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1 INTRODUCTION

This paper is my rewrite of the first part of the paper which was published in
the Journal of Symbold Logic in 1973 by Fred Galvin and Karel Prikry. While
doing that I’ve tried to achieve the following goals:

• To go over their proof and fill the gaps in order to make their proof easy
to understand to anyone who knows what the terms “open set” and “con-
tinuous function” mean.

• To show the connection between colorings and the defintions used in their
text.

• To generalize their proof of 2 coloring, to any finite coloring given by some
Borel function.

The proof contains 2 main steps. We first show that all open sets are Ramsey.
After that we show that Ramsey sets form σ-algebra. After that we use the fact
that Borel algebra is the smallest σ-algebra that contains all the open sets and
conclude that Borel sets are Ramsey. (All the terms will be explained in the
next section).

2 DEFENITIONS AND NOTATION

Definition 2.1. For a set S and cardinal κ we define:

1. 2S := {X : X ⊆ S}

2. [S]κ := {X ⊆ S : |X| = κ}

3. [S]<κ := {X ⊆ S : |X| < κ}

In the text ω will denote the set of naturals. In particular 2ω denotes the
power set of the naturals. We see it’s a topological space with the usual product
(Tychonoff) topology. Any subset of naturals defines an infinite sequence by it’s
indicator function. So, the power set of naturals can be seen as

∏
i<ω Z2 (Z2
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denotes the set {0, 1}.
Tychonoff topology is generated by the basis:

B = {
∏
i<ω

Ai : Ai = Z2 except finitely many i}

Let us note few topological facts (which can easily be checked by hand)
which may be later used in the proof.

1. Note, that this space is induced by a a metric d defined by

d(x,y) =

{
1

n+1 : x 6= y

0 : otherwise
(1)

while n ∈ ω is the minimal index s.t. x(n) 6= y(n) (remember that x and
y are infinite sequences of 0’s and 1’s).

2. We can take another basis for Tychonoff topology in form {a1 . . . an} ×∏
n<i<ω Z2 where {a1 . . . an} is some finite sequence of 0’s and 1’s.

3. For any infinite set of naturals M, we can define topology 2M in a similar
way to 2ω. In this case 2M is homehomorphic to 2ω (Recall that µ : A→ B
is homeomorphism if it’s a continuous bijection and µ−1 : B → A is also
continuous) and to subspace topology on 2M .1.

Definition 2.2. An n-coloring of 2ω is a function C : 2ω → {1 . . . n}.

Definition 2.3. A set S ⊆ 2ω is said to be monochromatic, if there i ∈ {1 . . . n}
such that ∀s ∈ S : C(s) = i.

Definition 2.4. A coloring of 2ω is said to be Ramsey, if ∃M ⊆ ω such that
[M ]ω is monochromatic.

Given a 2-coloring C of 2ω we may denote S :={X ∈ 2ω|C(X) = 0}. If the
coloring was Ramsey, then there is ∃M ⊆ ω such that either [M ]ω ⊆ S or else
[M ]ω ⊆ 2ω − S. This allows us to define Ramsey Sets.

Definition 2.5. A set S ⊆ 2ω is said to be Ramsey if ∃M ⊆ ω such that either
[M ]ω ⊆ S or else [M ]ω ⊆ 2ω − S.

For the people who don’t know what ’Borel set’ means, the next definition
(from Wikipedia) should be enough to understand what the proof is all about.
If it didn’t help, they are invited to check Wiki (or open any book in functional
analysis and glance through first or second chapter) for more info.

Definition 2.6 (σ-algebras and Borel Sets). A σ-algebra over a set X is a
nonempty collection Σ of subsets of X (including X itself) that is closed under

1We can define product of Z2 with indicies in M or just add fixed term of 0 at places
indicies that don’t belong to M. In both case we get the topology homeomorphic to Tychonoff
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complementation and countable unions of its members. It is an algebra of sets,
completed to include countably infinite operations.

Borel set is any set in a topological space that can be formed from open sets
(or, equivalently, from closed sets) through the operations of countable union,
countable intersection, and relative complement.

For a topological space X, the collection of all Borel sets on X forms a σ-
algebra, known as the Borel algebra or Borel σ-algebra. The Borel algebra on X
is the smallest σ-algebra containing all open sets.

Unless explicitly said otherwise M’s, N’s, P’s and Q’s will always denote
infinite subsets of naturals, and X’s, Y’s and Z’s will denote finite subsets of
naturals. AC will usually denote the complement of A.

3 OPEN SETS ARE RAMSEY

In this section we shall prove that open sets are Ramsey. First - a few definitions.

Definition 3.1. Let A,B ⊆ ω. We say that A < B if (∀a ∈ A ∀b ∈ B : a < b)
holds.

Definition 3.2. An-M extension of X is a set of the form X ∪N where X < N
and N ⊆M .

In the following defintions and lemmas, S is a fixed subset of 2ω.

Definition 3.3. M accpets X if for every P that’s M-extension of X, P ∈ S.
M rejects X if there is no N ⊆M such that N accepts X.

Lemma 3.1.

M accepts (rejects) X iff {m ∈M : {m} > X} accepts (rejects) X.

If M accetps (rejects) X, so does every N ⊆M .

For any X and M, there is an N ⊆M such that N either accepts or rejects X.

Proof. First statement is clear from the defintion of acception. Second is im-
midiate, since for all N ⊆M , any N extension is also M-extension of X.
For the third statement: suppose there’s N ⊆ M that accepts X. Then it will
be the required subset that accepts X. Otherwise, there’s no subset of M that
accepts M, which by defenition means that M rejects X, thus we can take M to
be the required subset.

Lemma 3.2. There is M ⊆ ω such that for any X ⊆ M , is either accepted or
rejected by M.

Proof. Let M be any infinite set. By Lemma 3.1, there is M0 ⊆ M that either
accepts or rejects ∅. Choose any a0 ∈ M0. Now supposed that Mi, ai(i ≤ n)
have allready been defined. Let An := {ai : i ≤ n}. Then we can choose
Mn+1 ⊆ Mn such that An < Mn+1 and Mn+1 accepts or rejects every finite
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X ⊆ An by iterating the previous lemma.
Let X1, X2 . . . X2n be an enumeration of all the subsets of An. Now we perform
the following:

1. Choose any An < Mn+1 ⊆Mn that accepts or rejects X1

2. for j ← 2 to 2n do:

3. Choose any M ′n+1 ⊆Mn+1 that accepts or rejects Xj .

4. Mn+1 ←M ′n+1

At the end we get a Mn+1 ⊆ Mn that accepts or rejects every subset of An.
Now we choose any an+1 ∈ Mn+1. Then A := {an : n ∈ ω} is the required set.
This is true because for any finite subset of X ⊆ A there is minimal n such that
X ⊆ An. Notice that A − An = {a ∈ A : {a} > X}. By the first lemma A
accepts(rejects) X iff A− An accepts(rejects) X. But A− An ⊆Mn+1. By the
construction Mn+1 must either accept or reject X. Because A−An ⊆Mn+1 and
infinite by first lemma, it either accepts or rejects X. Thus A either accepts or
rejects X for any finite X ⊆ A.

Lemma 3.3. Let M be as in the previous Lemma, and let X ⊆M . If M rejects
X, then M rejects any X ∪ {n} for all but finitely many n ∈M .

Proof. Suppose there are infinitely many n ∈ M such that M doesn’t reject,
and therefore accepts X ∪ {n}. Let N := {n ∈M : M accepts X ∪ {n}}. Every
N -extension is also M extension of X ∪ {n} for some n ∈ N . It follows that N
accepts X, so M doesn’t reject X, a contradiction.

Lemma 3.4. Let M be as in the previous Lemma. If M rejects ∅, then there is
N ⊆M such that N rejects every X ⊆ N .

Proof. Suppose that we’ve choosen ai, i < n such that M rejects any X ⊆ An =
{ai : i < n}. Then, by Lemma 3.3, we can choose an ∈ M so that ai < an, for
i < n and M rejects X ∪ {an} for every X ⊆ An. (This is true since for any
X ⊆ An there’re finitely many n’s such that M doesn’t reject X ∪ {n}, and
there’re finitely many X’s). Take N := {an : n ∈ ω}. Then M and therefore N
rejects every X ⊆ N .

Now we are ready to prove that open sets are Ramsey.

Theorem 3.1. Open sets are Ramsey.

Proof. Let S ⊆ 2ω be open. By Lemma 3.2, there is M such that M accepts or
rejects every X ⊆M . If M accepts ∅ then [M ]ω ⊆ S.
Otherwise M rejects ∅. Then by Lemma 3.4 there’s N ⊆M such that N rejects
every X ⊆ N . We will show that [N ]ω ⊆ 2ω − S. Assume the contrary: Then
there is P ⊆ N s.t P ∈ S.
S is open. Recall that it means that if S 6= ∅ (otherwise it would be trivial - all
the elements be in 2ω − S), then S is a union of basis elements. As it’s been
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stated in the previous section, all the basis elements are in form
∏
i<ω Ai, Ai =

Z2 except finitely many i . Let B ⊆ S be a base element such that P ∈ B. Then
there is p ∈ P such that for all k > p, Ak = Z2. Thus for every Q, if Q and P
have the same intersection with {n : n ≤ p}, then Q ∈ B thus Q ∈ S. But this
means that N accepts {n ∈ P : n ≤ p} contradicting the fact that N rejects all
of its finite subsets.

4 BOREL SETS ARE RAMSEY

Definition 4.1. A set S ⊆ 2ω is completely Ramsey if f−1(S) is Ramsey
for every continuous mapping f : 2ω → 2ω.

We proceed to prove that Borel sets are Ramsey. To do so, it will be sufficient
to show that completely Ramsey sets are σ−algebra containing all the open sets,
from which it will follow that Borel sets are completely Ramsey, thus Ramsey.
First we prove that open sets are completely Ramsey and completely Ramsey
sets are closed under complement.

Lemma 4.1. Every open set is completely Ramsey, since for every open set U
and every continous f : 2ω → 2ω f−1(U), is open. (This is the definition of
continuous function in topology).

Lemma 4.2. The complement of completely Ramsey set is completely Ramsey.

Proof. Let S be completely Ramsey. Then f−1(SC) = (f−1(S))C . But f−1(S)
is Ramsey, which means that it’s complement which equals to f−1(SC) is also
Ramsey, thus Sc is completely Ramsey.

If we show now that completely Ramsey sets are closed under infinte union,
then they make σ−algebra containing all the open sets, thus the Borel algebra,
and we’re done.

In the next few lemmas, big capital letters denote subsets of naturals, unless
stated otherwise explicitely.
Remember from the second section, that if M is infinite subset of ω, then
the one-to-one correspondence between ω and M induces a homeomorphism
between them (2M has also Tychonoff topology, defined in a similar way to 2ω).
Given a finite X ⊆ ω we can define continuous g : 2M → 2ω by g(A) = X∪A for
every A ∈ 2M . To show that g is continuous it’s enough to show that for every
P ∈ 2M and basis element B ⊆ 2ω such that g(P ) ∈ B there’s a basis element
A ⊆ 2M s.t P ∈ A and g{A} ⊆ B. Let B be a basis element containing g(P ) =
X ∪ P . Since B is a basis element, then it’s of form {b0 . . . bn} ×

∏
n<i<ω Z2.

Then for any Y ∈ 2M such that {p1 . . . pn} = {y1 . . . yn}2, (Y ∪ X) ∩ {i :
i ≤ n} = (P ∪ X) ∩ {i : i ≤ n} = {bi : i ≤ n} thus in B. Thus for A =
({p1 . . . pn} ×

∏
n<i<ω Z2) ∩ 2M , g(A) ⊆ B3.

2{p1 . . . pn}, {y1 . . . yn} are first n values of their characteristic functions and the equality
means their intersections with {1 . . . n} are equal.

3Recall that the subset topology and product topology on 2M are homeomorphic, thus all
the intersections of 2M with basis element of 2ω gives basis for topology on 2M
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Lemma 4.3. If S ⊆ 2ω is completely Ramsey, then, for any finite X and any
infinite M, there is N ⊆M such that either X ∪ P ∈ S for every P ∈ [N ]ω, or
else X ∪ P /∈ S for every P ∈ [N ]ω.

Proof. Let f : 2ω → 2M be the homeomorphism induced by the one-to-one
correspondence between ω and M, and g : 2M → 2ω as that was defined before.
Since gf : 2ω → 2ω is continuous and S is completely Ramsey, there is infinite
N∗ such that either [N∗]ω ⊆ (gf)−1(S) or else [N∗]ω ⊆ (gf)−1(SC). Let
N = f(N∗) ∈ [M ]ω; then either [N ]ω ⊆ g−1(S) or else [N ]ω ⊆ g−1(SC). It
implies, that either X ∪P ∈ S for every P ∈ [N ]ω, or else X ∪P ∈ SC for every
P ∈ [N ]ω.

Lemma 4.4. If S is completely Ramsey, M ⊆ ω infinite, X finite subset of M,
then there is an N, infinite subset of M, such that X ⊆ N and S ∩ [N ]ω is open
(in the relative topology) of [N ]ω.

Proof. We can obtain an N0 ∈ [M − X]ω such that, for each Y ⊆ X, either
Y ∪ P ∈ S for every P ∈ [N0]ω or else Y ∪ P /∈ S for every P ∈ [N0]ω, by
applying lemma 4.3 repeatedly. (Since |X| is finite, there’s finite number n of
subsets of X. We denote them by Yi. Now we perform the following:

1. Using lemma 4.3 choose N0 ∈ [M −X]ω such that either Y1 ∪ P ∈ S for
every P ∈ [N0]ω or else Y1 ∪ P /∈ S for every P ∈ [N0]ω(“required
property” until the end of the proof)

2. for i← 2 to m do:

3. Choose any N ′0 ⊆ N0 with the required property with Yi. If N0 has
the required property for any Yj for j < i so does it’s every infinite
subset, thus N ′0. (Because any infinite P ⊆ N ⊆ N0 is also infinite subset
of N0).

4. N0 ← N ′0

Note that at each iteration i, N0 had the required property for every Yj with
j ≤ i before and after the iteration. Thus it has the required property at
the end of the loop.) Let N = X ∪ N0. If P ∈ S ∩ [N ]ω, Q ∈ [N ]ω, and
P ∩ X = Q ∩ X, then Q ∈ S. (This is true, because by the construction if
Y ∪ P ∈ S for some Y ⊆ X, P ∈ [N ]ω then it’s for every P ∈ [N ]ω. But for
P−X, (P ∩X)∪(P−X) = P ∈ S) from this follows that for every P ∈ [N ]ω∩S,
there is some basis element of form (X ∩ P )× 2N0 containing it, thus

S ∩ [N ]ω ⊆
( ⋃

Y⊆X
Y×[N0]

ω⊆S∩[N ]ω

Y × 2N0

)
.

On the other hand it’s clear that( ⋃
Y⊆X

Y×[N0]
ω⊆S∩[N ]ω

Y × 2N0

)
⊆ S ∩ [N ]ω
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It follows that S ∩ [N ]ω is open in [N ]ω

Lemma 4.5. If Sn is completely Ramsey for every n ∈ ω, then, for any infinte
M ⊆ ω there is an N ∈ [M ]ω, such that Sn ∩ [N ]ω is open in [N ]ω for every
n ∈ ω.

Proof. The idea is to iterate the previous lemma. By lemma 4.4 we can choose
N0 ∈ [M ]ω so that S0 ∩ [N0]ω is open in [N0]ω, and we choose a0 ∈ N0. If
Ni and ai have been chosen for i ≤ n, so that {ai : i ≤ n} ⊆ Nn ∈ [ω]ω and
Ni ∩ Si is open in Ni, we choose Ni+1 so that {ai : i ≤ n} ⊆ Nn+1 ∈ [Nn]ω and
Sn+1 ∩ [Nn+1]ω is open in [Nn+1]ω (which is possible by Lemma 4.4), and we
choose an+1 ∈ Nn+1 − {ai : i ≤ n}. Then N =

⋂
{Nn : n ∈ ω} works because

{ai : i < ω} ⊆ N by the construction (thus we had to choose ai at every iteration
to assure that we get an infinte set at the end) and since ∀n ∈ ω : [N ]ω ⊆ [Nn]ω

and Sn ∩ [Nn]ω is open in [Nn]ω thus Sn ∩ [N ]ω is open for all n ∈ ω ,

Lemma 4.6. If Sn is completely Ramsey for every n ∈ ω, then
⋃
Sn : n ∈ ω is

completely Ramsey.

Proof. Let S =
⋃
{Sn : n ∈ ω}. By Lemma 4.5 there is an N ∈ [ω]ω such that

Sn ∩ [N ]ω is open in [N ]ω for every n ∈ ω. Hence S ∩ [N ]ω is open in [N ]ω;
i.e., S ∩ [N ]ω = T ∩ [N ]ω for some open T ⊆ 2ω. Note that T is completely
Ramsey by Lemma 4.1, So by Lemma 4.3, there is P ∈ [N ]ω such that either
[P ]ω ⊆ T or else [P ]ω ⊆ 2ω − T (Substitute sets in Lemma 4.3 with; X = ∅,
N = P , M = N); thus either [P ]ω ⊆ S or else [P ]ω ⊆ 2ω − S. This shows that
S is Ramsey. Now if f : 2ω → 2ω is continous then every f−1(Sn) is completely
Ramsey, and f−1(S) =

⋃
{f−1(Sn) : n ∈ ω}. By foregoing argument, f−1(S) is

Ramsey which proves that S is completely Ramsey.

Theorem 4.1. Every Borel set is Ramsey.

Proof. By the lemmas 4.1, 4.2, 4.6 the class of completely Ramsey functions is
σ − algebra which includes all the open sets, therefore all the Borel sets.

5 A GENERALIZATION TO FINTITE COL-
ORINGS

We now generalize to any finite coloring. (the idea to do it is due to Boaz
Tzaban). Note that the defintion of Ramsey sets in the 2nd section remains
valid for subsets of [ω]ω.

Definition 5.1. A function f : X → Y is borel if for any Borel set B ⊆ Y ,
f−1(B) is Borel in X.

Next statement is based on the facts that given a subspace Y ⊆ X, B ⊆ Y is
open iff B = B′ ∩Y for open set B′ ⊆ X, and that Borel algebra is the minimal
σ-algebra that contains all open sets.
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Lemma 5.1. Let X be a topological space, Y ⊆ X subspace. B ⊆ Y is Borel
set iff B = B′ ∩ Y for some Borel set B′ ⊆ X.

Now we prove another lemma that will help us to generalize to finite color-
ings.

Lemma 5.2. Let B ⊆ [ω]ω be Borel in [ω]ω. Then B is Ramsey.

Proof. Since B is Borel set, it follows from the previous statement there is B′ ⊆
2ω Borel set, such that B = B′∩ [ω]ω. Since B’ is Borel it is Ramsey, thus there
is M ∈ [ω]ω such that either [M ]ω ⊆ B′ or [M ]ω ⊆ 2ω−B′. But [M ]ω is a subset
of [ω]ω, thus [M ]ω ⊆ B = B′∩ [ω]ω holds or [M ]ω ⊆ [ω]ω−B = (2ω−B′)∩ [ω]ω

holds. Thus B is Ramsey.

Theorem 5.1. Any Borel coloring of [ω]ω is Ramsey.

Proof. The proof is by induction. For 2 - coloring it’s true by the previous
lemma.
We assume that the theorem is true for all k < n and prove for n. Let C : [ω]ω →
{1 . . . n} be a Borel coloring4 of [ω]ω. Then C−1{1} is Borel, thus Ramsey, and
thus there is [M ]ω such that [M ]ω ⊆ C−1{1} or [M ]ω ⊆ [ω]ω − C−1{1}. If
[M ]ω ⊆ C−1{1} holds we’re done. Otherwise C|[M ]ω = C ′ is Borel coloring of
[M ]ω with n - 1 colors. Note that [ω]ω and [M ]ω are homeomorphic. Thus the
induction hypothesis holds for [M ]ω and there is monochromatic [N ]ω ⊆ [M ]ω.
But it’s also subset of [ω]ω. From this follows that C is Ramsey.

4This means C is Borel function from [ω]ω to {1 . . . n}
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