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18.10 Addendum: Arbitrary number of pigeons

Razborov’s idea is to use a more subtle concept of “width” of clauses, tailor
made for this particular CNF formula.

Theorem 18.22 For every m ≥ n + 1, every resolution refutation proof of

PHPm
n has size at least 2Ω(n1/4).5

Recall that PHPm
n denotes the AND of the following clauses (axioms):

• Pigeon Axioms: each of the m pigeon sits in at least one of n holes:

xi,1 ∨ xi,2 ∨ · · · ∨ xi,n for all i = 1, . . . ,m.

• Hole Axioms: no two pigeons sit is one hole:

¬xi1,j ∨ ¬xi2,j for all i1 6= i2 and j = 1, . . . , n.

A special feature of this CNF is that any resolution refutation of the set
all its axioms (clauses) can be transformed to a monotone refutation of its10

pigeon axioms without any increase in the size of a derivation. To define
monotone refutations, let Xi,j be the OR of all but the ith variable in the
jth column:

Xi,j = x1,j ∨ · · · ∨ xi−1,j ∨ xi+1,j ∨ · · · ∨ xm,j .

By a monotone refutation of PHPm
n we will mean a derivation of an empty

clause from pigeon axioms and using the following monotone resolution rule:15

A ∨ xi,j B ∨Xi,j

A ∨B
.

Such a derivation can be obtained from the original (non-monotone) deriva-
tion by replacing each negated variable ¬xi,j by the OR of variables Xi,j .
Note that, in general, this rule is not sound: there are assignments satisfying
both assumptions but falsifying the conclusion. Still, the rule is sound if we
consider only assignments satisfying all hole axioms; we call such assignments20

legal. That is, an assignment α is legal if it sends no two pigeons to the same
hole (no column has more than one 1).

The following fact reduces the lower bounds problem for PHPm
n to its

monotone version.

Lemma 18.23 If PHPm
n has a resolution refutation of size S, then the set25

of pigeon axioms of PHPm
n also has a monotone refutation of size at most S.

Proof: Given a resolution refutation proof for PHPm
n , just replace all occur-

rences of a negated variable ¬xi,j by the OR Xi,j =
∨

k 6=i xk,j . It can be
shown (do this!) that the resulting sequence of monotone clauses is a mono-
tone refutation of the pigeon axioms. ⊓⊔30
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For the proof in the case when m is arbitrarily large, it will be convenient
to increase the power of refutations by allowing a larger set of monotone
derivation rules:

C0 ∨XI0,j C1 ∨XI1,j

C
,

where XI,j =
∨

i∈I xi,j , I0 ∩ I1 = ∅ and C0 ∨ C1 ≤ C. From now on, by a
monotone refutation of PHPm

n we will mean a refutation of pigeon axioms5

using any of these rules. Note that these rules are still sound with respect to
all legal truth assignments, that is, assignments sending no two pigeons to
one hole: if such an assignment satisfies both clauses C0 ∨XI0,j and C1 ∨XI1,j

then, due to the condition I0 ∩ I1 = ∅, it must also satisfy at least one of the
clauses C0 or C1, and hence, the clause C as well.10

18.10.1 Size versus pseudo-width of refutations

Suppose we have a monotone refutation proof R of the pigeon axioms

Xi,[n] =

n∨

j=1

xi,j , i = 1, . . . ,m.

To analyze the refutation R, we are going to allow much more axioms. For
this we fix two parameters. First set

δ :=
n

2 log2 m
.

A threshold string is a string d = (d1, . . . , dm) of positive integers with δ <15

di ≤ n for all i. Having such a string d, we will allow all clauses of the form

Xi,J =

n∨

j∈J

xi,j with i ∈ [m] and |J | ≥ di

be used as axioms; we call such axioms d-axioms. Note that every monotone
refutation of PHPm

n is a monotone refutation of the set of d-axioms for the
threshold string d = (n, . . . , n).

Allowing more axioms does not hurt us, since our goal is to prove a lower20

bound on the size of a refutation. The reason for introducing new axioms is
that we can then “filter out” from the refutation proof all clauses containing
at least one such axiom: we just replace each such clause by the corresponding
axiom.

For this purpose we consider the degree of freedom25

di(C) =
∣∣{j : xi,j ∈ C}

∣∣ .
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of each pigeon i in a clause C. This is the number of holes offered by C to
this pigeon. The clause C is “filtered out” from the proof, that is, can be
replaced by an axiom, if di(C) ≥ di for at least one pigeon i.

The main concept of our analysis will be the following very special notion
of the “width” of refutation proofs of PHPm

n , tailor made for this particular5

CNF. Namely, define the pseudo-width wd(C) of a clause as the number

wd(C) =
∣∣{i : di(C) ≥ di − δ}

∣∣

of pigeons who passed the filter only “narrowly:” their degree of freedom
di(C) in C is near to the threshold di. The pseudo-width of a refutation R
is the maximum pseudo-width of a clause in it.

Our first task (Lemma 18.24 below) will be to show that if the thresholds10

di are chosen in a clever way, then in every clause C ∈ R passing the filter
(that is, having di(C) < di for all pigeons i) almost all, namely, at least m−
O(log |R|) pigeons pass it safely: their “degree of freedom” in C is well below
the corresponding threshold di, is ≤ di − δ. Thus, the number of pigeons who
narrowly (= non-safely) pass the filter (d1, . . . , dm), and hence, the pseudo-15

width of the refutation R, must be at most O(log |R|).
Lemma 18.24 If PHPm

n has a resolution refutation of size S then there
exists a threshold string d such that some set of at most S d-axioms has a
monotone refutation of size S and pseudo-width O(logS).

The second task is to show that the number of pigeons who narrowly20

passed the filter, and hence, the pseudowidth of a refutation, must be large.

Lemma 18.25 For every threshold string d, every monotone refutation R
of a set of S d-axioms requires pseudo-width at least Ω

(
n/ log3 S

)
.

Note that these two lemmas already imply the theorem. Let S be the min-
imum size of a resolution refutation of PHPm

n . By Lemma 18.24, there exists25

a threshold string d such that some set of at most S d-axioms has a monotone
refutation R of size S and pseudo-width O(logS). But, by Lemma 18.25, the
pseudo-width of R must be Ω

(
n/ log3 S

)
. Thus, logS = Ω(n1/4), as desired.

So, it remains to prove these two lemmas.

18.10.2 Short proofs have small pseudo-width30

To prove the Lemma 18.24, we have to somehow “filter out” clauses of large
pseudo-width. For this we need the following combinatorial lemma which may
be of independent interest; we will give its proof later in Section 18.10.4.

Lemma 18.26 (Pigeon filter lemma) Let R = {ri,k} be an m × S matrix
with integer entries. If S is sufficiently large, then there exists a sequence35

r1, . . . , rm of integers such that ri < ⌊logm⌋ and for every column k at least
one of the following two events happen:
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(i) ri,k ≤ ri for at least one row i;
(ii) ri,k > ri + 1 for all but at most O(logS) rows i.

Suppose now that PHPm
n has a resolution refutation of size S. Then, by

Lemma 18.23, the set of all m pigeon axioms has a monotone refutation of
size S. Fix such a refutation R an consider an m × S matrix R = {ri,C}5

whose rows correspond to pigeons i ∈ [m] and columns to clauses C ∈ R of
this refutation. Define the entries of this matrix by

ri,C :=

⌊
n− di(C)

δ

⌋
+ 1.

Let r1, . . . , rm be a sequence of integers guaranteed by Lemma 18.26. Set

di := ⌊n− δri⌋ + 1 ,

and note that di > δ because ri < logm. Hence, d = (d1, . . . , dm) is a
threshold string. This special choice of the entries ri,C as well as of the di10

guarantee us two properties (check this!):

(iii) If ri,C ≤ ri then di(C) ≥ di.
(v) If di(C) ≥ di − δ then ri,C ≤ ri + 1.

Now take an arbitrary clause C ∈ R. Our goal is to show that either C
contains a d-axiom (and C can be replaced by that axiom which reduces its15

pseudo-width wd(C) to 1) or wd(C) = O(logS).
If the first case (i) in Lemma 18.26 takes place, then ri,C ≤ ri for some

pigeon i, and by (iii), di(C) ≥ di. Hence, in this case C contains a subclause
Xi,J which is a d-axiom, and can be replaced by this axiom.

If the second case (ii) in Lemma 18.26 takes place, then the number of20

pigeons i for which ri,C ≤ ri + 1, and hence, by (v), the number of pigeons
i for which di(C) ≥ di − δ does not exceed O(logS). Hence, in this case the
pseudo-width wd(C) of C cannot exceed O(logS). This completes the proof
of Lemma 18.24. ⊓⊔

18.10.3 Pigeonhole proofs have large pseudo-width25

We now prove Lemma 18.25. Let d = (d1, . . . , dm) be an integer vector with
δ < di ≤ n for all i. Take an arbitrary set A of |A| ≤ S d-axioms, and set

w0 :=
ǫδ2

n log |A|

where ǫ > 0 is a sufficiently small constant. Take an arbitrary monotone
refutation R of A. We will show that wd(C) > w0 for at least one clause C
in R.30
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Suppose the opposite, i.e., that wd(C) ≤ w0 for all clauses C ∈ R. Our
goal is to show that then the empty clause 0 does not belong to R, i.e., that
R is not a refutation of A.

Recall that each axiom in A has the form Xi,J :=
∨

j∈J xi,j for some
pigeon i and some set J of |J | ≥ di holes; Xi,J is the axiom for the pigeon i.5

Let
Ai = {Xi,J ∈ A : |J | ≥ di}

denote the set of all such axioms in A, and let AI :=
⋃

i∈I Ai. For a clause
C in R let

AC =
⋃

i:di(C)≥di−δ

Ai

denote the set of all axioms in A corresponding to pigeons that are “free
enough” in the clause C.10

As before, truth assignments are m× n (0, 1) matrices α. Such an assign-
ment is legal if it satisfies all hole axioms, that is, if no column has more than
one 1. Say that an assignment α is critical if it is legal and no row of α has
more than

ℓ :=

⌊
δ

4w0

⌋

1-entries. We say that a set C of clauses implies a clause C, and write C |= C,15

if every critical assignment α satisfying all clauses of C also satisfies C.

Claim 18.27 For every clause C in R we have that AC |= C.

This already gives the desired contradiction, because δ < di for all i implies
that A0 = ∅, and hence, that A0 6|= 0. Thus, it remains to prove the lemma.

To prove Claim 18.27, we argue by induction on the number of steps in20

the derivation of C in R. The case C ∈ A is obvious since then C ∈ AC .
For the inductive step suppose that AA |= A, AB |= B and C is obtained

from clauses A,B by a single application of the monotone refutation rule.
Since the rule is sound with respect to all legal (and hence, also for all critical)
truth assignments, we have that {A,B} |= C. Hence, if we take the set25

I = {i | di(A) ≥ di − δ or di(B) ≥ di − δ}

of pigeons of large degree of freedom in at least one of the clauses A or B,
then |I| ≤ 2w0 and AI |= C. Let us choose a minimal I ⊆ {1, . . . ,m} such
that AI |= C; then still |I| ≤ 2w0. We will show that, in fact,

I ⊆ {i | di(C) ≥ di − δ} ;

this will obviously imply AI ⊆ AC , and hence, AC |= C.
Assume the contrary, and pick an arbitrary i0 ∈ I with di(C) < di − δ.30

Since I is minimal, we have that AI\{i0} 6|= C. Hence, there is a critical
assignment α = (ai,j) which satisfies all clauses in AI\{i0} but falsifies C. We
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Fig. 18.7 I \ {i0} = {1, . . . , r}, Ji = {j | ai,j = 1}, J(a) = {j | ai0,j = 1} and
J(C) = {j | xi0,j ∈ C}.

may assume that ai,j = 0 for all i 6∈ I \ {i0} and all j, because C is positive
and none of such variables xi,j appears in AI\{i0}. Let now

J =
{
j | xi0,j 6∈ C and ai,j = 0 for all i ∈ I \ {i0}

}

be the set of holes “permissible” for the pigeon i0 (see Fig. 18.7): if we pick
an arbitrary subset J ′ ⊆ J of size |J ′| = ℓ and change the assignment α by
letting ai0,j = 1 iff j ∈ J ′, then we will get a critical assignment α′ which5

still satisfies all clauses in AI\{i0} (we have not touched other pigeons) but
falsifies C.

We want to show that J ′ can be chosen in such a way that this new
assignment α′ will also satisfy all clauses in Ai0

; this will give the desired
contradiction with AI |= C.10

First, observe that the set J is large enough: since di0
(C) < di0

− δ and
each row of α has at most ℓ 1-entries, we have that

|J | ≥ n−
(
|I| · ℓ+ di0

(C)
)

≥ n−
(
2w0ℓ+ (di0

− δ)
)

≥ n− di0
+ δ/2 .

Now pick J uniformly and at random among all ℓ-element subsets of J , and
let α be the random assignment resulting from the assignment a by setting
to 1 all ai0,j with j ∈ J. Take an arbitrary axiom A ∈ Ai0

, and let JA = {j |15

xi0,j ∈ A} be the set of holes offered by the clause A to the pigeon i0. Since
|JA| ≥ di0

, by (18.10.3) we have

|JA ∩ J | ≥ δ/2 .

Now we can apply Chernoff’s inequality and conclude that

Prob[A(α) = 1] = Prob[JA ∩ J 6= ∅] ≥ 1 − e−Ω(p·δ) ≥ 1 − e−Ω(δℓ/n).

Since
δℓ

n
≥ δ2

4w0n
=
δ2

4n
· n · log |A|

ǫδ2
=

log |A|
4ǫ

,
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we obtain that
Prob[A(α) = 1] ≥ 1 − |A|−2,

if the constant ǫ is sufficiently small. Since clearly, |Ai0
| < |Ai0

|2 ≤ |A|2, this
implies that, for at least one choice α′ of α, all axioms in Ai0

will be satisfied.
Since (as we observed above) the assignment α′ also satisfies all axioms in
AI\{i0} but falsifies C, we obtained a contradiction with AI |= C.5

This completes the proof of Claim 18.27, and thus, the proof of Lemma 18.25.
⊓⊔

18.10.4 Proof of the pigeon filter lemma

The lemma is a direct consequence of the following property of randomly
chosen numbers. Let m and S be positive integers. Set t := ⌊logm⌋ − 1,10

and let r be a random variable taking its values in [t] = {1, . . . , t} with
probabilities

Prob[r = t] = 2−(t+1) and Prob[r = s] = 2−s for each s = 1, 2, . . . , t−1.

Claim 18.28 Let S be a positive integer, x = (x1, . . . , xm) an integer vector,
and let r1, . . . , rm be m independent copies of r. Then with probability at
least 1 − O(S−2) at least one of the following two events happens:15

Ax: ri ≥ xi for at least one integer xi;
Bx: ri < xi − 1 for all but at most O(logS) integers xi.

Proof: Our goal is to show that at least one of Prob[Ax] and Prob[Bx] is at
most O(S−2), implying that the desired sequence r1, . . . , rm satisfying both
conditions of Lemma 18.26 exist with probability at least 1 − O(S−2).20

Define the “weight” of x as W (x) :=
∑m

i=1 2−xi . We consider two cases
depending on whether W (x) ≥ 2 lnS or not.

Case 1: W (x) ≥ 2 lnS. Let I = {i | xi ≤ t} and note that

∑

i6∈I

2−xi ≤ m2−(t+1) ≤ 2 .

Therefore, ∑

i∈I

2−xi ≥ W (x) − 2 ≥ 2 lnS − 2 .

On the other hand, for every i ∈ I we have Prob[ri ≥ xi] ≥ 2−xi , and these25

events are independent. Since Prob[ri ≥ xi] = 0 for all i 6∈ I, we have that in
this case

Prob[Ax] = Prob[∀i : ri < xi] =
∏

i∈I

(
1 − 2−xi

)
≤ exp

(
−
∑

i∈I

2−xi

)
≤ e2S−2 ,
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where the last inequality follows from (18.10.4).

Case 2: W (x) ≤ 2 lnS. We first show that Prob[r ≥ xi − 1] ≤ 22−xi for
every i. Indeed, if xi > t then either xi = t+ 1 and

Prob[r ≥ xi − 1] = Prob[r = t] = 21−t = 22−xi ,

or xi ≥ t+ 2 and Prob[r ≥ xi − 1] = 0. If xi ≤ t then5

Prob[r ≥ xi − 1] =

t∑

s=xi−1

2−s ≤ 21−xi

∞∑

j=0

2−j ≤ 22−xi .

Hence, the expected number of i for which ri ≥ xi − 1 does not exceed

m∑

i=1

22−xi = 4

m∑

i=1

2−xi = 4W (x) ≤ 8 lnS .

Since the events “ri ≥ xi − 1” are independent, we may apply Chernoff’s
inequality and conclude that, for any sufficiently large constant c,

Prob[Bx] = Prob[|{i : ri ≥ xi − 1}| ≥ c lnS] ≤ S−2 . ⊓⊔


