
SIAM J. DIsc. MATH.
Vol. 1, No. 3, August 1988

(C) 1988 Society for Industrial and Applied Mathematics
013

THE PARALLEL COMPLEXITY
OF ELEMENT DISTINCTNESS IS f(x/logn)*

PRABHAKAR RAGDE, WILLIAM STEIGER$, ENDRE SZEMERtDI,
AND AVI WIGDERSON

Abstract. We consider the problem of element distinctness. Here n synchronized processors,
each given an integer input, must decide whether these integers are pairwise distinct, while commu-
nicating via an infinitely large shared memory.

If simultaneous write access to a memory cell is forbidden, then a lower bound of f(log n) on
the number of steps easily follows (from S. Cook, C. Dwork, and R. Reischuk, SIAM J. Comput., 15
(1986), pp. 87-97.) When several (different) values can be written simultaneously to any cell, then
there is an simple algorithm requiring O(1) steps.

We consider the intermediate model, in which simultaneous writes to a single cell are allowed
only if all values written are equal. We prove a lower bound of f((logn) 1/2) steps, improving the
previous lower bound of f(log log log n) steps (F.E. Fich, F. Meyer auf der Heide, and A. Wigderson,
Adv. in Comput., 4 (1987), pp. 1-15).

The proof uses Ramsey-theoretic and combinatorial arguments. The result implies a separation
between the powers of some variants of the PRAM model of parallel computation.

Key words, parallel computation, lower bounds, parallel random access machines

AMS(MOS) subject classification. 68Q10

1. Introduction. The parallel random access machine (PRAM) is the most
widely used theoretical model of parallel computation. In this machine, n synchronized
processors P1, P2,..., Pn have read and write access to a shared memory {Mil i E N}.
Each cell Mi of shared memory is initialized to zero. Each processor is a (possibly
infinite) state machine. One step of computation consists of two phases. In the write
phase, each processor may write an integer value to some shared memory cell. All
writes take place simultaneously. In the read phase, each processor may read some
shared memory cell. Based on what it has seen, each processor then assumes a new
state.

A PRAM may be restricted to disallow simultaneous read or write access by
several processors to the same cell. We allow concurrent reads and writes. If several
processors attempt to simultaneously write different values into the same cell, a write
conflict arises. Here, we discuss two methods of write-conflict resolution that have
appeared in the literature. In the COMMON model [K], the algorithm itself must
ensure that a write conflict never occurs; all processors simultaneously writing into
the same cell must be writing the same value. In the ARBITRARY model, the machine
will resolve the write conflict arbitrarily; one of the values being written will appear
in the cell, but it is impossible in advance to know which value. Algorithms on the
ARBITRARY model must work regardless of who wins each competition to write.

* Received by the editors January 8, 1987; accepted for publication (in revised form) February
12, 1988.

fDepartment of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4.
This work was performed while the author was at the University of California, Berkeley, California
94720, and was supported by an IBM Graduate Fellowship and a Natural Sciences and Engineering
Research Council of Canada Postgraduate Scholarship.

:Rutgers University, New Brunswick, New Jersey 08903.
Hungarian Academy of Sciences, Budapest, Hungary.
The Hebrew University, Jerusalem, Israel. This work was done while the author was at the

Mathematical Sciences Research Institute, Berkeley, California 94720, and was supported by National
Science Foundation grant MCS-8120790

399

400 RAGDE, STEIGER, SZEMER]DI, AND WIGDERSON

The input to the PRAM is an n-tuple (Xl,X2,... ,Xn), where the input variable
xi affects the initial state of Pi. Thus the input variables are initially distributed one
to a processor. (This state of affairs is equivalent to storing the values in the first n
cells of memory at the start of the computation.) We will choose input variables from
N (the positive integers). We denote the set {1, 2,..., k} by [k]. All logarithms are to
the base 2.

The element distinctness problem demonstrates the weakness of the COMMON
model, relative to the ARBITRARY model, when the size of shared memory is infinite.
In this problem, processor P1 must halt in state "not-distinct" if there exist indices i, j
(where i j) such that xi x.; otherwise, it must halt in state "distinct". In 2, we
show how to solve this problem in O(1) steps on the ARBITRARY model, and discuss
two algorithms to solve it on the COMMON model in O(log n) steps. In 3, we state
and prove a generalization of a result by Hensel concerning the covering of a clique
by bipartite subgraphs, which is needed for the next section. Finally, in 4 we present
a lower bound of gt(v/logn) steps for solving element distinctness on the COMMON
model. The lower bound proceeds by using Ramsey theory to restrict the set of inputs
under consideration and thus simplify the actions of processors to the point where they
transfer information only by a combination of the two methods discussed in 2. Then
an adversary argument is given, in which the result from 3 and other combinatorial
theorems are utilized.

2. Upper bounds. We first show how to solve element distinctness in constant
time on the ARBITRARY model, and then give two different O(log n) algorithms for
the COMMON model. All of these algorithms appear in [FMW].

THEOREM 1. Element distinctness can be solved in O(1) steps on the ARBI-
TRARY model.

Proof. Consider the following algorithm, which uses all of the infinite memory
as a hash table. In the first step, each processor P writes the value i into cell Mx.
Each processor then reads the cell into which it just wrote. If all variables are dis-
tinct, then each processor will see the value it wrote. But if two variables are equal,
then at least two processors will attempt to write into the same cell, and at least one
will see a value different from the one it wrote. If the latter occurs, P1 can be in-
formed in one more step, by having any such processor write the value "not-distinct"
into M1. I--1

Notice that this algorithm will work on any model that allows different values to
be simultaneously written to the same cell, and that the infinite memory is essential
to the algorithm.

Obviously, this algorithm will not work on the COMMON model. On this model,
however, shared memory can be used as a hash table in a more indirect way. Given
two nonintersecting sets of indices S1 and S (both subsets of [n]), each Pi (i S1)
writes 1 into cell Mx. Then each P. (j S) reads cell M.. The sets of values
{zli e 81} and {xlj } are distinct if and only if each processor P. (j e $2)
reads the value zero.

This method can be used to solve element distinctness in [log n] + 1 steps on the
COMMON model. At the tth step (t _< [logn), the set $1 consists of those indices i
for which the tth binary digit of i is 1, and S consists of those indices j for which
the tth binary digit of j is zero. There is a slight technical problem because memory
is not re-initialized to zero, but this can be easily overcome by having each processor
write the value (instead of 1) at the tth step. In the last step, any processor who has
detected nondistinetness informs P1 by writing the value ’not-distinct’ into M1. Since
any distinct indices i, j differ in at least one binary digit, the distinctness of every pair

PARALLEL COMPLEXITY OF ELEMENT DISTINCTNESS 401

(xi, x.) will be verified.
Throughout the above algorithm, processors are only aware of the value of the

variable that they are given at the beginning of the algorithm. The algorithm does
not use the local computational power of processors, nor does it require memory cells
to hold large values. But again, the fact that memory is infinite is essential, as it is not
the values written that are important, but the location into which they are written.

Another method of answering the question is to allow processors to learn the
values of other variables. If a processor knows two or more variables (as reflected in
the state of that processor), then it knows if those variables are distinct.

This idea can be used to give a different algorithm for solving element distinctness
on the COMMON model, in [log n steps. One cell of shared memory is dedicated
to each processor, to serve as its mailbox. Initially, each processor knows just one
variable. In the tth step, each processor Pi computes an encoding of all the variables
it knows and places this encoding in the mailbox of processor P., where j differs from i
only in the tth binary digit. Each processor then reads its own mailbox and learns the
values stored there. A straightforward analysis shows that at each step, the number
of distinct variables that any processor knows will double. Thus after [log n] steps,
each processor will know the value of all n variables, and processor P1 can halt in the
desired state.

This second method illustrates the power of the PRAM model; it shows that any
function of n variables can be computed in O(log n) steps. It uses only n cells, but
the capacity of those cells must be large, and the local computational power of each
machine is used in computing encodings. Indirect access to memory is not used, nor
are concurrent reads and writes; it is the values written that are important, as the
location into which each processor writes at each step is independent of the input.

In 4 we shall see, in the course of proving an (x/’log n) lower bound for element
distinctness on the COMMON model, that these two methods are essentially the only
two ways in which processors can verify distinctness. The temptation to conjecture
that the complexity of element distinctness on the COMMON model is O(logn) is
misleading; in [FRW] a general simulation result is given, which has as a corollary an
algorithm for element distinctness on this model requiring O (log n/log log n) steps.

3. A combinatorial theorem. In this section we prove a combinatorial result
that, in addition to aiding in the proof of the subsequent lower bound, is of independent
interest.

A semi-bipartition of a set X is a pair of sets {A,B}, where A,B c_ X, and
A t B . For y, z E X, we say the pair {y, z} is covered by {A, B}, if either y E A
and z B, or y B and z A. (We always assume that the elements of a pair
are distinct.) The size of a semi-bipartition {A, B} is IAI / IBI. For a collection C of
semi-bipartitions, we define size(C) {A,B}E(IAI d-IBI).

Hansel [HI provides a very short and elegant proof of the following theorem.
Pippenger [P] gives an interesting proof using information-theoretic arguments.

THEOREM 2. Let X be a set of size n, and let be a collection of semi-
bipartitions over X such that every pair of elements of X is covered by some semi-
bipartition in . Then size(>_ n log n.

We generalize this result in two ways: first, we relax the requirement that every
pair of elements be covered, and second, we generalize the notion of covering by semi-
bipartitions.

The following theorem is implied by a theorem of Fredman and KomlSs [FK]; it
admits short proofs in the styles of [H] and [P]. We give a proof that is a generalization
of Hansel’s.

402 RAGDE, STEIGER, SZEMERDI, AND WlGDERSON

THEOREM 3. Let X be a set of size n, and let E be a set of pairs of elements
from X. Let a be the largest number of elements from X that can be chosen 8o that no
two of them are in a pair of E. If C is a collection of semi-bipartitions over X such that
every pair in E is covered by some semi-bipartition in C, then size(C) > nlog(n/a).

Proof. Let C {{Ai, Bi},i 1, 2,..., g}. For x E X, let cx be the number of
semi-bipartitions {Ai, Bi} such that x E Ai tO Bi. Then size(C) xex cx.

Let U be the set of all tuples u of length g, where ui {Ai, Bi}. We say that a
tuple u U is consistent with x if, for 1 _< i _< g, either x ui or x q Ai tO Bi. For
each x X, there are 2g-cx tuples consistent with x. A tuple may be consistent with
more than one element of X. If a tuple u were consistent with a / 1 elements of X,
then two of those elements (say x and y) would appear in a pair of E. But since C
covers all pairs in E, there must exist some semi-bipartition {Ai, Bi} such that, say,
x E Ai, y Bi. This means that ui Ai by the consistency of u with x, and ui Bi
by the consistency of u with y, a contradiction. Hence any tuple is consistent with at
most a elements of X.

Thus a2g alU _> ex (# tuples consistent with x) Yex 2g-cx, and so,
a > cx2-"

(l/n) ez2- > (1-Iez 2-)1/, since the geometric mean does not exceed
the arithmetic mean. Thus (l-Ixez 2-c) 1/n <- a/n. Taking logarithms, we have

-xex cz > n log(n/a), as required, l-1

Next, we introduce a more general notion of covering. Let A be a set of tuples
of length g with components chosen from the set X. Let B be another such set. If
A f3 B , we call {A, B} a tuple system of length/. For y, z X, we say that the
tuple system {A, B} covers the pair (y, z) if there exists a tuple a e A, a tuple/3 G B,
and a position i such that ai y, /3 z, and aj -/3j for all j : i. That is, a,/3
differ only in position i, and y, z are the elements from the sets A, B in that position.
If such a pair a,/3 of tuples exists, we say they are similar and cover (y, z).

If g 1, this reduces to covering by semi-bipartitions. A collection of tuple
systems C is a set { {A1, B1}, {A2, B2 },... {Ak, Bk} }, where A, B are sets of tuples
of length ti, and Ai f Bi . We define size(C) -ik__l (iAi + iBil).

The following is the main result of this section.
THEOREM 4. Given a set X of size n and a set E of pairs of elements from

X, let a be the largest number of elements of X, no two of which are in a pair of
E. Suppose C is a collection of tuple systems of length at most , and every pair
of E is covered by a tuple system in C. Then, for n sufficiently large, size(C) >_
n(1/4 log n 1/2 log(at) log log n).

As g becomes larger, this bound becomes weaker. We conjecture that the lower
bound on size is in fact n log(n/a) regardless of the length of tuples. For our appli-
cation, it will be the case that ag- O(n1/2-) for some positive constant e, and thus
we obtain a lower bound of f(n log n) on size(C).

Proof of Theorem 4. Suppose we are given a tuple system C that covers E in the
fashion described, and in addition, size(C) < n(1/4 logn- 1/2 log(ag) -loglogn). For
each tuple system {A, B} E C, we are going to construct semi-bipartitions that cover
most of the edges that the tuple system covered, and then apply Theorem 3 to obtain
a contradiction.

Let C be an initially empty collection of semi-bipartitions, and E an initially
empty collection of pairs of distinct elements of X. E will contain the pairs from E
that C does not cover.

Let hi, bi be the initial sizes of Ai, Bi respectively. We say the tuple system
{Ai, Bi} is sparse if there are at most (IAilIBiI)/x/ similar pairs in {A,B}. If

PARALLEL COMPLEXITY OF ELEMENT DISTINCTNESS 403

{A, B} is not sparse, then there exists some c E A which is similar to at least
IBil/x/d tuples in Bi. There is some position p such that at least IBil/t.Vrd tuples in
Bi differ from a only in position p, since c is a tuple of length at most L Let A be
the set that includes c and all tuples in A that differ from c only in position p, and

B be all tuples in Bi that differ from c only in position p. Then IBI >_
Also, A C’l B .

Let A be the set of elements occurring at position p in tuples of A, and let B be
the set of elements occurring at position p in tuples of B. We know that
and IBI- IBI. Furthermore, since Ai fl Bi- and all tuples in A, B differ only in
position p, A gl B . Thus {A, B} is a semi-bipartition of X. We add {A, B} to C’.
{A, B} covers all pairs covered by {A, B}.

We remove A from Ai and B from Bi. We have not accounted for pairs covered
by similarities between A and Bi- B, or between B and Ai- A. But any tuple
in Bi B is similar to at most one tuple in A, for it can differ from a tuple in A
only in a position p 7(: p, and all tuples in A have the same entry in position p but
different entries in position p. Similarly, any tuple in Ai -A is similar to at most
one tuple in B. Thus we have neglected at most [Ail+ IBil <_ ai + bi similar pairs of
tuples. We add the pairs of elements that these similar pairs of tuples cover to E.

If {Ai, Bi} is not yet sparse, we repeat this process. Each time, we shrink Bi by
at least a factor of q 1- (1/tV/-). In at most log(1/.) bi iterations, {Ai, B} becomes
sparse (note that an empty tuple system is sparse). The total number of pairs we have
added to E’ is at most log(/) b(a + bi) < v/-log b(a + bi).

When {A, Bi} becomes sparse, we simply add to E all pairs of elements that
are covered by similarities in {Ai, B}. This adds at most ab/v/d pairs to E’.

When this process is completed, clearly size(C’) < size(C). Furthermore, IE’I <
E((ab/v/-d) + (a + b)evlogb). Since a,b, and E(a + b) are all less than

41-n log n by the assumption on size(C), it follows that for n sufficiently large, IE’I <
1/2t.n3/ log n.

As a result, we have a collection C of semi-bipartitions and a set E of at most

1/2e.n3/ log2n pairs such that every pair in E- E is covered by C. Let D be the
largest set of elements of X such that no pair in E- E contains two elements of D.
By Theorem 3, we know that size(C’) >_ n log(n/IDI). All pairs in E that contain two
elements of D must also be pairs in E. Hence the number of pairs in E that have two
elements in D is at most lEVI. Let D be the largest subset of D such that no pair in
E contains two elements of D. We know that IDOl < a by the definition of c.

Turhn’s theorem [B, p. 282] states that given any set S and any collection P
of pairs from S, there is a set S such that no pair in P contains two elements from
S’, and IS’I >_ ISIZ/(ISI + 21PI). Applying this to D and the pairs of E with both
elements in D, we know that ID’I >_ IDI2/(IDI +

If IDI > IE’I, then >_ ID’I >_ IDI/31DI, and so IDI _< 3c. If IDI _< IE’I, then
c >_ IDI/31E’I, and IDI < n3/4 log n-. In either case we have our contradiction,
since we can conclude that size(C’) > n(1/4 logn- 1/2 log(ate)- loglogn), but size(C’) _>
size(C).

4. The lower bound. In this section, we prove a lower bound for the element
distinctness problem on the COMMON model, thus demonstrating a separation be-
tween the COMMON and ARBITRARY models when both are allowed infinite memory.
The proof combines techniques from [FMW] and [MW] with the result from 3.

The following rather odd definition is motivated by technical problems that arise
in the main result if overwriting a shared memory cell is allowed. A similar technique
was used in [FMW].

404 RAGDE, STEIGER, SZEMER]DI, AND WlGDERSON

DEFINITION. A write-once COMMON PRAM is a COMMON PRAM with the
following modifications: if a cell in shared memory is written into at a particular step,
then it may not be written into at any subsequent step. Also, at step t, each processor
is allowed to simultaneously read t cells Mil, Mi2,..., Mit of shared memory, instead
of just one. The final restriction is that, if cell Mi defined above was written into at
all, it must have been written into at step j.

LEMMA 5. T steps of a COMMON PRAM with m cells of shared memory can
be simulated by T steps of a write-once COMMON PRAM with m2 cells of shared
memory.

Proof. Let (., .): [m] [m]--. [m2] be any one-to-one function. At step t of the
simulation, if Pi in the simulated machine writes into M. and reads from Mk, then
Pi in the write-once machine writes into M(t,), and reads M(1,k),M(2,k),...,M(t,k).
From the contents of these cells, Pi can determine what Mk in the simulated machine
would have contained at step t. I--I

By Lemma 5, any lower bound for element distinctness on write-once COMMON
with infinite memory is a lower bound on regular COMMON with infinite memory. We
can now state and prove the main result of this paper.

THEOREM 6. On a write-once COMMON PRAM with infinite memory, element
distinctness requires f (v/log n) steps.

We introduce some definitions to be used in the proof. A (k, s, a)-bundle on X
will be a partial order on the set X, where ks + a IXI. Of the ks / a elements,
ks are in k disjoint antichains of size s > 1; the remaining a of the elements are in
disjoint antichains of size 1, and there is a total ordering among all antichains. An
antichain of size s will be called nontrivial. Figure 1 gives a simple example of such a
partial order.

X7 Xl X6

X3 X9 X5

FIG. 1. A (3,2,4) bundle on {Xl, x2,... XlO }.

Let X denote the set of variables {Xl,X2,...,Xn}. Suppose we are given an
algorithm that solves element distinctness. We will prove a lower bound of T+ 1 steps
on the running time of this algorithm, where T f(v/log n).

The state of a processor Pi after step (and consequently, the cells it chooses
to write into and read from at step t / 1) can be a complicated function of the
variables in X. The idea is to concentrate on a restricted set of inputs It which are
"indistinguishable" to the algorithm through step t. For inputs in It, the state of a
processor during the first steps will be a function of a "small" number of variables.
We can then apply Ramsey theory to simplify the functions describing access to shared
memory. The input set It will be described in terms of objects IIt, Ct, and St. We will
display, for t ranging from zero to T, the following:

1. An infinite set St, where St c_ N, and St c_ St-1. St is the set of possible
values of a variable for inputs in It. We will define St so as to simplify all functions
describing access to shared memory.

2. A (kt, st, at)-bundle 1-It over X. l’It will be a refinement of 1-It_ 1; that is, if xi, x.
are comparable in IIt_, then they are comparable in IIt. The bundle will satisfy the
inequalities:

kt <_ 32t2 + 5t / 3.

PARALLEL COMPLEXITY OF ELEMENT DISTINCTNESS 405

n n 32t2 + 5t + 4at < 3 3t+2
Pit will ’describe’ inputs in It; the values of the variables in any input of It will

satisfy the constraints of IIt. We shall choose T so that it will always be the case
that at <_ 2n/3 for t < T, that is, at least a third of the variables are in nontrivial
antichains of IIt.

3. A collection Ct of tuple systems over X, where Ct 3_ Ct-1, size(Ct) < n(t + 1) 2,
and the size of tuples in Ct is at most 3t.

4. For each processor Pi, a set Vt c_ X with the properties:

" Vit-1 c_ Vt and lEVI
All the variables in Vt are comparable in IIt, that is, Vt is a chain of IIt;
The state of Pi after step t will be a function of only the variables in Vti, for all

inputs in It.
We may now describe the set of inputs It. c E It if and only if:
1. E8;
2. is consistent with IIt;
3. There is at most one pair (j, k) such that . k;
4. If k, (X, Xk) is not covered by any tuple system in Ct. Note that the

containment properties of Ct, IIt, and St ensure that It c_ It-1.
Suppose there is at least one pair (xj,xk) such that (xy,xk) is not covered by any

tuple system in Ct, and x., xk are in the same antichain of IIt. We know that at most
one of x., xk can affect the state of P1 after step t, since Vt is a chain in 1-It. Suppose
xk does not affect the state of P1 after step t. Let

^’ for i :/= k, but ^’ By choiceare distinct. Let be the input such that x x..
of (xy, xk), Fc is also an input in It, and by construction, not all the components of

are distinct. Furthermore, since the state of P1 is not a function of xk, P1 cannot
distinguish these inputs after step t. Thus we obtain a lower bound of t + 1 steps.
We now show how to construct the objects described above, up to index T, where
T f(v/log n).

Before step 1 we let IIo be the empty order, that is, ko 1, so -n, ao -0. We
also set Co , So N, Io (N)n, Vd {x }. Now suppose we have constructed all
the required objects up to index t. We show how to extend the construction to index
t / 1, by consideration of what happens at step t / 1 for inputs in It.

We say a function f(yl,y2,...,ye) is defined on increasing tuples over S if the
domain of f consists of the increasing tuples over S. A tuple) is increasing if < .
for i < j.

For a step t < + 1, let xil, x.,...,xk be the variables in V_I, where the
indices are chosen so that xil < x < < xik in IIt. We know this is possible
because Vt_ is totally ordered in 1-It. The state of Pi just before step t, for inputs
in It, is a function of Xl, x2,..., x. Thus the indices of the cells that P writes into
and reads from at step t are also a function of these variables.

Let w (xl,x.,...,x) be the write index function of Pi at step t < t + 1, for
inputs in It. The value of w is the index of the cell into which P writes, or zero
if the processor does not write at step t, for any setting of the input variables. We
know that w is defined on increasing tuples over St, since for every input in It,
2il < i < < i.

t+lSimilarly, let r,. be the jth read index function of Pi at step t + 1 for inputs in
.t+lIt. The value of .,,. is the index of the jth cell that Pi reads from at step t + 1, for

inputs in It. _t+
ri,. is also defined on increasing tuples over St. We use the following

lemma by Meyer auf der Heide and Wigderson [MW], which is based on a theorem by
ErdSs and Rado [ER]"

406 RAGDE, STEIGER, SZEMER]DI, AND WlGDERSON

LEMMA 7. Let be a finite collection of functions defined on increasing tuples
over S, for S infinite. The functions in " may be functions of differing numbers of
variables. Then there exists an infinite C_ S such that, restricted to increasing tuples
over S, each f E is one-to-one on the variables it depends on. Furthermore, two
distinct f, f Y have the property that, restricted to increasing tuples over S, they
either have disjoint ranges, or are identical.

We apply Lemma 7 to the collection jr, where

t-I-1jr={w’ll_<t,_<t+l,l_<i<n}Uri,j I1_<i<n,l_<j_<t+l}.

Let S be the infinite subset of St with the properties mentioned in Lemma 7. For
f jr, when f takes on the value zero for some input, it means that processors using
f at some step choose not to write (or read) at that step for that input. We would
like to simplify the situation by ensuring that, at a particular timestep, processors
either write for all inputs or do not write for any input. We can do this by reducing
S. For each f , if f is not constant when restricted to increasing tuples over
S, let {Vl, v2,...,Vk} be the variables on which f depends. Since f is 1-1 on those
variables, if zero is in the range of f, then there are unique values 31, 32,..., 3k such
that setting vi 3i for i 1, 2,..., k makes f 0. In this case, we remove the values
31, 32,..., 3k from S. Then the range of f when restricted to S does not include zero.
If this is done for all f jr, then for inputs in It+, processors will either never write
(read) or always write (read) at any given time step among the first t + 1 steps.

Set St+l . If we also set IIt+ lit, and Ct+l Ct, this defines a set of
inputs It+ such that for inputs in this set, the read index and write index functions
of all processors through step / 1 will have the properties mentioned in the lemma.
The fact that f, ff jr either have disjoint ranges or are identical means that, when
a processor uses f as a write index function, it is communicating only with those
processors that use f as a read index function at subsequent steps. Thus we have
considerably simplified the pattern of communication in the first t / 1 steps, by re-
stricting consideration to inputs in It+l. In what follows, our goal is to define Vt__l
for all processors Pi. To do this, we will add tuple systems to Ct+l; this only reduces
It+ l.

We also set Q {{Vt} } for 1 < i < n. The set Q will represent the variables
that P knows about at the end of step + 1. We will add to Q sets of variables that
P could learn at step + 1, by considering the access functions of P in jr. At the
conclusion of this process, Q will be a collection of at most + 2 sets of variables.
Each set in Q will be totally ordered in lit, and the state of P at time t + 1 will,
by construction, depend only on variables in the union of those sets. We will then
refine IIt+l in such a way that this union is totally ordered in IIt+, thus ensuring our
conditions after step t + 1 and completing the induction step.

We consider each function f E Y in turn, and deal with processors that use this
f as an access function.

Case 1: f constant. If f is constant, then it represents the index of a single cell
that processors using f read from or write to. Let t be the unique step at which
processors write into that cell. If no such step exists, let b; otherwise, let

{Pilw’ f}. Let). {p .t+l1.1-,. f}. . is the set of processors that access
cell f as the jth of the t + 1 cells that they read at step t + 1.

If b, then all processors in ., 1 < j < t + 1, read zero from cell f at step
t + 1, and so no information is transmitted. If F :/: , the value written into cell f at
step t must be a function of variables that the processors in "have in common";
that is, it must depend only on variables in V I"l,w Vt-l. Recall that processors

PARALLEL COMPLEXITY OF ELEMENT DISTINCTNESS 407

using f always write on all inputs in It_bl if the value depended on some variable not
in V, then there would be an input for which two processors in attempt to write
different values into the cell indexed by f, a violation of the COMMON model.

Thus, the state of any processor Pi E j at time t / 1 may be affected by
variables in V, for any input in It+l. The variables in V are totally ordered in Ht,
and IV _< 3t’-l. For each reading processor P E j, 1 _< j _< n, we add V to Q.

Case 2: f not constant. Let yl,y,...,yt be the variables that f depends on
(considered as free variables, not members of X). We note that if f is used as a write
index function by some processor at time t’, then t <_ 3t’-l. Let j {Pilr, f},

t’ t’andt,-{Pilwi -f} for _<t+l.
Consider Pi t, and P. h. To say that Pi uses f as a write index function

at time t’ means that wi is equal to f with yl, y,..., Ye replaced by some variables
in V_1. If the replacement variables for Pi are exactly the same as the replacement
variables for P. using f as its hth read function, then P. at step t + 1 will read as its
hth cell the same cell that Pi wrote into at time t’. Let]j be the set of processors in
]t, that have the same set of replacement variables for f as P.. As in case 1, we may
set V PeW: Vt’k-1, and note that the value written is a function of V. As before,
it is important that processors in]$j always write on all inputs in It+l. We also
have IVI _< 3t’-1. We add V to Q. and, having dealt with what P. could learn using
function f, remove P. from h. If we do this for all such Pi, P., then no processor in
any t, will have exactly the same replacement variables as any processor in any h.

For the remaining processors, our goal is to ensure that no processor using f as
a read index function at step t + 1 accesses the same cell as any processor using f as
a write index function at step t + 1 or earlier. In order to ensure this, we add tuple
systems to Ct+l. Again, consider Pi G]$t, and P. h. Let xi,xi,...,xi be the
replacement variables of Pi for Yl, Y2,..., Ye, and x., xj,..., x. be the replacement
variables of P.. At most two variables are equal for any input in It+l. If there are
positions 1 _< a < b _< t such that ia ja and ib jb, then for every input in It,
either xi x.o or xi :/: x.. It follows that, for every input in It, the fact that
f is one-to-one ensures that f(xi,... ,xi) f(xj,... ,xj), and so P- will read a
different cell from the one into which Pi wrote.

On the other hand, suppose there is only one position a such that i ja. If, for
some input , P. reads the same cell as Pi, it "knows" that io .o. We would like
the PRAM to be unable to answer after + 1 steps, for inputs in It+l. To ensure that
Pi and P. access different cells, we must ensure that xio - xj for all inputs in It+l.
If this is done, then Pi E h will read the value zero for all inputs in It+l, and it will
gain no additional information as a result of that read.

Let Af be the set of all tuples (xi,..., xi) that are the replacement variables for
f of some processor Pi in some]t, (t’ <_ + 1). Similarly, Bf is the set of all tuples
(x.,... ,x.) that are the replacement variables for f of some processor P. in some

h (h _< + 1). {Af,Bf} forms a tuple system, since our actions above ensured that
no processor in]8[has the same set of replacement variables as any processor in h.
Furthermore, the pairs of variables that we require to be distinct are precisely those
covered by this tuple system. Adding {Af, Bf} to Ct+l will ensure (by the definition
of It+l) that no reader using f as a read index function at time t + 1 will read a cell
written into by any writer using a different write index function or a different set of
replacement variables than the reader. This concludes the description of what is done
in the case of one function f Y.

After this has been done for all f, Ct+l has been defined. Each processor has
t + 1 read index functions at time t / 1, and hence can contribute at most t + 1 tuples

408 RAGDE, STEIGER, SZEMER]DI, AND WIGDERSON

to some set Bf as described above. Each processor also has at most + 1 write index
functions, at steps 1, 2..., t / 1, and so can contribute at most t + 1 tuples to sets Af
above.

It follows that fe7 IBfl <_ n(t + 1) and -fe7 IAfl <_ n(t / 1). Thus

size(Ct+l) _< size(Ct)+ (IAyl / IByl)

< (t + 1)2n + 2(t + 1)n < (t + 2) 2n as required.

At most one set V is added to Qi for each read index function that Pi uses at
time t + 1, so IQil -< + 2. Furthermore, a set V E Qi added as a result of a read index
function that reads a cell written into at step t’ is of size at most 3t’-l. It follows that
Qi contains at most one set of size 3t’-I for t’ < / 1, and at most two sets of size
3 (one is V*, and the other may be added as a result of reading a cell written at step
+ 1). Thus, if we set V Vi 3 3t’- < 3t+tq-1 --UVeQi V, then t-[-ll-- 2. + -]t,<tq-1

as required.
We must still ensure that V is ordered in II+l Each V E Qi is ordered in IItq-1

so each antichain in IIt contains at most t + 2 elements that appear in sets V Qi.
Let R be the set of pairs (xj, xk) such that xi,xj are in the same antichain of YI but
in different sets of some Qi. By counting, we can show that [R[

_
n32t+l. If we refine

IIt+l so that every pair (xj,xk) R is comparable in 1-It+i, then V/TM UVeQi V
will be totally ordered in IIt+l, as required.

LEMMA 8. There exists Ht+l a refinement of I-It such that all pairs in R are
comparable in 1-It+l, and further, I-It+l satisfies the required conditions on kt+l, at+l.

Proof. Each pair in R consists of two variables in the same nontrivial antichain
of Hr. At most kt/3t+2 antichains contain more than 33t+3n/kt pairs in R, because

IR _< n32t+ 1. For each such antichain, choose an arbitrary total order for its elements,
in effect converting the nontrivial antichain to st trivial antichains. This increases at+
by at most ktst/3t+2 <_ n/3t+2.

No remaining nontrivial antichain contains more than 33t+3n/kt pairs in R. From
each nontrivial antichain, take the 8t/3t+2 elements that are in the most pairs in
R, choose an arbitrary total order for them, and make them all larger than every
element of the antichain. As a result, any element in any nontrivial antichain is in less
than 34t+6n/kt st pairs of R. If this were not true for some antichain, then counting
occurrences of deleted elements in pairs would lead to a total of 33t+an/kt occurrences,
a contradiction since each pair contains two elements. The deletions increase at+l by
at most ktst/3t+2

_
n/3t+2.

The following theorem by Hajnal and Szemerdi [HS] is useful at this point.
THEOREM 9. Let R C_ X2 be a set of pairs such that no element ofX occurs in

A or more pair in R. Then there is a number 8 such that X can be partitioned into
A cla8e8 of size s or 8 + 1, such that no pair in R contains two elements in the same
class.

Then, by Theorem 9, we can partition each nontrivial antichain into 34+6n/k8
classes such that no pair in R contains two elements from the same class, and each
class is of size 8 or 8 + 1. We remove one element from each classes of size 8 + 1,
choose an arbitrary total order for the removed elements, and make each larger than
everything in their former antichain. Within each antichain, we choose an arbitrary
total order for the classes, thus converting each antichain into 34+6n/ks smaller
nontrivial antichains, plus at most one new trivial antichain for each class. Thus

[34t+6n] 2n
kt+l _< kt [ktst J

< 34t+7kt since at -< --3

PARALLEL COMPLEXITY OF ELEMENT DISTINCTNESS 409

_< 32(t / 1)2 + 5(t / 1) + 3 as required.

We can thus define an appropriate IIt+l. In the last step, we may have increased

at+l by one element for each new class, and so in total,

at/l

_
at--b2 3t+2 -b kt+l

< n n 32(t+1)2+5(t+1)+4
3 3t+2 t- as required.

This concludes the description of the construction of objects of index t + 1. We
continue this construction to index T ev/log n, for e a suitably chosen small constant.

Let us choose e sufficiently small (e 1/4 will do), and n sufficiently large, so
that the following conditions hold:

n > 32T2+6T+8, (10)

3T ((n/3) 1/6

-log(n/3) (11)

kT < (n/3)1/6
-log(n/3) (12)

(T + 1) 2 < 2 log(). (13)

Condition (10) ensures that at < 2n/3 for t < T, which is required in order
that the construction be possible up to index T. Conditions (11) and (12) ensure
that Theorem 4 is applicable to the tuple system T and the nontrivial antichains of
HT. To apply Theorem 4, we must know how many elements of X we can select so
that no two are in the same nontrivial antichain (this is kT, the number of nontrivial
antichains) and we must know an upper bound on tuple length (this is 3T). By the
theorem, any tuple system that covers all pairs in all nontrivial antichains of HT
must be of size at least n(1/4 log(n/3)- 1/2 log((n/3)I/3/log2 (n/3))- log log(n/3)), or at
least (1/12)n log(n/3). But by condition (13), size(CT) < (1/12)n log(n/3). Thus at
least one pair of variables in some antichain of lIT remains uncovered by CT, thereby
ensuring a lower bound of T + 1 steps as discussed above. This concludes the proof
of Theorem 6.

We conclude by mentioning some implications of this proof for separating the
power of PRAM models with the same (finite) amount of shared memory. We can
define a bounded version of the element distinctness problem, where the variables
{xi} are chosen from [m] for some m E N. An ARBITRARY PRAM with m shared
memory cells can solve this version of element distinctness in O(1) steps, by using the
algorithm of Theorem 1. It is also possible to prove a bound of 12(v/iogn steps to
solve bounded element distinctness on a COMMON PRAM with m memory cells in
exactly the same fashion as given here, by using the finite version of the ErdSs-Rado
theorem from [ER2] to prove a finite version of Lemma 7. However, this only works
for m larger than a very rapidly growing function of n, since a lower bound on the
size of the set S mentioned in Lemma 7 is required, and this bound is expressed by a
recurrence involving generalized Ramsey numbers. We can conclude, however, that for
n sufficiently large, there exists m m(n) such that there is an 12(v/log n) separation
between the COMMON and ARBITRARY PRAMs with m memory cells. This also held
true for the gt (log log log n) separation given in [FMW], except that in that proof m

was only required to grow as fast as 22n(1)

410 RAGDE, STEIGER, SZEMERIDI, AND WlGDERSON

REFERENCES

[B] C. BERGE. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.
[CDR] S. COOK, C. DWORK, AND R. REISCHUK. Upper and lower bounds for parallel random

access machines without simultaneous writes, SIAM J. Comput., 15 (1986), pp. 87-97.
[ER] P. ERDSS AND R. RADO. A combinatorial theorem, J. London Math. Soc., 25 (1950),

pp. 376-382.
[ER2] , Combinatorial theorems on classifications of subsets of a given set, Proc. London

Math. Soc., 3 (1952), pp. 417-439.
[FK] M.L. FREDMAN AND J. KOMLOS. On the size of separating systems and families of perfect

hash functions, SIAM. J. Algebraic Discrete Methods, 5 (1984), pp. 61-68.
[FMW] F.E. FICH, F. MEYER AUF DER HEIDE, AND A. WIGDERSON. Lower bounds for parallel

random access machines with unbounded shared memory, Adv. in Comput., 4 (1987), pp. 1-15.
[FRW] F.E. FICH, P. RAGDE, AND A. WIGDERSON. Simulations Among Concurrent-Write PRAMs,

Algorithmica, 3 (1988), pp. 43-51.
[HI G. HANSEL. Nombre minimal de contacts de fermeture ndcessaires pour rdaliser une fonction

booldenne symm6trique de n variables, Comptes Rendus Acad. Sci. Paris, 258 (1964), pp. 6037-
6040.

[HS] A. HAJNAL AND E. SZEMERI$.DI. Proof of a conjecture of P. ErdSs, Combin. Theory Appl.,
2 (1970), pp. 601-623.

[K] L. KUCERA. Parallel computation and conflicts in memory access, Inform. Process. Lett., 14
(1982), pp. 93-96.

[MW] F. MEYER AUF DER HEIDE AND A. WIGDERSON. The complexity of parallel sorting,
Proc. 26th Annual IEEE Symposium on Foundations of Computer Science, pp. 532-540.

[P]N. PIPPENGER. An information-theoretic method in combinatorial theory, J. Combin. The-
ory, set. A, 23 (1977), pp. 99-104.

