On the Bound for a Pair of Consecutive Quartic Residues of a Prime
Author(s): R. G. Bierstedt and W. H. Mills
Source: Proceedings of the American Mathematical Society, Vol. 14, No. 4 (Aug., 1963), pp. 628-632
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2034288
Accessed: 01/04/2011 17:08

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@ jstor.org.

[^0]
ON THE BOUND FOR A PAIR OF CONSECUTIVE QUARTIC RESIDUES OF A PRIME

R. G. BIERSTEDT AND W. H. MILLS

It is easy to show that every prime p greater than 5 has a pair $n, n+1$ of positive consecutive quadratic residues not exceeding 10. Furthermore, any prime p, such as 43 , for which $2,3,5,7$ are all quadratic nonresidues has 9,10 as the smallest such pair. M. Dunton [1] has shown that every prime p, except 2,7 , and 13 , has a pair $n, n+1$ of positive consecutive cubic residues not exceeding 78 , and that there exist an infinite number of primes for which 77,78 is the smallest such pair.

In this paper we prove the analogous result for quartic residues. ${ }^{1}$
Theorem. Every prime p, except 2, 3, 5, 13, 17, 41, has a pair $n, n+1$ of positive consecutive quartic residues not exceeding 1224, 1225. Furthermore, there exist an infinite number of primes p for which 1224, 1225 is the smallest such pair.
Proof. If $p \equiv 3(\bmod 4)$, then all the quadratic residues of p are quartic residues, and the result follows from the known result for quadratic residues. Hence we may suppose $p \equiv 1(\bmod 4)$. Let g be a primitive root modulo p. Let χ be the quartic character modulo p defined by $\chi(n)=i^{b}$ if $n \equiv g^{b}(\bmod p)$. Then n is a quartic residue of p if and only if $\chi(n)=1$.

Suppose p has no pair of positive consecutive quartic residues less than 1226. Then for every integer $N, 1 \leqq N \leqq 1224$, we have either $\chi(N) \neq 1$ or $\chi(N+1) \neq 1$. Setting $N=1$ we obtain $\chi(2) \neq 1$, and setting $N=80$ we obtain $\chi(5)=\chi(80) \neq 1$. Thus $\chi(2)=-1, i$, or $-i$; and $\chi(5)=-1, i$, or $-i$. Without loss of generality we suppose $\chi(2)=-1$ or i. Furthermore, if $\chi(2)=-1$, we may suppose that $\chi(5)=-1$ or i. This leads to five cases:

Case I. $\chi(2)=\chi(5)=-1$. Putting $N=9$ we obtain $\chi(3) \neq 1,-1$. Without loss of generality we suppose $\chi(3)=i$. The argument indicated by Table I now eliminates this case.

Case II. $\chi(2)=-1, \chi(5)=i$. Setting $N=3$ we obtain $\chi(3) \neq 1$, and setting $N=15$ we obtain $\chi(3) \neq-i$. Therefore $\chi(3)=-1$ or i. Thus

[^1]we have two subcases which are eliminated by Table II.
Table I
The case $\chi(2)=\chi(5)=-1, \chi(3)=i$

N	Conclusion
288	$\chi(17) \neq 1,-1$
255	$\chi(17) \neq i$
	$\chi(17)=-i$
51	$\chi(13) \neq 1$
25	$\chi(13) \neq-1$
39	$\chi(13) \neq-i$
	$\chi(13)=i$
195	$\chi(7) \neq 1,-1$
	$\chi(49)=-1$
40	$\chi(41) \neq 1$
81	$\chi(41) \neq-1$
245	$\chi(41) \neq i$
	$\chi(41)=-i$
287	$\chi(7) \neq i$
	$\chi(7)=-i$
10	$\chi(11) \neq 1$
21	$\chi(11) \neq-1$
77	$\chi(11) \neq i$
594	$\chi(11) \neq-i$

Table II
The case $\chi(2)=-1, \chi(5)=i$

Subcase A: $\chi(3)=-1$		Subcase B: $\chi(3)=i$	
N	Conclusion	N	Conclusion
49	$\chi(7) \neq 1,-1$	288	$\chi(17) \neq 1,-1$
35	$\chi(7) \neq-i$	50	$\chi(17) \neq-i$
	$\chi(7)=i$		$\chi(17)=i$
675	$\chi(13) \neq 1,-1$	49	$\chi(7) \neq 1,-1$
728	$\chi(13) \neq i$	119	$\chi(7) \neq-i$
64	$\chi(13) \neq-i$		$\chi(7)=i$
		168	$\chi(13) \neq 1,-1$
		441	$x(13) \neq i$
		64	$\chi(13) \neq-i$

Case III. $\chi(2)=i, \chi(5)=-1$. Putting $N=15$ we get $\chi(3) \neq-1$, and putting $N=24$ we get $\chi(3) \neq i$. Therefore $\chi(3)=1$ or $-i$. These sub-
cases are eliminated by Table III.
Table III
The case $\chi(2)=i, \chi(5)=-1$

Subcase A: $\chi(3)=1$		Subcase B: $\chi(3)=-i$	
N	Conclusion	N	Conclusion
48	$\chi(7) \neq 1,-1$	6	$\chi(7) \neq 1$
224	$\chi(7) \neq-i$	35	$\chi(7) \neq-1$
	$\chi(7)=i$	20	$\chi(7) \neq i$
168	$x(13) \neq 1,-1$		$\chi(7)=-i$
675	$\chi(13) \neq i,-i$	16	$\chi(17) \neq 1$
		84	$\chi(17) \neq-1$
		119	$\chi(17) \neq i$
		255	$\chi(17) \neq-i$

Case IV. $\chi(2)=\chi(5)=i$. Putting $N=15$ we have $\chi(3) \neq-i$. Thus we have three subcases here-these are eliminated by Table IV.

Table IV
The case $\chi(2)=\chi(5)=i$

Subcase A: $\chi(3)=1$		Subcase B: $\chi(3)=-1$		Subcase C: $\chi(3)=i$	
N	Conclusion	N	Conclusion	N	Conclusion
48	$\begin{aligned} \chi(7) & \neq 1,-1 \\ \chi(49) & =-1 \end{aligned}$	$\begin{array}{r} 12 \\ 624 \end{array}$	$\begin{aligned} & \chi(13) \neq 1 \\ & \chi(13) \neq-1 \end{aligned}$	$\begin{array}{r} 16 \\ 255 \end{array}$	$\begin{aligned} & \chi(17) \neq 1 \\ & x(17) \neq-1 \end{aligned}$
16	$\chi(17) \neq 1$	675	$\chi(13) \neq i,-i$	135	$\chi(17) \neq i$
1224	$\chi(17) \neq i$				$\chi(17)=-i$
255	$\chi(17) \neq-i$			374	$\chi(11) \neq 1$
	$\chi(17)=-1$			99	$\chi(11) \neq-1$
169	$\chi(13) \neq 1,-1$			54	$\chi(11) \neq-i$
26	$\chi(13) \neq-i$				$\chi(11)=i$
	$\chi(13)=i$			384	$\chi(7) \neq-1$
120	$\chi(11) \neq 1,-1$			84	$\chi(7) \neq i$
935	$\chi(11) \neq i$			35	$\chi(7) \neq-i$
143	$x(11) \neq-i$				$\chi(7)=1$
				168	$\chi(13) \neq 1,-1$
				220	$\chi(13) \neq i$
				39	$\chi(13) \neq-i$

Case V. $\chi(2)=i, \chi(5)=-i$. This last case is eliminated by Table V. We have now shown that every prime p, except $2,3,5,13,17,41$,
has a pair of consecutive positive quartic residues not exceeding 1224, 1225.

Table V
The case $\chi(2)=i, \chi(5)=-i$

N	Conclusion
9	$\chi(3) \neq 1,-1$
15	$\chi(3) \neq i$
	$\chi(3)=-i$
35	$\chi(7) \neq 1$
224	$\chi(7) \neq i$
	$\chi(7) \neq-i$
168	$\chi(7)=-1$
624	$\chi(13) \neq 1,-1$
	$\chi(13) \neq i$
16	$\chi(13) \neq-i$
255	$\chi(17) \neq 1$
135	$\chi(17) \neq-1$
	$\chi(17) \neq i$
10	$\chi(17)=-i$
99	$\chi(11) \neq 1$
33	$\chi(11) \neq-1$
351	$\chi(11) \neq i$
	$\chi(11) \neq-i$

It follows from Theorem 3 of [2] that there exist an infinite number of primes p such that, with appropriate choice of primitive root g, $\chi(3)=1$ and $\chi(q)=i$ for all other primes q less than 1226 . Let p be such a prime. Then $\chi(n)$ is determined for all n such that $1 \leqq n \leqq 1225$. The only odd values of n in this range for which $\chi(n)=1$ are

$$
n=1,3,9,27,81,243,625,729,875,1225 .
$$

On the other hand $\chi(n) \neq 1$ for

$$
n=2,4,8,10,26,28,80,82,242,244,624,626,728,730,874,876 \text {, }
$$

and $\chi(1224)=1$. Hence 1224,1225 is the smallest pair of positive consecutive quartic residues of p. Thus there are an infinity of primes p for which 1224,1225 is the smallest pair of consecutive quartic residues. This completes the proof of the theorem.

The primes $5,13,17$, and 41 occurred in the factorizations of the numbers used in the proof. Hence no conclusion can be drawn from this proof concerning them. However a brief calculation shows that these primes do not have pairs of consecutive quartic residues.

It is known from a theorem of A. Brauer [3] that every sufficiently large prime p has a pair of consecutive quartic residues. Our result shows that this is true for all primes p greater than 41 . Brauer's proof does not establish the existence of an upper bound for the least pair of consecutive quartic residues of p.
D. H. and Emma Lehmer [5] have shown that there is no bound for three consecutive positive quadratic residues. In other words there exist primes for which the smallest triplet $n, n+1, n+2$ of consecutive positive quadratic residues is arbitrarily large. The same result is therefore true for three consecutive quartic residues.

References

1. M. Dunton, A bound for consecutive pairs of cubic residues (to appear).
2. W. H. Mills, Characters with preassigned values, Canad. J. Math. 15 (1963), 169-171.
3. A. Brauer, Über Sequenzen von Potenzresten, S.-B. Preuss Akad. Wiss. Phys.Math. Kl. (1928), 9-16.
4. D. H. Lehmer, Emma Lehmer and W. H. Mills, Pairs of consecutive power residues, Canad. J. Math. 15 (1963), 172-177.
5. D. H. Lehmer and Emma Lehmer, On runs of residues, Proc. Amer. Math. Soc. 13 (1962), 102-106.

Colorado College and
Yale University

[^0]: American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

[^1]: Presented to the Society, January 9, 1961, under the title On the existence of a bound for a pair of consecutive quartic residues modulo a prime; received by the editors May 1, 1962.
 ${ }^{1}$ The results for fifth and sixth powers have been obtained by electronic computing machines [4].

