û

(σ̂ , zq)].
Let v0 ∈ Mq the point that minimizes Eσ∈(D′

q )[costOPT0
Uq

(σ, v0)]. Consider the following

offline strategy B for serving σ ∈ D: the algorithm starts and finishes at v0. B maintains
the invariant that if OPT0

Û
is at a point zi then B is at some point in Mi . Consider some

task (zj , α
′
jΔ) in σ̂ . It is replaced by sequence σj as described above. If OPT0

Û
moves to a

point different from zj it incurs a cost of Δ. In this case B moves out of Mj ahead of the
task sequence σj incurring a cost of Δ as well. If OPT0 is not at zj then its cost for the
Û
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task is 0 and the cost for B on σj is also 0. Otherwise, OPT0
Û

incurs a cost of α′
jΔ for the

task. In this case B uses OPT0
Uj

to serve σj in Mj . The expected cost of OPT0
Uj

for each

subsequence σ
(i)
j of σj is at most β ′

jΔj , and therefore the cost of B equals

min
u0∈Mj

E
σj ∈(D′

j )
tj

[
costOPT0

Uj

(σj , u0)
]
� tj β

′
jΔj = α′

jΔ.

It follows that the expected cost of B for serving σj is bounded from above by the cost of
OPT0

Û
on the task (zj , α

′
jΔ). Hence

min
u0∈M

Eσ∈D
[
costOPT0

U
(σ,u0)

]
� Eσ∈D

[
costB(σ, v0)

]
� E

σ̂∈D̂
[
costOPT0

Û

(σ̂ , zq)
]

� β ′Δ.

It is left to show a lower bound on online algorithms for U . Let A be an online algo-
rithm for U . We can naturally define an online algorithm Â for Û as follows. Consider
a distribution on sequences σ ∈ D generated as described above from a sequence σ̂ ∈ D̂.
Consider a task (zj , α

′
jΔ) in σ̂ and let σj be the corresponding sequence generated above

for Mj . Whenever A moves between subspaces into a point in subspace Mi during the
service of σj , if i �= j then Â makes a move to the corresponding point zi before serving
the task. Â serves the task in the last such zi and finally moves to the point corresponding
to the subspaces in which A ends the service of σj . Obviously, the moving cost of Â is
bounded from above by the cost A incurs on moves between subspaces. If A does move
between subspaces during the service of σj then Â incurs zero local cost for the task and
therefore its cost for the task is at most that of A on σj . Otherwise, if A is in a subspace Mi ,
i �= j , during the entire sequence σj then the cost of Â for the task is 0. If A is in Mj during
σj then we have

min
u0∈Mj

E
σj ∈(D′

j )
tj

[
costA(σj , u0)

]
� tj · rjβ ′

jΔj = rjα
′
jΔ,

which is the cost for Â. It follows that in all cases the expected cost of A on σj is at least
the cost of Â on the task. Thus, we get that for any online algorithm A,

min
u0∈M

Eσ∈D
[
costA(σ,u0)

]
� min

z0∈M̂

E
σ̂∈D̂

[
cost

Â
(σ̂ , z0)

]
� rβ ′Δ. �

Proof of Theorem 3. Fix constants c2 = 0.5ρ, c3 = 4λ3, and c1 = 2c3. Consider an ar-
bitrary (c1(1 + lnN)2)-HST on N points. We construct by induction on the height of a
subtree Tu rooted at u, a (ru,βu;0.5)-flexible adversary for a subtree with nu leaves, such
that ru � max{1, c2(1 + lnnu)}, and βu � c3(1 + lnnu).

The base case are trees on of height 1 for which we can apply the adversary of
Lemma 12 with ri = 1.

For height larger than one, assume an internal vertex u of the HST has n points in
its subspace, and b children. Inductively, assume that each Ti , a tree rooted at the chil-
dren of u, has (ri , βi;0.5) flexible adversary, such that βi � c3(1 + lnni) and ri � max{1,

c2(1+ lnni)}. Note that (r, β;η) flexible adversary implies (r ′, β;η) flexible adversary for
r ′ � r , and therefore we may assume that ri = max{1, c2(1 + lnni)}.
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We use the flexible discrete adversary from Corollary 16 as the combining adversary in
Lemma 17. Here βi/αi � 2riβi � 2 max{c2(1 + lnnu),1}c3(1 + lnnu) � c1(1 + lnN)2,
and thus we get an (r, β;0.5) flexible adversary for Tu with r � c2(1 + lnnu), and β �
4λ3 maxi ri � c3(1 + lnnu). �
Corollary 18. The randomized competitive ratio of the MTS problem in n-point �-dimen-
sional mesh is Ω(

logn
log logn

).

Proof. Combining Lemma 8 with Lemma 6, using k = Θ(log2 n), we deduce that the
mesh contains a subspace of size nΩ(1/ log logn) that O(1) approximates a Ω(log2 n)-HST.
Next we apply the lower bound of Theorem 3 on that HST. �

6. Lower bounds for K-server

Theorem 1 also implies a lower bound for the K-server problem. This follows from
the following general reduction from the MTS problem on an n-point metric space to the
(n − 1)-server problem on the same metric space.

Lemma 19. An r-competitive randomized algorithm for the (n− 1)-servers problem on an
n-point metric space against oblivious adversaries implies a (2r + 1) upper bound on the
randomized competitive ratio for MTS on the same metric space.

Proof. We will prove the implication only for MTS problems in which the tasks are ele-
mentary. For the purpose of establishing a lower bound for the K-server this is sufficient
since our lower bound for MTS uses only elementary tasks. However, there is also a general
reduction [BBBT97] from an upper bound for any tasks to an upper bound for elementary
tasks.

Given a metric space M on n points with metric d and diameter Δ, denote by S the
(n−1)-servers problem on M and by T the MTS problem on M . For a request sequence σ

in S, and point i ∈ M , we denote by wS
σ (i) the optimal offline cost for servicing σ and end

without a server in i. Similarly for task sequence τ in T we denote by wT
τ (i) the optimal

cost for servicing τ and ending in state i (these are called work functions). Note that for
any τ, σ, i, j , wS

σ (i) − wS
σ (j) � d(i, j) and wT

τ (i) − wT
τ (j) � d(i, j).

Given a randomized algorithm AS for S, we construct an algorithm AT for T . AT trans-
forms a task sequence τ into a sequence σ for S as follows. Assume the sequence is τ ′ = τe

where τ has been already transformed into σ . AT transforms the elementary task e = (i, δi)

using the following rule. If

wT
τ (i) + δi � min

j : j �=i
wT

τ (j) + d(i, j), (4)

it gives a request for i in S, otherwise no request is given. AT simulates AS and main-
tains its state in the point where AS does not have a server.7 Note that the request se-

7 Without loss of generality, we may assume that no two servers of AS are at the same point.
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quence σ was constructed oblivious to the random bits of AS , and thus E[costAS
(σ )] �

r costOPTS
(σ ) + C.

Next, we prove by induction on the sequence that for any τ and any i, wS
σ (i) � wT

τ (i).
For τ = ε, it is obvious that for all i, wS

ε (i) = wT
ε (i). Tasks in T that do not generate tasks

in S, obviously maintain the inductive invariant. Otherwise, let e = (l, δl) be a task in T

that generates a request e′ in S for l. wS has the following update rules. In point l,

wS
σe′(l) = min

j : j �=l

(
wS

σ (j) + d(l, j)
)
� min

j : j �=l

(
wT

τ (j) + d(l, j)
) = wT

τe(l).

The last equality follows from (4). For i �= l, wS
σe′(i) = wS

σ (i) � wT
τ (i) � wT

τe(i). There-
fore costOPTS

(σ ) � costOPTT
(τ ).

Denote by lcostA(τ) and mcostA(τ) the local cost and the movement cost of algorithm
A on sequence τ . Since AT moves similarly to AS , mcostAT

(τ ) = mcostAS
(σ ). To bound

the local cost of AT , we prove that

lcostAT
(τ ) � mcostAT

(τ ) + wT
τ (ic), (5)

where ic is the current state of AT . Consider a task e = (i, δi). If AT was not in a state i, no
local cost was generated. If AT was in a state i and did not move in response to task e, its
local cost is δi . On the other hand, for any j , wT

τ (i) + δi − wT
τ (j) � d(i, j), so wT

τe(i) =
wT

τ (i) + δi , hence Eq. (5) is maintained. If AT moves to state j then its local cost is 0. In
this case the right side of Eq. (5) is changed by d(i, j)+wT

τ (j)−wT
τ (i) � 0, and therefore

Eq. (5) is maintained. We conclude that costAT
(τ ) � 2 costAS

(σ ) + costOPTT
(τ ) + Δ. To

summarize

E
[
costAT

(τ )
]
� 2E

[
costAS

(σ )
] + costOPTT

(τ ) + Δ

� 2r costOPTS
(σ ) + costOPTT

(τ ) + Δ + 2C

= (2r + 1) costOPTT
(τ ) + C′,

where C′ = 2C + Δ is a constant. �
We remark that the technique of Lemma 19 can also be applied to deterministic al-

gorithms, but not directly to randomized algorithms in the adaptive online adversary
model [BDBK+94]. In [MMS90], a different reduction from the MTS problem to the
servers problem is given. Their reduction applies to all adversary models and is more ef-
ficient. However, it reduces an MTS problem to a servers problem in a different metric
space, and therefore inappropriate for our purposes.

When applying Lemma 19 on Theorem 1 we deduce following.8

Theorem 6. The randomized competitive ratio against oblivious adversaries of the K-
server problem on a metric space with more than K points is Ω(logK/ log2 logK).

Using Corollary 18 we have

8 A direct way to argue Theorem 6 without using Lemma 19 is to observe that the adversary in the proof of
Theorem 3 uses tasks that if replaced with task size infinity will increase OPT0’s cost by at most a factor of two.
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Corollary 20. The randomized competitive ratio against oblivious adversaries of the K-
server problem on h-dimensional mesh with more than K points is Ω(logK/ log logK).

Proof (sketch). Let M be an h-dimensional mesh, [s]h. We first remove points from
M to obtain a maximal submesh, M ′, of M of size m � K . It easy to observe that
m �

√
K . It follows from Lemma 19 and Corollary 18 that M ′ has a lower bound of

Ω(logm/ log logm) for m − 1 servers. To get a lower bound for M we pick K − m + 1
points not in M ′ and modify the adversary for M ′ by inserting repeated requests to these
points between its original requests to make sure that K − m + 1 servers will have to stay
at these points. �

For n � K , it is possible to get a better lower bound.

Theorem 7. Fix a constant ε > 0. Then for any K and any metric space M on n � K logε K

points, the K-server problem on M has a lower bound of Ω(logK) on the competitive
ratio for randomized online algorithms against oblivious adversaries.

Proof (sketch). Assume K is large enough. Let f = K logε K . We take an arbitrary subspace
with f points. Using Theorem 4 with β = logε/2 K , � = 2, and k = Θ(log2 K), we find a
subspace that O(logβ logf ) = O(ε−1) approximates a k-HST and has f (β
log k�)−1

> K

points. We further delete arbitrary points from this subspace to get exactly K + 1 points.
From Theorem 3 we have a lower bound of Ω(logK) MTS in this space. We conclude the
claim by using Proposition 1 and Lemma 19. �

7. Additional Ramsey-type theorems

In this section we prove additional Ramsey-type theorems, and relate our constructions
to those of [BFM86,KRR94,BKRS00]. In a subsequent paper [BLMN03b] these metric
Ramsey problems are further studied, and tight bounds are given.

Definition 12. A vertex u in a rooted tree is called balanced if the difference between the
number of leaves of any two subtrees rooted at u’s children, is at most one. The following
is a decreasing hierarchy of HST subclasses.

(1) A “binary/balanced” k-HST is a k-HST with the property that every internal vertex is
either balanced or has at most two children.

(2) A “binary/uniform” k-HST is a k-HST with the property that every internal vertex u

either has at most two children or all its children are leaves.
(3) A “BKRS” k-HST is a “binary/uniform” k-HST such that an internal vertex with ex-

actly two children is either balanced or one of the children is a leaf.
(4) A “BFM” HST is a 1-HST whose underlying tree is binary and for each vertex at most

one child is not a leaf.
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(5) A “KRR” k-HST, for k > 1, is either a uniform space or a k-super-increasing metric
space, where a k-super-increasing space is a k-HST in which every internal vertex has
at most two children, and at most one of them is not a leaf.

Bourgain et al. [BFM86], Karloff et al. [KRR94] and Blum et al. [BKRS00] essentially
prove the following Ramsey-type theorems.

Theorem 8. For any k � 4 and any metric space M = (S, d) on n points:

(1) [BFM86] There exists a subspace S′ ⊆ S such that |S′| � C(ε)logn and (S′, d) is
(1 + ε)-approximated by a “BFM” HST.9

(2) [KRR94] There exists a subspace S′ ⊆ S such that |S′| = Ω(
logn

log logn
) and (S′, d) is

O(k2)-approximated by a “KRR” k-HST.10

(3) [BKRS00] There exists a subspace S′ ⊆ S such that |S′| = 2Ω(
√

logk n−log2 k), and
(S′, d) is 4-approximated by a “BKRS” k-HST.11

“Binary/balanced” HSTs are of special interest for us. Our lower bound on the compet-
itive ratio of HST is actually proved for this class of spaces, with Proposition 11 as the key
argument for applying it on arbitrary HST (see Lemma 10). Here we explicitly construct
“binary/balanced” HSTs.

Lemma 21. In any HST on n leaves there exist a subset of the leaves of size
√

n on which
the induced HST is a “binary/balanced” HST.

Proof. The lemma is proved inductively by applying Proposition 11 as the inductive ar-
gument. The only issue here is how to maintain subtrees with the same number of leaves.
This is done using a dynamic programming approach.

Formally, we prove by induction on h that for any rooted tree T with a root r , of
height h, and with n leaves, and for any m ∈ {0,1, . . . , 
√n�}, T contains a subtree rooted
at r on m leaves.

For h = 0 the claim is trivial. Otherwise, let T1, . . . , Tb be the subtrees rooted at the
children of r . Denote by ni = |Ti |, so n = ∑b

i=1 ni . Assume without loss of generality
that n1 � n2 � · · · � nb > 0. If b = 1 the claim follows by the inductive hypothesis on T1.
Otherwise, fix an integer m, 
√n� � m � 0. By Proposition 11, one of the following holds:

(1)
√

n � √
n1 +√

n2. In this case we choose integers m1 � 
√n1� and m2 � 
√n2� such
that m = m1 + m2. By the inductive hypothesis there exist T ′

1, a “binary/balanced”
subtree of T1 with m1 leaves and T ′

2 a “binary/balanced” subtree of T1 with m2 leaves.

9 This is statement is only implicit in [BFM86]. They are interested in embedding a subspace inside �2. Em-
bedding in �2 is achieved by observing that a “BFM” HST is isomorphic to a subset of �2.
10 Using Lemma 4, it is possible to improve the theorem to O(k) approximation by a “KRR” k-HST.
11 The definition of “BKRS” HST, the statement of this claim, and its proof are only implicit in [BKRS00]. In
particular, they only consider the case k = log3 n.
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The tree T ′—rooted at r with the two subtrees T ′
1 and T ′

2 as the children—is a “bi-
nary/balanced” tree with m leaves.

(2) ∃� ∈ {2, . . . , b} such that
√

n � �
√

n�. Let m′ = m/�. Note that m′ � 
√n��, since
m � 
√n� � �
√n��. Thus, by the inductive hypothesis, for i � �, it is possible to
extract from Ti trees with �m′� and 
m′� leaves. By choosing a combination of trees
T ′

i of sizes �m′� or 
m′�, it is possible to get trees T ′
i such that |T ′

i | − |T ′
j | ∈ {−1,0,1}

and
∑

i |T ′
i | = m. Combining these subtrees with the root r , gives a “binary/balanced”

subtree T ′ with m leaves. �
Lemma 21 combined with Theorem 4, is the strongest Ramsey-type theorem presented

in this paper.

Theorem 9. For any metric space M = (V , d) on |V | = n points, any β > 1, any k > 1,
and any 1 < � � k there exists a subset S ⊆ V , such that |S| � n1/(2β
log� k�) and (S, d)

O(� logβ logn)-approximates a binary/balanced k-HST.

Proposition 22. In any k-HST on n leaves there exist a subset of the leaves of size
Ω(

logn
log logn

) on which the induced HST is a “KRR” k-HST.

Proof. Let T be the given HST and assume it does not have degenerate vertices. Either
T has an internal vertex u with at least logn children, and in this case, by taking one
descendant leaf from each child of u, we get a uniform space. Otherwise, T must have a
vertical path of length at least loglogn n. Take this path and add for each internal vertex
along the path another child as a leaf. The resulting HST is super-increasing. �
Proposition 23. In any HST on n leaves there exists a subset of the leaves of size Ω(logn)

on which the induced metric space is a “BFM” HST.

Proof. We first observe that any HST can be transformed into a 1-HST whose underlying
tree is binary without degenerate vertices. We then take the longest vertical path p in S—
its length is at least logn—and adjoin for each internal vertex u along p, a leaf from the
subtree of the child of u not on p. �
Proposition 24. Given a sequence n1 � n2 � · · · � nb > 0, and n = ∑b

i=1 ni , then

max{b,2n
1/(2

√
logn)

2 , n
1/(2

√
logn)

1 + 1} � 2
√

logn/2.

Proof. Assume that max{b,2n
1/(2

√
logn)

2 } < 2
√

logn/2. Then

n1 � n − bn2 � n − 2
√

logn/2 n

22
√

logn
� n

(
1 − 1

2
√

logn

)
.

Therefore,

n
1/(2

√
logn)

1 � n1/(2
√

logn)

(
1 − 1

2
√

logn

)1/(2
√

logn)

� 2
√

logn/2
(

1 − 1

2
√

logn

)

� 2
√

logn/2 − 1. �
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Proposition 25. In any HST on n leaves there exists a subset of the leaves of size at least
2
√

logn/2 on which the induced HST is a “BKRS” HST.

Proof. We prove, by induction on the height of the tree, that for any tree T with n leaves
and for any m � 
2

√
logn/2�, T contains a “BKRS” subtree T ′ with m leaves.

Let r be the root of T and T1, . . . , Tb the subtrees rooted at the children of r . Denote
ni = |Ti |, and apply Proposition 24.

If b � 2
√

logn/2, we construct T ′ by connecting r to one leaf from each Ti , for 1 � i � m.

If 2n
1/(2

√
logn)

2 � 2
√

logn/2, then we construct T ′ by connecting r to T ′
1 and T ′

2, where
T ′

1 is a subtree of T1 with 
m/2� leaves, and T ′
2 is a subtree of T2 with �m/2� leaves.

If n
1/(2

√
logn)

1 + 1 � 2
√

logn/2, then we construct T ′ by connecting r to T ′
1 and one leaf

from T2, where T ′
1 is a subtree of T1 with m − 1 leaves. �

Propositions 22, 23, and 25, when combined with Theorem 4, give corresponding
Ramsey-type theorems. These results, however, are slightly weaker than Theorem 8, as the
approximation factor is O(log logn) instead of a constant.12 We include them to demon-
strate the simplicity of their proof, when using HST.

We end the section with some impossibility examples. The first one deals with subspaces
of equally spaced points on the line.

Proposition 26. For any α � 1 there exists c < 1, such that any subset of n equally spaced
points on the line that is α-approximated by an HST, is of size at most O(nc).

Proof. Let M = {v1, v2, . . . , vn} be the metric space on n points such that dM(vi, vj ) =
|i − j |. Let S ⊆ M be a subspace that is α approximated by an HST T . We prove by
induction on n that |S| � 2(α + 1)nc, where c = c(α) < 1 will be chosen later.

Without loss of generality, we may assume that T is a binary tree without degenerate
vertices. Let n′ = max{dM(u, v) | u,v ∈ S} + 1 � n. Without loss of generality, assume
that v1, vn′ ∈ S are the two extreme points in S. For n′ � 2(α + 1) the inductive claim is
trivially true. Otherwise, let u = lcaT (v1, vn′), so Δ(u) � n′ − 1. Denote by S1 and S2 the
two subspaces induced by the children of u. Since for any v ∈ S1 and v′ ∈ S2, dM(v, v′) �
(n′ −1)/α, we can partition the interval {v1, . . . , vn′ } into 2�+1 subintervals I1, . . . , I2�+1,
such that for any i ∈ {1, . . . , �}, |I2i | � n′−1

α
− 1 and I2i ∩ S = ∅; for i � 0, I4i+1 ∩ S ⊆ S1

and I4i+3 ∩ S ⊆ S2. Denote by ni = |Ii |. Thus
∑�

i=0 n2i+1 + �(α(n′ − 1) − 1) � n′. The
induced HST on S ∩ I2i+1 α-approximates the original distances, and therefore by the
inductive hypothesis |S ∩ I2i+1| � 2(α + 1)nc

2i+1.

Assume � = 1, then n1 + n3 � n′ − ( n′−1
α

− 1) � n′(1 − 1
2α

), the last inequality follows
since n′ � 2(α + 1). By concavity, the maximum of nc

1 + nc
3 is reached when n1 = n3 �

(n′(1 − 1
2α

))/2. Thus

12 This is when using a constant β . Alternatively, when choosing β = logε n, we get a constant approximation
but of slightly smaller subspaces.
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|S| � 2(α + 1)2

(
n′(1 − 1

2α
)

2

)c

� 2(α + 1)2

(
(1 − 1

2α
)

2

)c

n′ c � 2(α + 1)n′ c.

The last inequality follows since it is possible to choose c < 1 such that 2(
(1− 1

2α
)

2 )c � 1.

The proof for � > 1 follows by induction on �. Denote J1 = ⋃2�−1
i=1 Ii , J2 = I2�, and

J3 = I2�+1. Also denote N1 = |J1| and N3 = |J3|. By the inductive hypothesis, |S ∩ J1| �
2(α + 1)Nc

1 , and |S ∩ J3| � 2(α + 1)Nc
3 . Applying the argument above, we conclude that

Nc
1 + Nc

3 � n′ c. �
Next we show examples that prove that Lemma 6, Theorem 8, Propositions 22, 23

and 25 are all essentially tight. Before presenting the examples we need the following
claims.

Proposition 27. Assume that an HST T is �-approximated by a k-HST W , and � < k. Then
for any four (not necessarily distinct) points a, b, c, d in the space,

lcaT (a, b) = lcaT (c, d) ⇒ lcaW(a, b) = lcaW(c, d).

Proof. Assume lcaT (a, b) = lcaT (c, d). Denote u′ = lcaW(a, b), and v′ = lcaW(c, d). As-
sume for the sake of contradiction that u′ �= v′. First we observe that u′ cannot be a proper
ancestor of v′, since otherwise dW (a, b) > �dW (c, d), and this means that W does not �

approximates T . From the same reason v′ is not a proper ancestor of u′. This implies that
lcaW(a, c) is a proper ancestor of lcaW(a, b), and so dW (a, c) > �dW (a, b), whereas in
T it must be that lcaT (a, c) is a descendant of lcaT (a, b), and thus dT (a, c) � dT (a, b).
Again, this means that W does not �-approximate T , a contradiction. �
Lemma 28. Assume that a k-HST T is �-approximated by a k-HST W . If both T and
W do not have degenerate vertices and � < k, then the underlying trees of T and W are
isomorphic.

Proof. It is sufficient to show that for any four (not necessarily distinct) points a, b, c, d

in the space, lcaT (a, b) = lcaT (c, d) if and only if lcaW(a, b) = lcaW(c, d). This is so
since we can define f :T → W , by f (lcaT (a, b)) = lcaW(a, b). It is easy to check that
f is well defined injective and bijective. Also, if u is ancestor of v in T , then f (u) is
an ancestor of f (v) in W . To see this, let a, b two descendant leaves of v in T such that
lcaT (a, b) = v, and let c be a descendant leaf of u such that lcaT (a, c) = lcaT (b, c) = u, but
then lcaW(a, c) = lcaW(b, c), and this implies that lcaW(a, c) is an ancestor of lcaW(a, b).

In order to prove that ∀a, b, c, d , lcaT (a, b) = lcaT (c, d) if and only if lcaW(a, b) =
lcaW(c, d), we apply Proposition 27 in two directions (and noting that the approximation
relation is essentially symmetric, see the discussion after Definition 4). �
Proposition 29. Let k > � > 1. There are infinitely many values of n for which there exist
HSTs (collectively denoted by T ) with n leaves such that:

(1) Any k-HST that is �-approximated by a subspace of T , has at most n1/ log� k points.
(2) Any “binary/uniform” k-HST that is �-approximated by a subspace of T , has at most

22
√

logn/ log� k points.
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(3) Any “KRR” k-HST that is �-approximated by a subspace of T , has at most
O(

logn
log� k log logn

) points.
(4) Any “BFM” HST that is �-approximated by a subspace of T , has at most O(logn)

points.

Proof. The examples will all have the same basic structure. Fix a small constant ε > 0 to
be determined later, and let k > �′ = (1 + ε)�. Consider an �′-HST T such that an internal
vertex v with edge depth i has diameter Δ(v) = �′−i . Let h ∈ N be a parameter of the size
of T .

(1) In this case, T is a complete binary tree of height h
log�′ k� with n = 2h
log�′ k� leaves.
Let R ⊆ S be a subset of the points that � approximates a k-HST W . Let T ′ be the
subtree of T that its leaves are exactly the subset R. It follows from Lemma 28 that
the edge distance in T ′ between any two non-degenerate vertices u and v is at least

log�′ k�. Hence, when coalescing pair of edges with common degenerate vertex in T ′,
the resulting tree is a binary tree of height at most h with the same set of leaves,
R, and so |R| � 2h � n1/
log�′ �k. Choosing ε > 0 small enough implies that |R| <

n1/ log� k + 1.
(2) In this case, T is a complete tree of height h
log�′ k� and the out-degree of each internal

vertex is 2h. Hence n = 2h2
log�′ k�, so h = √
logn/
log�′ k�. Let R be a subset of points

approximating a “binary/uniform” k-HST W , and let T ′ be the subtree of T whose set
of leaves is exactly R. By Lemma 28, T ′ is also a “binary/uniform” HST. As before
on any vertical path in T ′ there are only h non-degenerate vertices. After removing
degenerate vertices from T ′ (by coalescing pair of edges with common degenerate
vertex), it is easy to show by induction on the levels, that a vertex in level i in T ′
cannot have more than 2h−i2h leaves, and therefore T ′ has no more than 22h leaves.
By choosing ε > 0 small enough we conclude the claim.

(3) In this case, T is a complete tree of height h
log�′ k� and the out-degree of each internal
vertex is h. Assume also that h � 
log�′ k�. Hence n = hh
log�′ k�, so

h = Θ

(
logn


log�′ k�(log logn − log
log�′ k�)
)

= Θ

(
2 logn


log�′ k� log logn

)
.

The last inequality follows since log logn � 2 log
log�′ k�.
Let R be a subset of points approximating a “KRR” k-HST W , and let T ′ be the
subtree of T that its leaves are exactly R. By Lemma 28, T ′ is also a “KRR” k-HST.
Either T ′ is a uniform metric, and then the leaves are all children of one vertex (after
removing degenerate vertices), and therefore there at most h such leaves. Otherwise,
T ′ is k-super-increasing. Only h vertices on any vertical path in T ′ are non-degenerate.
and so T ′ has at most h + 1 leaves. Again, the claim follows by taking ε > 0 small
enough.

(4) In this case, T is a complete binary tree of height h with n = 2h leaves. Let R be a
subset of points approximating a “BFM” HST W , and let T ′ be the subtree of T that
its leaves are exactly R. T ′ is a binary tree, since it is a subtree of a binary tree.
We want to prove that T ′ is a “BFM” HST. Assume for the sake of contradiction that
T ′ is not a “BFM” HST. This implies the existence of four distinct leaves a, b, c, d ,
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with the following “pairing” property: There exists a partition of a, b, c, d into two
pairs {a, b} and {c, d}, such that lcaT ′(a, c) = lcaT ′(a, d) = lcaT ′(b, c) = lcaT ′(b, d)

(equals u), but lcaT ′(a, b) �= u and lcaT ′(c, d) �= u. However, in a “BFM” HST S, for
any subset of leaves A, there exists x ∈ A such that for any x /∈ {y, z} ⊂ A, lcaS(x, y) =
lcaS(x, z). So without loss of generality, lcaW(a, b) = lcaW(a, c) = lcaW(a, d). By
Proposition 27, it implies that lcaT ′(a, b) = lcaT ′(a, c) = lcaT ′(a, d). Therefore any
partition of a, b, c, d to two pairs contradicts the “pairing” property.
So T ′ is a “BFM” tree, and therefore has at most h + 1 leaves. �

8. Concluding remarks

As mentioned before, the lower bound on the competitive ratio of the MTS problem in
n-point metric spaces was improved in [BLMN04a] to Ω(logn/ log logn). It is an inter-
esting challenge to achieve Ω(logn) lower bound for any metric space. A plausible way to
do it is proving a lower bound for k-HSTs with constant k. This was done in the context of
proving upper bounds on the competitive ratio for the MTS problem in [FM03] using “fine
grained” combining technique.

Lemma 13 is a tight lower bound for UMTS on uniform metric when assuming the
conjecture of Θ(logn) competitive ratio for MTS. An interesting problem is to find a
matching upper bound. This would improve the general upper bound for MTS by a factor
of log logn. A harder problem is to improve the upper bound for MTS to o(log2 n).

For the K-server problem in arbitrary metric spaces, no sublinear upper bound on the
randomized competitive ratio is known.

Acknowledgments

We thank Noga Alon, Amos Fiat, Guy Kindler, Nati Linial, Yuri Rabinovich, Mike Saks,
Steve Seiden, and Amit Singer for many discussions and suggestions. In particular, Nati
helped in simplifying and improving earlier versions of Lemma 10 and Proposition 11.

Appendix A. Some probabilistic calculations

In this section we present some probabilistic arguments needed in the proof of
Lemma 10.

Lemma A.1. There exist constants λ2 � 1 � λ1 > 0 such that for any binomial random
variable X with p � 0.5 and mean μ � 4 and any δ ∈ [0,1] we have

Pr
[
X � (1 − δ)μ

]
� λ1e

−λ2δ
2μ.

Lemma A.1 is easily realized for most of the range of p, δ,μ using the Poisson and
normal approximations of binomial distribution (cf. [Bol85, Chapter 1]). Here we give an
elementary proof.

Set f (x) = (1 − x)1/x . Clearly, f is increasing as x decreases to 0, and its limit is e−1.
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Proposition A.2. Let X ∼ B(m,p) be a binomial random variable, p + q = 1, p � 1/2,
μ = pm, k = (1 − η)μ ∈ [m], and η ∈ (0,1). Then

Pr[X = k] � f (η)η
2μ

3
√

μ
.

Proof. Recall that by Stirling formula (cf. [Bol85, p. 4]),

Pr[X = k] =
(

m

k

)
pkqm−k � 1

e1/6
√

2πk

(
pm

k

)k(
qm

m − k

)(m−k)

� 1

3
√

μ

(
pm

k

)k(
qm

m − k

)(m−k)

.

Also, (
pm

k

)k

=
(

μ

(1 − η)μ

)(1−η)μ

= (1 − η)−(1−η)μ = f (η)−η(1−η)μ

= f (η)−ημf (η)η
2μ,(

qm

m − k

)(m−k)

=
(

1 − ηp

q + ηp

)m(q+ηp)

= f

(
ηp

q + ηp

) ηp
q+ηp

m(q+ηp)

= f

(
ηp

q + ηp

)ημ

.

Note that η � (ηp)/(q+ηp), so f (η) � f ((ηp)/(q+ηp)), and the claim is proved. �
Proposition A.3. Given a binomial random variable X with mean μ, δ � 1/3, and δμ � 4,
then

Pr
[
X � (1 − δ)μ

]
� δ

√
μ

6
e−7δ2μ.

Proof. Applying Proposition A.2,

Pr
[
X � (1 − δ)μ

]
�

�(1−δ)μ�∑
k=
(1−2δ)μ�

Pr[X = k] � (δμ − 2)Pr
[
X = ⌈

(1 − 2δ)μ
⌉]

� δμ

2

(f (2δ))22δ2μ

3
√

μ
�

δ
√

μ

6
3−1.5·4δ2μ �

δ
√

μ

6
e−7δ2μ. �

Proof of Lemma A.1. For δ > 1/3:

Pr
[
X � (1 − δ)μ

]
� Pr[X = 0] � (1 − p)m = (

(1 − p)p
−1)μ � 4−μ � e−13δ2μ.

For 4 � μ � 122 and δ � 1/3: There exists δ′ ∈ [δ, δ + μ−1) such that (1 − δ′)μ ∈ N, so
δ′ � δ + 1/4 � 2/3. Applying Proposition A.2,
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Pr
[
X � (1 − δ)μ

]
� Pr

[
X = (1 − δ′)μ

]
� (1/3)1.5δ′2μ

36
� e−1.7(δ2μ+2δ+μ−1)

36
� e−1.7δ2μ

5 · 36
.

For μ � 122 and 1
3 � δ � 1

3μ−0.5: we note that δμ � 4, so applying Proposition A.3,

Pr
[
X � (1 − δ)μ

]
� 1

18
e−7δ2μ.

For μ � 122 and 1
3μ−0.5 � δ: let δ′ = 1

3μ−0.5. Note that 1/3 � δ′ � δ, so applying Propo-
sition A.3,

Pr
[
X � (1 − δ)μ

]
� Pr

[
X � (1 − δ′)μ

]
� e−7/9

18
� 1

40
.

We conclude that Pr[X � (1 − δ)μ] � 1
180e−13δ2μ. �

Proposition A.4. Consider the following experiment: m balls are randomly put in n bins.
Let Xi be the number of balls in the ith bin. Then, for any 1 � � � n and any integer
sequence (αi)1�i��,

Pr

[
�∧

i=1

(Xi > αi)

]
�

�∏
i=1

Pr[Xi > αi].

Proof. Let Ei be the event Xi > αi . Fixing i > 1, let aj = Pr[E1 ∧ · · · ∧ Ei−1 | Xi = j ].
It is elementary to check that aj is monotonic non-increasing in j . Thus,

Pr[E1 ∧ · · · ∧ Ei−1 | Ei] =
∑
j>αi

aj

Pr[Xi = j ]
Pr[Ei] �

∑
j�αi

aj

Pr[Xi = j ]
1 − Pr[Ei] ,

and so

Pr[E1 ∧ · · · ∧ Ei−1 | Ei]
� Pr[Ei]

∑
j>αi

aj

Pr[Xi = j ]
Pr[Ei] + (

1 − Pr[Ei]
) ∑

j�αi

aj

Pr[Xi = j ]
1 − Pr[Ei]

=
∑
j

aj Pr[Xi = j ] = Pr[E1 ∧ · · · ∧ Ei−1]. (A.1)

We conclude by induction on i that Pr[E1 ∧ · · · ∧ En] � Pr[E1]Pr[E2] · · ·Pr[Ei], since

Pr[E1 ∧ · · · ∧ Ei] = Pr[E1 ∧ · · · ∧ Ei−1 | Ei]Pr[Ei]
� Pr[E1 ∧ · · · ∧ Ei−1]Pr[Ei] � Pr[E1]Pr[E2] · · ·Pr[Ei].

The last inequality follows from the induction hypothesis. �
Proposition A.5. Under the conditions of Proposition A.4, given α > 0, denote by Z =∧n

(Xi > α), then E[X1 | Z] � E[X1].
i=2
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Proof. From Eq. (A.1) in the proof of Proposition A.4,

Pr[X1 > j | Z] = Pr[(X1 > j) ∧ ∧n
i=2(Xi > α)]

Pr[∧n
i=2(Xi > α)] � Pr[X1 > j ].

In general, for integer non-negative variable W , we have that

E[W ] =
∞∑

j=0

j Pr[W = j ] =
∞∑

j=0

j
(
Pr[W > j − 1] − Pr[W > j ]) =

∞∑
j=0

Pr[W > j ],

so in our case,

E[X1 | Z] =
∞∑

j=0

Pr[X1 > j | Z] �
∞∑

j=0

Pr[X1 > j ] = E[X1]. �
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