Lower Bounds on Resolution Theorem Proving Via Games (An Exposition)

William Gasarch-U of MD

Credit Where Credit is Due

1. Stays Jukna's book on Circuit complexity had the material.
2. Original source: Beyersdorff, Galesi, Lauria's paper A Lower Bound for the PHP in Tree-Like Resolution by Asymmetric Prover-Delayer Games. In IPL, 2010.
3. Result itself is old; however this proof is new and wonderful.

Connection of NP=coNP

Problem: Given a CNF-Formula $\varphi \notin S A T$ we want a proof that $\varphi \notin S A T$.

1. If we can always get short proof then NP=coNP.
2. Research Program: Show that in various Logic Systems cannot get a short proof.

RESOLUTION RULE

$A \vee B$

Resolution

Definition

Let $\varphi=C_{1} \wedge \cdots \wedge C_{L}$ be a CNF formula. A Resolution Proof that $\varphi \notin S A T$, is a sequence of clauses such that on each line you have either

1. One of the C's in φ (called an AXIOM).
2. $A \vee B$ where on prior lines you had $A \vee x$ and $B \vee \neg x$. Variable that is resolved on is x.
3. The last line has the empty clause.

EASY: If there is a Resolution Proof that $\varphi \notin S A T$ then $\varphi \notin S A T$.

Example

```
\varphi=\mp@subsup{x}{1}{}\wedge\mp@subsup{x}{2}{}\wedge(\neg\mp@subsup{x}{1}{}\vee\neg\mp@subsup{x}{2}{})
    1. }\mp@subsup{x}{1}{}\mathrm{ (AXIOM)
    2. }\neg\mp@subsup{x}{1}{}\vee\neg\mp@subsup{x}{2}{}(\textrm{AXIOM}
    3. }\neg\mp@subsup{x}{2}{}\mathrm{ (From lines 1,2, resolve on }\mp@subsup{x}{1}{}\mathrm{ .)
    4. }\mp@subsup{x}{2}{}\mathrm{ (AXIOM)
    5. \emptyset (From lines 3,4, resolve on }\mp@subsup{x}{2}{}\mathrm{ .)
```


Another Example

The AND of the following:

1. $x_{11} \vee x_{12}$
2. $x_{21} \vee x_{22}$
3. $x_{31} \vee x_{32}$
4. $\neg x_{11} \vee \neg x_{21}$
5. $\neg x_{11} \vee \neg x_{31}$
6. $\neg x_{21} \vee \neg x_{31}$
7. $\neg x_{12} \vee \neg x_{22}$
8. $\neg x_{12} \vee \neg x_{32}$
9. $\neg x_{22} \vee \neg x_{32}$

Another Example

The AND of the following:

1. $x_{11} \vee x_{12}$
2. $x_{21} \vee x_{22}$
3. $x_{31} \vee x_{32}$
4. $\neg x_{11} \vee \neg x_{21}$
5. $\neg x_{11} \vee \neg x_{31}$
6. $\neg x_{21} \vee \neg x_{31}$
7. $\neg x_{12} \vee \neg x_{22}$
8. $\neg x_{12} \vee \neg x_{32}$
9. $\neg x_{22} \vee \neg x_{32}$

This is Pigeonhole Principle: $x_{i j}$ is putting ith pigeon in j hole!

Another Example

The AND of the following:

1. $x_{11} \vee x_{12}$
2. $x_{21} \vee x_{22}$
3. $x_{31} \vee x_{32}$
4. $\neg x_{11} \vee \neg x_{21}$
5. $\neg x_{11} \vee \neg x_{31}$
6. $\neg x_{21} \vee \neg x_{31}$
7. $\neg x_{12} \vee \neg x_{22}$
8. $\neg x_{12} \vee \neg x_{32}$
9. $\neg x_{22} \vee \neg x_{32}$

This is Pigeonhole Principle: $x_{i j}$ is putting ith pigeon in j hole!
Can't put 3 pigeons into 2 holes!

PHP: Pigeon Hole Principle

Let $n<m . n$ is NUMBER OF HOLES, m is NUMBER OF PIGEONS. $x_{i j}$ will be thought of as Pigeon i IS in Hole j.

Definition

$P H P_{n}^{m}$ is the AND of the following:

1. For $1 \leq i \leq m$

$$
x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}
$$

(Pigeon i is in SOME Hole.)
2. For $1 \leq i_{1}<i_{2} \leq n$ and $1 \leq j \leq m$

$$
\neg x_{i_{1} j} \vee \neg x_{i_{2} j}
$$

(Hole j does not have BOTH Pigeon i_{1} and Pigeon i_{2}.)
NOTE: $P H P_{n}^{m}$ has $n m$ VARS and $O\left(m n^{2}\right)$ CLAUSES.

PHP- HOW TO VIEW ASSIGNMENTS

An Assignment is an $m \times n$ array of 0 's and 1's.
Example: $m=4, n=3$.

0	1	0
0	0	1
1	0	0
0	1	0

$x_{12}=x_{23}=x_{13}=x_{42}=1$. All else 0 . Violates PHP since have $x_{12}=x_{42}=1$.

TWO WAYS TO VIOLATE PHP

1) Have two 1's in a column.

0	1	0
0	0	1
1	0	0
0	1	0

2) Have an all 0 's row.

0	1	0
0	0	1
0	0	0
1	0	0

CAN ALWAYS DO A RESOLUTION

$$
\varphi\left(x_{1}, \ldots, x_{V}\right)=C_{1} \wedge \cdots \wedge C_{L}
$$

If $\varphi \notin S A T$ then construct Resolution Proof as follows:

1. Form a DECISION TREE with nodes on level i labeled x_{i}.
2. Every leaf is a complete assignment. Output least indexed clause C that is 0 .
3. Turn Decision Tree UPSIDE DOWN, its a Res. Proof.
4. NOTE: Can always do $2^{O(v)}$ size proof.
5. NOTE: The Resolution Proofs are TREE-Resolution.

TREE RESOLUTION

1. Informally- a Tree Resolution proof is one where if written out looks like a tree.
2. Formally- a Tree Resolution proof is one where any clause in the proof is used at most once.

OUR GOAL

Assume $n<m$.

1. $P H P_{n}^{m}$ always has a size $2^{O(n m)}$ Tree Resolution Proof.
2. We show $2^{\Omega(n \log n)}$ size is REQUIRED. THIS IS POINT OF THE TALK!!!!!
3. The lower bound is IND of m.
4. There is a matching upper bound of $2^{O(n \log n)}$: Resolution and the weak pigeonhole principle, By Buss and Pitassi. Proceedings of the 1997 Computer Science Logic Conference.

THE PROVER-DEL GAME

Parameters of the game: $a, b \in \mathrm{R}^{+}, p \in \mathrm{~N}$, with $\frac{1}{a}+\frac{1}{b}=1$.

$$
\varphi=C_{1} \wedge \cdots \wedge C_{L} \notin S A T
$$

Do the following until a clause is proven false:

1. PROVER picks a variable x that was not already picked.
2. DEL either
2.1 Sets x to 0 or 1, OR
2.2 Defers to PROVER.
2.2.1 If PROVER sets $x=0$ then DEL gets $\lg a$ points.
2.2.2 If PROVER sets $x=1$ then DEL gets $\lg b$ points.

At end if DEL has p points then he WINS; otherwise PROVER WINS.

CONVENTION

We assume that PROVER and DEL play perfectly.

1. PROVER wins means PROVER has a winning strategy.
2. DEL wins means DEL has a winning strategy.

PROVER-DEL GAME and TREE RES!

Lemma

Let $a, b \in \mathrm{R}^{+}$, such that $\frac{1}{a}+\frac{1}{b}=1, p \in \mathrm{~N}, \varphi \notin \operatorname{SAT}$. If φ has a Tree Res proof of size $<2^{p}$ then PROVER wins.

Proof.

We do case $a=b=2$. PROVER Strategy:

1. Initially T is res tree of size $<2^{p}$ and DEL has 0 points.
2. PROVER picks x, the LAST var resolved on.
3. If DEL sets x DEL gets no points.
4. If DEL defers then PROVER sets to 1 or 0 - whichever yields a smaller tree.NOTE: One of the trees will be of size $<2^{p-1}$. DEL gets 1 point.
5. Repeat: after ith stage will always have T of size $<2^{p-i}$, and DEL has $\leq i$ points.

CONTRAPOSITIVE IS AWESOME!

Recall:

Lemma

Let $a, b \in \mathrm{R}^{+}$, with $\frac{1}{a}+\frac{1}{b}=1, p \in \mathrm{~N}, \varphi \notin S A T$. If φ has a Tree Res proof of size $<2^{p}$ then PROVER wins.

Contrapositive:

Lemma
Let $a, b \in \mathrm{R}^{+}, \frac{1}{a}+\frac{1}{b}=1, p \in \mathrm{~N}, \varphi \notin S A T$. If DEL wins then EVERY Tree Resolution proof for φ has size $\geq 2^{p}$.
PLAN: Get AWESOME strategy for DEL when $\varphi=P H P_{n}^{m}$.

KEY TO STRATEGY FOR DEL

Lemma

Let $a, b \in \mathrm{R}^{+}$. Let $n<m$. Let $\varphi=P H P_{n}^{m}$. There is a strategy for $D E L$ that earns at least

$$
\min \left\{\Omega(n \log b), \Omega\left(n^{2} \log a\right)\right\} .
$$

KEY to STRATEGY FOR DEL:

1. DEL does NOT allow two 1's in a column. EVER!!!!
2. DEL is wary of the all-0's row. But not too wary. DEL puts a 1 in a row if PROVER has put many 0's in that row.

STRATEGY FOR DEL

PROVER has picked $x_{i j}$.

1. If there is a i^{\prime} such that $x_{i^{\prime}, j}=1$ then set $x_{i, j}=0$. (DEL gets no points, but averts DISASTER.)
2. If the ith row has $\frac{n}{2} 0$'s that PROVER put there, and no 1 's, then DEL puts a 1 (DEL gets no points, but DEL delays an all-0 row.)
3. Otherwise defer to PROVER (and get some points!).

ANALYSE STRATEGY

1. Games over when some row is ALL 0's- say row i.
2. $\leq \frac{n}{2} 0$'s set by PROVER. $\geq \frac{n}{2} 0$'s set by DEL.
3. $x_{i j}$ set to 0 by DEL: $\exists x_{i^{\prime} j}$ set to 1 .
4. PROVER set $x_{i^{\prime} j}=1: \lg b$ points for DEL.
5. DEL set $x_{i \prime}{ }^{\prime}=1$: PROVER set $\frac{n}{2}$ in that row to $0 . \frac{n}{2} \lg a$ points for DEL.
6. DEL gets $\geq \frac{n}{2} \min \left\{\lg b, \frac{n}{2} \lg a\right\}=\min \left\{\Omega(n \log b), \Omega\left(n^{2} \log a\right)\right\}$.

UPSHOT

Theorem
For $n<m$ any Tree Res Proof of $P H P_{n}^{m}$ requires $2^{\Omega(n \log n)}$ size.

Proof.

Let $a, b, p \in \mathrm{R}^{+}$such that $\frac{1}{a}+\frac{1}{b}=1$, to be determined. We use parameters $a, b, p, P H P_{n}^{m}$ for game.

1. If DEL has winning strategy then ANY Tree Res Proof of $P H P_{n}^{m}$ has size $\geq 2^{\Omega(p)}$.
2. There IS strategy, Del gets $\min \left\{\Omega(n \log b), \Omega\left(n^{2} \log a\right)\right\}$.
3. Need a, b such that $\min \left\{\Omega(n \log b), \Omega\left(n^{2} \log a\right)\right\} \geq \Omega(n \log n)$.

UPSHOT

Theorem
For $n<m$ any Tree Res Proof of $P H P_{n}^{m}$ requires $2^{\Omega(n \log n)}$ size.

Proof.

Let $a, b, p \in \mathrm{R}^{+}$such that $\frac{1}{a}+\frac{1}{b}=1$, to be determined. We use parameters $a, b, p, P H P_{n}^{m}$ for game.

1. If DEL has winning strategy then ANY Tree Res Proof of $P H P_{n}^{m}$ has size $\geq 2^{\Omega(p)}$.
2. There IS strategy, Del gets $\min \left\{\Omega(n \log b), \Omega\left(n^{2} \log a\right)\right\}$.
3. Need a, b such that $\min \left\{\Omega(n \log b), \Omega\left(n^{2} \log a\right)\right\} \geq \Omega(n \log n)$.
3.1 Set $b=\frac{n}{\ln n}$. HAVE: $n \lg b \geq \Omega(n \log n)$.
3.2 Set $a=1+\frac{1}{b-1}$. HAVE: $\frac{1}{a}+\frac{1}{b}=1$.
$3.3 a=1+\frac{1}{b-1} \sim e^{1 / b-1} \sim e^{1 / b}=n^{1 / n}$.
3.4 HAVE: $n^{2} \lg a \geq \Omega\left(n^{2} \frac{\log n}{n}\right)=\Omega(n \log n)$.

OPEN PROBLEMS (Mine)

1. $R A M_{n}^{m}$ is every 2 -coloring of the edges of K_{m} has a COMPLETE MONO K_{n}. For $n=\lceil 0.5 \lg m\rceil$ this is TRUE. Can make into a formula.
2. Relevant Prover-Delayer Game:
2.1 PROVER picks an EDGE (i, j).
2.2 DEL either colors edge RED or BLUE or DEFERS.
2.3 If defers then DEL gets a point.

Strategies for Delayer lead to lower bounds on proofs of $R A M_{n}^{m}$.
3. UGLY: RAM $n n$ is of SIZE n^{m}, NOT Poly.
4. BETTER: RAMCYCLE n_{n}^{m}, RAMPATH n_{n}^{m}, all have POLY number of clauses.
5. ALSO BETTER: c-COLORING $c^{3} \times c^{3}$ GRID yields a mono rectangle.

