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Abstract. We give new upper bounds for resolution proofs of the weak
pigeonhole principle. We also give lower bounds for tree-like resolution
proofs. We present a normal form for resolution proofs of pigeonhole
principles based on a new monotone resolution rule.

1 Introduction

Tautologies expressing versions of the pigeonhole principle have been important
test cases for obtaining bounds on the lengths of propositional proofs and
for comparing the proof theoretic strengths of various propositional proof
systems. The seminal paper of Cook and Reckhow [5] showed that pigeonhole
principles have polynomial length extended Frege systems; later, [3] showed
that they also have polynomial length Frege proofs. On the other hand, the
first superpolynomial lower bound on the length of resolution refutations was
Haken’s proof [6], that resolution proofs of the propositional pigeonhole principle
require exponential length. A significant strengthening of Haken’s lower bound
was obtained by Ajtai [1] who proved that constant-depth Frege proofs of the
pigeonhole principle require superpolynomial size; this was later strengthened
by [2, 10, 7] to show that constant-depth Frege proofs of the pigeonhole principle
require exponential size.

In some cases, finer distinctions can be made using generalized forms of the
pigeonhole principle. One such principle is the “m into n” generalization which
states that there is no one-to-one mapping of m objects into n objects, where
m > n. Tautologies, defined below, expressing this principle are denoted PHPm

n .
It is known that the tautologies PHP2n

n have quasipolynomial size constant
Frege proofs [8, 9]. In addition, Haken’s lower bound for resolution proofs of the
pigeonhole principle was generalized by [4] who proved superpolynomial bounds
on resolution proofs of PHPm

n for m = o(n2/ log n).
These prior upper and lower bounds on the the size resolution proofs leave

open the question of the size of resolution proofs of PHPm
n when n2/ log n ≤

m ≤ 2n. It has been a folklore conjecture that the shortest resolution proofs of
PHPm

n have the same length as resolution proofs of PHPn+1
n ; in other words,
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that when m > n + 1, optimal length resolution proofs can be obtained by
ignoring all but one of the domain elements. We show in this paper, however,

that this conjecture is false for m = 2
√

n log n.
The results of this paper are as follows. In section 3 we present a normal form

for resolution proofs of pigeonhole principle tautologies. Normal form resolution
proofs contain only positive occurrences of variables; the usual resolution rule is
replaced by a new monotone resolution rule. The sizes of monotone resolution
proofs are polynomially related to the sizes of resolution proofs. As a corollary,
we prove that resolution proofs of the onto version of the pigeonhole principle
are not significantly shorter than resolution proofs of the non-onto pigeonhole
principle. In section 4, we give a polynomial upper bound on the size of resolution

proofs of PHPm
n for m = 2

√
n log n. This improves on the upper bound n22n

for proofs of PHPn+1
n ; which shows that having additional domain elements

can make the pigeonhole principle easier to prove. In section 5, we prove an
exponential lower bound on the size of tree-like resolution proofs of PHPm

n .

2 Definitions

This paper deals exclusively with propositional logic. A literal is either a
propositional variable or a negated propositional variable. A clause is defined to
be a set of literals and is identified with the disjunction of its member literals.
We assume that a clause never contains both a variable and the negation of
that variable. We use capital letters, usually with subscripts, e.g., Pi,j , to denote
variables; lowercase letters such as x denote literals; and clauses are denoted by
letters A,B,C, . . ..

A resolution inference infers A ∨ B from two clauses A ∨ x and B ∨ x. A
conjunctive normal form (CNF) formula φ is identified with the set of clauses
which appear as conjuncts of φ. A resolution refutation of φ consists of a
sequence C1, . . . , Cs of clauses, where each Ci is either a conjunct of φ or is
inferred from earlier clauses in the refutation by a resolution inference. The size
of the refutation is equal to the number, s, of clauses in the refutation.

A refutation proof of a disjunctive normal form (DNF) formula is defined
to be a resolution refutation of the negation of the formula. It is well-known
that resolution is refutationally sound and complete, so a DNF formula has a
resolution proof if and only if it is a tautology.

Resolution refutations are usually viewed as sequences or directed acyclic
graphs. However, they can also be restricted to be tree-like with each clause in
the refutation being used as a hypothesis of an inference at most once. Note that
the same clause may appear multiple times in the tree-like proof; the size of a
tree-like refutation equals the number of occurrences of clauses in the refutation.

Definition 1. Let m > n. The tautology PHPm
n expresses the pigeonhole

principle that there is no one-to-one mapping from a domain of m objects
(called “pigeons”) into a range of n objects (called “holes”). This is easily defined
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by a DNF formula, but since it is more relevant for resolution, we describe
instead the set of clauses which are the conjuncts of the CNF formula ¬PHPm

n .
The propositional variables are Pi,j, i ≤ m, j ≤ n, with Pi,j having the intuitive
meaning that pigeon i is mapped to hole j. The clauses of ¬PHPm

n are:

(1) Pi,1 ∨ Pi,2 ∨ · · · ∨ Pi,n, for each i ≤ m; and
(2) ¬Pi,k ∨ ¬Pj,k, for each i, j ≤ m, k ≤ n, i 6= j.

Note that the number of clauses in ¬PHPm
n is m +

(

m
2

)

n < m2n < m3.

As mentioned in the introduction, Haken proved that resolution proofs of
PHPn+1

n require exponential size. The first author and Turán [4] showed that

any resolution refutation of PHPm
n requires size 1

2

(

3
2

)
1
50

n
2

m . However, when
m ≥ n2/ log n, this lower bound is only polynomial, and in fact there are
no nontrivial lower bounds known in this case. To the best of the authors
knowledge, prior to the present paper, the best upper bounds known for the
sizes of resolution proofs of PHPm

n was the bound n32n of Lemma 1 below.

3 A Normal Form Theorem

In this section we define a variation of the resolution proof system, called
the monotone resolution system, which is tailored for proofs of pigeonhole
principles. We prove that this system is complete for proofs of pigeonhole
principle tautologies, and that the sizes of monotone resolution proofs and
the sizes of resolution proofs are polynomially related. The motivation for
introducing the monotone resolution proof system is the hope that it will
provide a better framework for obtaining lower bounds on the sizes of resolution
refutations of pigeonhole principles.

We define a monotone resolution proof for PHPm
n as follows. A monotone

clause is a clause which contains only positive variables. We let the mn vari-
ables Pi,j correspond to entries in an an n-by-m array, with rows labeled by
the n holes, and columns labeled by the m pigeons. Thus the variable Pi,j

corresponds to the entry in the j-th row and the i-th column. A monotone
clause is visualized as an n-by-m array, with +’s in each entry corresponding to
the occurrences of variables in the clause and with array entries corresponding
to variables not occurring in the clause left blank.

For R ⊆ {1, . . . ,m} we let PR,j be the disjunction of the variables Pi,j for
all i ∈ R. Let C1 = A ∨ PR,j ∨ PS,j and C2 = B ∨ PR,j ∨ PT,j , where R, S
and T are disjoint and where A and B are both disjunctions of positive variables
not in row j. Then the monotone resolution inference rule allows us to derive
C3 = A ∨ B ∨ PR,j from C1 and C2. In other words, we can infer the clause C3

from C1 and C2 by the monotone resolution rule with respect to hole j, provided
C3 consists of the union of all variables in C1 ∪ C2, minus all variables Pi,j ,
which occur in exactly one of C1 and C2. Implicit in the monotone resolution
rule is one-to-oneness: if pigeon i is mapped to hole j, then no other pigeon i′

can be mapped to hole j.
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A monotone resolution proof is a sequence of monotone clauses, where the
final clause is the empty clause; and where every clause is either an initial clause
of the form ∨n

j=1Pi,j , or follows from two previous clauses by the monotone
resolution rule.

Strictly speaking, monotone resolution is not a proof system, since it is not
complete for arbitrary sets of clauses; however, it follows from the next theorem
that monotone resolution is sufficient to prove pigeonhole principle tautologies.
Only such tautologies are considered in this paper.

Two proof systems are said to be polynomially equivalent for a class Φ of
formulas if and only if there is a polynomial q(x) such that if φ ∈ Φ has a proof
of size s in one of the systems, then it has a proof of size ≤ q(s) in the other
system.

Theorem 1. The resolution proof system and the monotone resolution proof
system are polynomially equivalent for the pigeonhole tautologies PHPm

n .

Proof. Let us first show that if we have a monotone refutation, then we also
have a resolution refutation of the usual kind.. For this it suffices to simulate
a monotone resolution inference by only polynomially many ordinary resolution
inferences. Suppose that C3 is obtained from C1 and C2 by the monotone
resolution rule, where C1 = A ∨ PR,j ∨ PS,j and C2 = B ∨ PR,j ∨ PT,j and
C3 = A ∨ B ∨ PR,j , and where R, S and T are disjoint and A and B are sets of
variables not involving hole j. We shall show how to obtain C3 from C1, C2 and
the initial clauses with only polynomially many resolution steps. First, generate
the clauses Ct

1 = A ∨ PR,j ∨ ¬Pt,j , for all t ∈ T . Each clause Ct
1 is obtained by

|S| many resolution inferences from C1 and the initial clauses (¬Pt,j ∨ ¬Ps,j)
for all s ∈ S. Then from the clauses Ct

1, where t ∈ T , and from C2, generate
C3 = A ∨ B ∨ PR,j in |T | additional inferences.

Since |S|, |T | ≤ m, the above construction shows that a monotone resolution
inference can be simulated with ≤ m2 usual resolution inferences.

In the other direction we want to show that if P is a resolution refutation
of ¬PHPm

n , then there exists a monotone resolution refutation P ′ of ¬PHPm
n of

size polynomial in the size of P . As a first step, we will transform every clause in
P into a totally monotone clause as follows: if C = A∨B is a clause in P , where
A is the disjunction of positive variables, and B is the disjunction of negative
variables, then Cm = A∨Bm, where Bm is obtained by replacing every negative
literal ¬Pi,k in B by the (disjunction of the) set of literals {Pℓ,k | ℓ 6= i}. Note
that the initial clauses of the form ∨n

k=1Pj,k will remain unchanged, and the
initial clauses of the form (¬Pi,k ∨ ¬Pj,k) will become ∨m

ℓ=1Pℓ,k. Note that in
the latter case, the clause is not a valid initial clause for a monotone resolution
refutation.

Now suppose that C3 is inferred from the clauses C1 and C2 in the original
resolution refutation. We want to show how to derive Cm

3 from Cm
1 and Cm

2 .
Suppose that C1 contains Pi,k and C2 contains ¬Pi,k, where Pi,k is the variable
resolved upon to obtain C3. We must show how to derive a subclause of Cm

3 from
Cm

1 and Cm
2 . (It suffices to derive a subclause of Cm

3 , since it is obvious that
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the subsumption principle applies to monotone resolution.) There are two cases
to consider. Firstly, suppose C2 is an initial clause of the form (¬Pi,k ∨ ¬Pj,k).
In this case, it is easy to check that C1

m is a subclause of C3
m, so this resolution

refutation does not need to be simulated by any monotone resolution steps.
More generally, if the array representation of Cm

2 has a + in the position
corresponding to Pi,k, then it has +’s in every position in row k and hence
Cm

1 is a subclause of Cm
3 and no additional monotone resolution inference is

needed. Secondly, suppose Cm
2 does not have + in the position for Pi,k. Let

C∗
3 be the clause obtained from Cm

1 and Cm
2 by using the monotone resolution

inference with respect to row k. We shall show that C∗
3 is a subclause of Cm

3 .
In this case, we can write Cm

1 = A ∨ PR,k ∨ Pi,k where i /∈ R, and can write
Cm

2 = B ∨ PR,k ∨ PT,k where T is the complement of R ∪ {i}. Thus C∗
m is the

clause A ∨ B ∨ PR,k. Each member Pj,k of PR,k is present in Cm
1 because it

is already in C1 or because ¬Pj′,k is in C1 for some j′ 6= j. The same literal
also appears in C3 and therefore Pj,k is also in Cm

3 . This shows that C∗
3 is a

subclause of Cm
3 .

Therefore, we have shown that a resolution inference can be simulated by
(at most) a single monotone resolution inference. 2

The “onto” version of the pigeonhole principle is obtained by taking the
clauses P1,k ∨ P2,k ∨ · · · ∨ Pn,k as additional initial clauses. However, these
clauses are just the monotone translation of the initial clauses ¬Pi,k ∨ ¬Pj,k of
the usual pigeonhole principle. Examination of the above proof shows that we
have proved that any (ordinary) resolution refutation of the onto pigeonhole
principle of size n inferences, can be translated into a monotone resolution
of size ≤ n. From this, the following theorem is an immediate corollary of
Theorem 1.

Theorem 2. The shortest resolution proofs of PHPm
n have size polynomially

bounded by the size of resolution proofs of the onto pigeonhole principle with
m pigeons and n holes.

4 An Upper Bound

Theorem 3. There is a d > 0 such that when m = 2
√

n log n, then PHPm
n has a

resolution proof with md steps. Thus, for m ≥ 2
√

n log n, PHPm
n has a resolution

proof of size polynomially bounded by the number of variables.

Since Haken [6] proved a size lower bound of 2ǫn for proofs of PHPn+1
n , where

ǫ is a constant, Theorem 3 implies that the size of resolution proofs of PHPn+1
n

must be superpolynomially longer than the shortest resolution proof of PHPm
n

where m = 2
√

n log n.
By Theorem 1, it will suffice to prove Theorem 3 for monotone resolution

proofs instead of ordinary resolution proofs; indeed, since there are m pigeons,
the length of the shortest ordinary resolution refutation is no more than m2
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times the length of a monotone resolution refutation. First, we need the following
lemma:

Lemma 1. PHPn+1
n has a monotone resolution refutation of size O(n2n).

Note that the lemma and the proof of Theorem 1 imply that PHPn+1
n has

an ordinary resolution proof of size O(n32n).

Proof. Let PS,T denote the disjunction of the variables Pi,j , where i ∈ S, j ∈ T .
Also, Pi,T denotes P{i},T . Let [i, j] denote the set {i, i + 1, . . . , j}.

The initial clauses of the monotone resolution refutation are Pi,[1,n] for all
i ∈ [1, n + 1]. The monotone refutation first derives the clauses PS(2),[2,n], for

all sets S(2) ⊂ [1, n + 1] of size 2. Each is obtained by one monotone resolution
step from the initial clauses. Next, we generate the clauses PS(3),[3,n] for all

S(3) ⊂ [1, n + 1] of size 3. Each is obtained by two monotone resolution steps
from clauses derived in the previous stage. Continuing in this fashion, we
eventually derive PS(n),n for all S(n) ⊂ [1, n + 1] of size n. Finally, we derive
the empty clause from this last set of clauses. The total number of monotone
resolution inferences derived is bounded by

n

((

n + 1

2

)

+

(

n + 1

3

)

+ ... +

(

n + 1

n

))

≤ n2n+1 = O(n2n).

Proof. We will now prove Theorem 3 by induction on n. Let a = b
√

n log n for
a fixed b > 1.

The base case, n = 2, is trivial for d sufficiently large. The induction step
is argued as follows: The monotone resolution refutation we construct has two
stages. The first stage splits the m pigeons into disjoint blocks of a + 1 pigeons.
For each block, we run a resolution refutation of PHPa+1

a , so as to remove
a 1’s (range elements) from the columns. That is to say, for each block S of
a + 1 columns, we derive the clause CS,T where T is [1, n− a]. The size analysis
for this part is equal to the number of blocks times the complexity of proving
PHPa+1

a ; i.e.,

(m/(a + 1))O((a + 1)2a) = O(2(b+1)
√

n log n).

In the second stage, we use the induction hypothesis applied to n − a holes;
we do this by keeping the disjoint blocks of a + 1 columns (pigeons) grouped
together; in essence, we have divided the number of columns by a+1. Therefore,

we are proving an instance of PHP
m/(a+1)
n−a : the induction hypothesis tells us that

this can be proved with the number of monotone resolution inferences bounded
by

2d
√

(n−a) log(n−a) < 2d(
√

n log n−a(1+log n)/(2
√

n log n))

= 2d
√

n log n−0.5db(1+log n)

= o(2d
√

n log n)
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(The first inequality is obtained by letting f(x) =
√

x log x and using the fact
that f(n − a) < f(n) − af ′(n) since f is concave down.)

Adding the size bounds from the two stages of the monotone resolution

refutation gives the desired upper bound of 2d
√

n log n, provided d is sufficiently
large.

It is still left to verify that the use of the inductive hypothesis was valid, i.e.,

that m/(a + 1) > 2
√

(n−a) log(n−a). The lefthand side is equal to

2
√

n log n/(b
√

n log n + 1).

By the calculation above, the righthand side is less than or equal to

2
√

n log n/nb/2, since d > 1. Thus the desired inequality holds since b > 1.
2

5 A Lower Bound

Theorem 4. For any m > n, any tree-like resolution refutation of PHPm
n

requires 2n steps.

Proof. We’ll prove the stronger statement that any tree-like monotone resolution
refutation P of PHPm

n has at least 2n inferences.
The proof is by induction on n. For n = 1, the statement is easy to verify.

Now suppose n > 1. Let the last inference of P infer the empty clause from
two clauses C1 and C2 by a monotone resolution inference. We have C1 = PS,k

and C2 = PT,k for disjoint nonempty subsets S and T of [1, n]. Let pi,k ∈ S
and pj,k ∈ T . Let P1 and P2 be the subproofs of P which derive C1 and C2

respectively. We form a new refutation from P1 by restricting pj,k to be true: this
involves (1) removing from P1 every clause which contains pj,k and (2) erasing
from the clauses of P1 every occurrence of the variables pj′,k with j′ 6= j. The
result is (easily modified to be) a valid resolution proof of PHPm−1

n−1 . By the
induction hypothesis, this proof and hence P1 must have at least 2n−1 inferences.
Similar reasoning shows that P2 must have at least 2n−1 inferences. Therefore,
P has at least 2n−1 + 2n−1 + 1 inferences. 2

6 Further Research

Subsequently to the present paper, Razborov, Widgerson and Yao [11] have
investigated relationships between restricted resolution refutations of the pi-
geonhole principle and restricted read-once braching programs. They identified
several restricted versions of resolution, including a rectangular resolution
calculus, and they generalized the upper bound of Theorem 3 to the rectangular
calculus and proved a nearly matching lower bound on the size of rectangular
refutations for the weak pigeonhole principle.

For the (unrestricted) resolution calculus, the problem of proving exponential
lower bounds for the weak pigeonhole principle, ¬PHPm

n , where the number of
pigeons, m, is polynomially large (e.g., m = n2) remains open.
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