

On the Bound for a Pair of Consecutive Quartic Residues of a Prime Author(s): R. G. Bierstedt and W. H. Mills Source: *Proceedings of the American Mathematical Society*, Vol. 14, No. 4 (Aug., 1963), pp. 628-632 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/2034288</u> Accessed: 01/04/2011 17:08

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

ON THE BOUND FOR A PAIR OF CONSECUTIVE QUARTIC RESIDUES OF A PRIME

R. G. BIERSTEDT AND W. H. MILLS

It is easy to show that every prime p greater than 5 has a pair n, n+1 of positive consecutive quadratic residues not exceeding 10. Furthermore, any prime p, such as 43, for which 2, 3, 5, 7 are all quadratic nonresidues has 9, 10 as the smallest such pair. M. Dunton [1] has shown that every prime p, except 2, 7, and 13, has a pair n, n+1 of positive consecutive cubic residues not exceeding 78, and that there exist an infinite number of primes for which 77, 78 is the smallest such pair.

In this paper we prove the analogous result for quartic residues.¹

THEOREM. Every prime p, except 2, 3, 5, 13, 17, 41, has a pair n, n+1 of positive consecutive quartic residues not exceeding 1224, 1225. Furthermore, there exist an infinite number of primes p for which 1224, 1225 is the smallest such pair.

PROOF. If $p \equiv 3 \pmod{4}$, then all the quadratic residues of p are quartic residues, and the result follows from the known result for quadratic residues. Hence we may suppose $p \equiv 1 \pmod{4}$. Let g be a primitive root modulo p. Let χ be the quartic character modulo p defined by $\chi(n) = i^b$ if $n \equiv g^b \pmod{p}$. Then n is a quartic residue of p if and only if $\chi(n) = 1$.

Suppose p has no pair of positive consecutive quartic residues less than 1226. Then for every integer N, $1 \le N \le 1224$, we have either $\chi(N) \ne 1$ or $\chi(N+1) \ne 1$. Setting N=1 we obtain $\chi(2) \ne 1$, and setting N=80 we obtain $\chi(5)=\chi(80) \ne 1$. Thus $\chi(2)=-1$, *i*, or -i; and $\chi(5)=-1$, *i*, or -i. Without loss of generality we suppose $\chi(2)=-1$ or *i*. Furthermore, if $\chi(2)=-1$, we may suppose that $\chi(5)=-1$ or *i*. This leads to five cases:

Case I. $\chi(2) = \chi(5) = -1$. Putting N=9 we obtain $\chi(3) \neq 1, -1$. Without loss of generality we suppose $\chi(3) = i$. The argument indicated by Table I now eliminates this case.

Case II. $\chi(2) = -1$, $\chi(5) = i$. Setting N = 3 we obtain $\chi(3) \neq 1$, and setting N = 15 we obtain $\chi(3) \neq -i$. Therefore $\chi(3) = -1$ or *i*. Thus

Presented to the Society, January 9, 1961, under the title On the existence of a bound for a pair of consecutive quartic residues modulo a prime; received by the editors May 1, 1962.

¹ The results for fifth and sixth powers have been obtained by electronic computing machines [4].

we have two subcases which are eliminated by Table II.

The case $\chi(2) = \chi(5) = -1$, $\chi(3) = i$		
N	Conclusion	
288	$\chi(17) \neq 1, -1$	
255	$\chi(17) eq i$	
	$\chi(17) = -i$	
51	$\chi(13) \neq 1$	
25	$\chi(13) \neq -1$	
39	$\chi(13) \neq -i$	
	$\chi(13) = i$	
195	$\chi(7) \neq 1, -1$	
	$\chi(49) = -1$	
40	$\chi(41) \neq 1$	
81	$\chi(41) \neq -1$	
245	$\chi(41) \neq i$	
	$\chi(41) = -i$	
287	$\chi(7) \neq i$	
	$\chi(7) = -i$	
10	$\chi(11) \neq 1$	
21	$\chi(11) \neq -1$	
77	$\chi(11) \neq i$	
594	$\chi(11) \neq -i$	
-		

TABLE I The case $\chi(2) = \chi(5) = -1$, $\chi(3) = i$

I ADLE II	Table II	
-----------	----------	--

The case $\chi(2) = -1$, $\chi(5) = i$

Subcase A: $\chi(3) = -1$		Subcase B: $\chi(3) = i$	
N	Conclusion	N	Conclusion
49	$\chi(7) \neq 1, -1$	288	$\chi(17) \neq 1, -1$
35	$\chi(7) \neq -i$	50	$\chi(17) \neq -i$
	$\chi(7) = i$		$\chi(17) = i$
675	$\chi(13) \neq 1, -1$	49	$\chi(7) \neq 1, -1$
728	$\chi(13) \neq i$	119	$\chi(7) \neq -i$
64	$\chi(13) \neq -i$		$\chi(7) = i$
		168	$\chi(13) \neq 1, -1$
		441	$\chi(13) \neq i$
		64	$\chi(13) \neq -i$

Case III. $\chi(2) = i, \chi(5) = -1$. Putting N = 15 we get $\chi(3) \neq -1$, and putting N = 24 we get $\chi(3) \neq i$. Therefore $\chi(3) = 1$ or -i. These sub-

TABLE III The case $\chi(2) = i, \chi(5) = -1$

Subca	se A: $\chi(3) = 1$	Subcas	$e B: \chi(3) = -i$
Ν	Conclusion	N	Conclusion
48	$\chi(7) \neq 1, -1$	б	$\chi(7) \neq 1$
224	$\chi(7) \neq -i$	35	$\chi(7) \neq -1$
	$\chi(7) = i$	20	$\chi(7) \neq i$
168	$\chi(13) \neq 1, -1$		$\chi(7) = -i$
675	$\chi(13) \neq i, -i$	16	$\chi(17) \neq 1$
		84	$\chi(17) \neq -1$
		119	$\chi(17) \neq i$
		255	$\chi(17) \neq -i$

cases are eliminated by Table III.

Case IV. $\chi(2) = \chi(5) = i$. Putting N = 15 we have $\chi(3) \neq -i$. Thus we have three subcases here—these are eliminated by Table IV.

TABLE IV

Subc	ase A: $\chi(3) = 1$	Subcas	se B: $\chi(3) = -1$	Sub	case C: $\chi(3) = i$
N	Conclusion	N	Conclusion	N	Conclusion
48	$\chi(7) \neq 1, -1$ $\chi(49) = -1$	12 624	$\chi(13) \neq 1$ $\chi(13) \neq -1$	16 255	$\chi(17) \neq 1$ $\chi(17) \neq -1$
16	$\chi(17) \neq 1$	675	$\chi(13) \neq i, -i$	135	$\chi(17) \neq i$
1224	$\chi(17) \neq i$				$\chi(17) = -i$
255	$\chi(17) \neq -i$			374	$\chi(11) \neq 1$
	$\chi(17) = -1$			99	$\chi(11) \neq -1$
169	$\chi(13) \neq 1, -1$			54	$\chi(11) \neq -i$
26	$\chi(13) \neq -i$				$\chi(11)=i$
	$\chi(13) = i$			384	$\chi(7) \neq -1$
120	$\chi(11) \neq 1, -1$			84	$\chi(7) \neq i$
935	$\chi(11) \neq i$			35	$\chi(7) \neq -i$
143	$\chi(11) \neq -i$				$\chi(7) = 1$
				168	$\chi(13) \neq 1, -1$
				220	$\chi(13) \neq i$
				39	$\chi(13) \neq -i$

The case $\chi(2) = \chi(5) = i$

Case V. $\chi(2) = i$, $\chi(5) = -i$. This last case is eliminated by Table V. We have now shown that every prime p, except 2, 3, 5, 13, 17, 41,

1963] A PAIR OF CONSECUTIVE QUARTIC RESIDUES OF A PRIME

has a pair of consecutive positive quartic residues not exceeding 1224, 1225.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-i
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	clusion
$\chi(3) = \chi(7) = $	≠1, −1
$6 \qquad \chi(7);$	$\neq i$
	= - <i>i</i>
	≠1
$\chi(7)$	$\neq i$
224 $\chi(7)$;	$\neq -i$
$\chi(7)$:	= -1
168 $\chi(13)$	≠1, −1
624 $\chi(13)$	$\neq i$
$\chi(13) =$	= — <i>i</i>
16 $\chi(17)_{\frac{1}{2}}$	≠1
255 $\chi(17)$ =	≠ −1
135 $\chi(17)$ =	≠i
$\chi(17) =$	= - <i>i</i>
$10 \qquad \chi(11)$	≠1
99 $\chi(11)$	≠ −1
$33 \qquad \chi(11) =$	
351 x(11);	

TABLE V

It follows from Theorem 3 of [2] that there exist an infinite number of primes p such that, with appropriate choice of primitive root g, $\chi(3) = 1$ and $\chi(q) = i$ for all other primes q less than 1226. Let p be such a prime. Then $\chi(n)$ is determined for all n such that $1 \le n \le 1225$. The only odd values of n in this range for which $\chi(n) = 1$ are

n = 1, 3, 9, 27, 81, 243, 625, 729, 875, 1225.

On the other hand $\chi(n) \neq 1$ for

$$n = 2, 4, 8, 10, 26, 28, 80, 82, 242, 244, 624, 626, 728, 730, 874, 876,$$

and $\chi(1224) = 1$. Hence 1224, 1225 is the smallest pair of positive consecutive quartic residues of p. Thus there are an infinity of primes p for which 1224, 1225 is the smallest pair of consecutive quartic residues. This completes the proof of the theorem.

The primes 5, 13, 17, and 41 occurred in the factorizations of the numbers used in the proof. Hence no conclusion can be drawn from this proof concerning them. However a brief calculation shows that these primes do not have pairs of consecutive quartic residues.

631

It is known from a theorem of A. Brauer [3] that every sufficiently large prime p has a pair of consecutive quartic residues. Our result shows that this is true for all primes p greater than 41. Brauer's proof does not establish the existence of an upper bound for the least pair of consecutive quartic residues of p.

D. H. and Emma Lehmer [5] have shown that there is no bound for three consecutive positive quadratic residues. In other words there exist primes for which the smallest triplet n, n+1, n+2 of consecutive positive quadratic residues is arbitrarily large. The same result is therefore true for three consecutive quartic residues.

References

1. M. Dunton, A bound for consecutive pairs of cubic residues (to appear).

2. W. H. Mills, Characters with preassigned values, Canad. J. Math. 15 (1963), 169-171.

3. A. Brauer, Über Sequenzen von Potenzresten, S.-B. Preuss Akad. Wiss. Phys.-Math. Kl. (1928), 9-16.

4. D. H. Lehmer, Emma Lehmer and W. H. Mills, Pairs of consecutive power residues, Canad. J. Math. 15 (1963), 172-177.

5. D. H. Lehmer and Emma Lehmer, On runs of residues, Proc. Amer. Math. Soc. 13 (1962), 102-106.

Colorado College and Yale University