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Abstract

A set A ⊆ N is square-difference free (henceforth SDF) if there do
not exist x, y ∈ A, x 6= y, such that |x− y| is a square. Let sdf(n) be
the size of the largest SDF subset of {1, . . . , n}. Ruzsa [10] has shown
that proved sdf(n) ≥ Ω(nlog65 7) ≥ Ω(n0.733077···).

sdf(n) = Ω(n0.5(1+log65 7)) = Ω(n0.733077···)

We improve on the lower bound by showing

sdf(n) = Ω(n0.5(1+log205 12)) = Ω(n0.7334···)

As a corollary we obtain a new lower bound on the quadratic van der
Waerden numbers. We also give the context and history of results of
this type.

1 Introduction

Notation 1.1 N is the set {1, 2, 3, . . .}. If n ∈ N, and n ≥ 1 then [n] =
{1, . . . , n}.

In 1927 van der Waerden [18] published the following theorem which is
now known as van der Waerden’s theorem (henceforth VDW’s theorem). For
a modern treatment see the printed books by Graham et al. [6] or Landman
et al. [8]; or the free online book by Gasarch et al. [4].
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Theorem 1.2 For all k, c ∈ N, there exists W = W (k, c) ∈ N such that, for
any c-coloring COL : [W ] → [c], there are a, d ∈ N, d 6= 0, such that

a, a + d, a + 2d, . . . , a + (k − 1)d ∈ [W ]

COL(a) = COL(a + d) = COL(a + 2d) = · · · = COL(a + (k − 1)d).

Van der Waerden’s original proof yielded enormous upper bounds on
W (k, c). In particular, they were not primitive recursive. Erdos and Tu-
ran wanted an alternative proof of this theorem with smaller bounds. To
this end they made the following conjectures:

• (ER1) For all k, for all ε, for large enough n, for all A ⊆ {1, ..., n} such
that |A| ≥ εn, A has a k-AP.

• (ER2) Let A be a set of natural numbers. If
∑

x∈A 1/x diverges then A
has arbitrarily long arithmetic sequences. (We do not discuss ER2 but
include it for completeness.)

Szemeredi [15] (see also the expositions by Tao[16, 17]) proved ER1; how-
ever, the proof used VDW’s theorem and hence did not provide better bounds
for W (k, c). Furstenberg [3] obtained a different proof of ER1 using ergodic
theory. This proof was nonconstructive and hence yielded no bounds for
W (k, c). Shelah [14] obtained primitive recursive bounds using purely com-
binatorial methods. Gowers [5] obtained, using rather difficult mathematics,
the best known bound:

W (k, c) ≤ 22c22
k+9

For now this is where the story of upper bounds on W (k, c) ends. How-
ever, the techniques of Furstenberg were then used by Bergelson and Leib-
man [1] to show the following which we refer to as the density version of
the Polynomial van der Waerden Theorem (henceforth Density PVDW The-
orem.)

Theorem 1.3 For all 0 < ε < 1, for all p1(x), . . . , pk(x) ∈ Z[x] such that
(∀i)[pi(0) = 0], for almost all n, the following holds:

(∀A ⊆ [n])[|A| ≥ εn ⇒ (∃a, d ∈ N)[a, a+ p1(d), a+ p2(d), . . . , a+ pk(d) ∈ A]].
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This theorem has the following corollary which we refer to as the polyno-
mial van der Waerden Theorem (henceforth PVDW theorem.)

Theorem 1.4 For all c ∈ N, for all p1(x), . . . , pk(x) ∈ Z[x] such that
(∀i)[pi(0) = 0], there exists a natural number W = W (p1, . . . , pk; c) such
that, for all c-coloring COL : [W ] → [c], there exists a, d ∈ N, d 6= 0, such
that

a, a + p1(d), a + p2(d), . . . , a + pk(d)) ∈ [W ]

COL(a) = COL(a + p1(d)) = COL(a + p2(d)) = · · · = COL(a + pk(d)).

Note 1.5

1. The PVDW theorem was proved for k = 1 by Furstenberg [3] and
(independently) Sárközy [11].

2. Bergelson and Leibman’s proof of the Density PVDW Theorem yields
the PVDW theorem; however, it does not provide bounds on W (p1, . . . , pk; c).
Walters [19] proved the PVDW theorem using purely combinatorial
techniques and hence obtained bounds; however, these bounds were
not primitive recursive.

3. The original proof of VDW’s theorem used an ω2 induction which is
why the bounds are so large. By contrast Walters proof of the PVDW
theorem used an ωω induction and hence yields much larger bounds.

4. Shelah [13] later obtained primitive recursive (though still large) bounds
on W (p1, . . . , pk; c).

5. Note that in the case of VDW’s theorem the combinatorial proof came
first and the density version (Szemeredi’s theorem) came later, while
for the PVDW theorem the density version came first and the combi-
natorial proof came later.

Our interest is in a special case of PVDW and density PVDW.

Def 1.6 A set A ⊆ N is square-difference free (henceforth SDF) if there do
not exist x, y ∈ A, x 6= y, such that |x− y| is a square.
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Def 1.7 Let sdf(n) be the size of the largest SDF subset of [n].

Theorem 1.3 implies that, for any 0 < ε < 1, for almost all n,

sdf(n) ≤ εn.

The following bounds are known on sdf(n).

• Sárközy [11] proved

sdf(n) ≤ O
(

n(log log n)2/3

(log n)1/3

)
.

• Pintz, Steiger, and Szemerédi [9] proved

sdf(n) ≤ n

(log n)O(log log log log n)
.

(See also an exposition of Wolf [20].)

• Sárközy [12] showed that, for all ε < 0.5, sdf(n) ≥ n0.5+εf(n), where
f(n) = log log log n

log log n
.

• Ruzsa [10] proved sdf(n) ≥ Ω(nlog65 7) ≥ Ω(n0.733077···).

We improve on Ruzsa’s result by showing

sdf(n) ≥ Ω(nlog205 12) = Ω(n0.7334···).

Our proof is similar to Ruzsa’s. We then use the result to get a lower bound
on the quadratic VDW number (also know as W (x2; c) from Theorem 1.4.)

2 Upper Bounds on the Quadratic VDW Num-

ber

We present a known upper bound on the Quadratic VDW number so that
we can contrast it to the new lower bound we will obtain.

Notation 2.1 Let Q(c) be the least n such that for all c-colorings of [n]
there exists a, d, such that a and a + d2 are the same color. Note that Q(c)
exists by Theorem 1.4.
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The following is an easy corollary of the result of Pintz, Steiger, and
Szemerédi mentioned above.

Corollary 2.2 For all 0 < ε < 1, Q(c) ≤ 2cf(c,ε) where f(c, ε) = O( 1
(log log log c)ε ).

Proof:
Let n = 2cf(c,ε)

. Let COL be a c-coloring of [n]. Some color, say RED,
must appear at least n/c times. We show that

n

c
≥ n

(log n)O(log log log log n)
.

By the result of Pintz, Steiger, and Szemerédi mentioned above this will
imply that there are two RED points that are a square apart.

n
c

≥ n
(log n)O(log log log log n)

(log n)Ω((log log log log n) ≥ c

cΩ(f(c,ε) log log log cf(c,ε)
) ≥ c1

Ω(f(c, ε) log log log cf(c,ε)) ≥ 1
Ω(f(c, ε) log log(f(c, ε) log c)) ≥ 1

Ω(f(c, ε) log(log(f(c, ε)) + log(log c))) ≥ 1
Ω(f(c, ε) log(log(log c))) ≥ 1

Ω((log log log(c)))1−ε) ≥ 1

For large enough c this inequality will hold.

3 An SDF set of size ≥ Ω(n0.5)

We present the result sdf(n) ≥ n0.5, since it is easy and, while known [12], is
not online and seems hard to find. We do not need this result; however, it is
very nice.

Recall Bertrand’s Postulate1 which we state as a lemma.

Lemma 3.1 For all n there is a prime p such that n ≤ p ≤ 2n.

1Bertrand’s Postulate was actually proven by Chebyshev’s. Bertrand conjectured that,
for all n > 3, there is a prime between n and 2n−2. Bertrand proved it for all n < 3×106.
Chebyshev proved it completely in 1850. It is usually stated as we do below. A proof due
to Erdös can be found either in the Classic Number Theory text of Hardy and Wright [7]
or on the Wikipedia entry on Bertrand’s Postulate.
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Theorem 3.2
sdf(n) = Ω(n0.5).

Proof: By Bertrand’s Postulate there exists a prime p such that

n0.5

2
≤ p ≤ n0.5.

Let

A = {p, 2p, 3p, . . . , p2}.

Clearly, |A| = p ≥ Ω(
√

n). We show that A is SDF.
Let ip and jp be two elements of A. Note that

jp− ip = (j − i)p.

We can assume that i < j, so

1 ≤ i < j ≤ p.

Thus we have j − i < p. Hence (j − i)p has only one factor of p, so jp − ip
cannot be a square.

4 An SDF set of size ≥ Ω(n0.7334···)

To obtain large SDF sets, we will first work with SDF sets with respect to
various moduli.

Convention 4.1 Throughout this section when we deal with mod m we will
use the set [m] = {1, . . . ,m} rather than the more traditional {0, . . . ,m−1}.
In calculations we may use 0 instead of m for clarity. For example, if we have
that b1 ≡ b2 (mod m) then we will feel free to write b1− b2 ≡ 0 (mod m).

Def 4.2 Let n ∈ N. A set A ⊆ [n] is square-difference free mod n (henceforth
SDFMOD(n)) if there do not exist x, y ∈ A, x 6= y, such that x−y is a square
mod n.
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Def 4.3 Let sdfmod(n) be the size of the largest SDFMOD(n) set.

Note that sdfmod(n) ≤ sdf(n). We will obtain lower bounds for sdf(n)
by obtaining lower bounds for sdfmod(n). The next lemma shows how to
construct such sets.

Lemma 4.4 Assume m is squarefree, k ≥ 1, and B, X, S, Y are sets such
that the following hold:

1. S is an SDFMOD(m) subset of [m].

2. X is an SDFMOD(m2k−2) subset of [m2k−2].

3. B = {mz + b | z ∈ {0, . . . ,m − 1} ∧ b ∈ S}. Note that B ⊆ [m2] and
|B| = m|S|.

4. Y = {m2x + s (mod m2k) | x ∈ X ∧ s ∈ B}. Since Y is defined
(mod m2k), when we use Convention 4.1, we have Y ⊆ [m2k]. Note
that |Y | = |X||B| = m|S||X|.

Then Y is an SDFMOD(m2k) subset of [m2k].

Proof: Suppose, by way of contradiction, that there exist two elements
of Y , y1 and y2, whose difference is a square mod m2k. By the definition of
Y , we can write those elements as

• y1 = m2x1 + s1, where x1 ∈ X and s1 ∈ B.

• y2 = m2x2 + s2, where x2 ∈ X and s2 ∈ B.

Since s1, s2 ∈ B,

• s1 = mz1 + b1, where z1 ∈ {0, . . . ,m− 1} and b1 ∈ S.

• s2 = mz2 + b2, where z2 ∈ {0, . . . ,m− 1} and b2 ∈ S.

Hence

• y1 = m2x1 + mz1 + b1, where x1 ∈ X, z1 ∈ {0, . . . ,m− 1}, and b1 ∈ S.

• y2 = m2x2 + mz2 + b2, where x2 ∈ X, z2 ∈ {0, . . . ,m− 1}, and b2 ∈ S.
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Since y1 − y2 is a square mod m2k there exists a, L such that

y1 − y2 = a2 + L1m
2k

m2(x1 − x2) + m(z1 − z2) + (b1 − b2) = a2 + Lm2k.

Reducing this equation mod m, we obtain

b1 − b2 ≡ a2 (mod m).

By the definition of S, b1 = b2, so we have

a2 ≡ 0 (mod m).

Since m divides a2, and m is squarefree, m divides a. Hence a = cm, so
a2 = c2m2. Thus we have

m2(x1 − x2) + m(z1 − z2) = c2m2 + Lm2k.

Reducing this equation mod m2, and using the fact that k ≥ 1, we obtain

m(z1 − z2) ≡ 0 (mod m2).

Since 0 ≤ z1, z2 ≤ m− 1, we have m |z1 − z2| < m2, hence z1 = z2.
Since b1 = b2 and z1 = z2, we now have

m2(x1 − x2) = c2m2 + Lm2k

Dividing by m2, we obtain

(x1 − x2) = c2 + Lm2k−2.

Recall that x1, x2 ∈ X. By the condition on X, there do not exist two
elements of X whose difference is a square mod m2k−2. Since the last equation
states that the difference of two elements of X is a square mod m2k−2, this
is a contradiction.

Lemma 4.5 For all k ≥ 1, sdfmod(m2k) ≥ m · sdfmod(m) · sdfmod(m2k−2).
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Proof: Let S be an SDFMOD(m) set of size sdfmod(m) and let X be an
SDFMOD(m2k−2) set of size sdfmod(m2k−2). By Lemma 4.4 there exists Y ,
an SDFMOD(m2k) set of size m · sdfmod(m) · sdfmod(m2k−2). Hence

sdfmod(m2k) ≥ m · sdfmod(m) · sdfmod(m2k−2).

Lemma 4.6 Assume that there exists a squarefree m and a set S ⊆ [m] such
that S is SDFMOD(m). Then sdf(n) ≥ Ω(n0.5(1+logm |S|)). (The constant
implicit in the Ω depends on m.)

Proof: By the premise, sdfmod(m) ≥ |S|. By Lemma 4.5

(∀k ≥ 1)[sdfmod(m2k) ≥ m|S|sdfmod(m2k−2)].

Hence

sdfmod(m2k) ≥ (m|S|)ksdfmod(1) = (m|S|)k

Let n = m2k, so k = logm

√
n. Then

(m|S|)k = mk(|S|)k

= mk(|S|)logm

√
n

= n0.5|S|logm

√
n

Note that

|S|logm

√
n = (

√
n)logm |S| = n0.5 logm |S|.

Hence, for n = m2k,

sdfmod(m2k) ≥ (m|S|)k = n0.5n0.5 logm |S| = n0.5(1+logm |S|).

Thus we have

sdfmod(n) ≥ Ω(n0.5(1+logm |S|)).

Theorem 4.7 sdf(n) ≥ Ω(nlog205 12) ≥ Ω(n0.7334···).
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Proof: Let m = 205 and S = {0, 2, 8, 14, 77, 79, 85, 96, 103, 109, 111, 181}.
Clearly, m is square free. An easy calculation shows that there are no two
elements of S whose difference is a square mod m. Note that logm |S| =
log205 12 > 0.4668. Hence, by Lemma 4.6,

sdf(n) ≥ Ω(n0.5(1+logm |S|)) ≥ Ω(n0.5(1+0.4668)) ≥ Ω(n0.7334···).

Note 4.8 Ruzsa used m = 65 and a set S of size 7 to obtain his results. He
did not specify his set S; however, S = {0, 2, 5, 22, 24, 43, 46} will suffice.

5 Square-Difference-Free Colorings

Once we have a large Square-free difference set can we use it to obtain a
lower bound on Q(c). YES!

Def 5.1 Let A ⊆ [n]. B is a translate of A relative to n if there exists t such
that

B = {x + t : x ∈ A} ∩ [n].

We will omit the “relative to n” when n is clear from context.

The following lemma is by Lipton, Chandra, and Furst [2]. We provide
their proof for completeness.

Lemma 5.2 Let A ⊆ [n]. There exist c ≤ O(n log n
|A| ) and sets A1, . . . , Ac

that are translates of A such that [n] = A1 ∪ · · · ∪ Ac. (Note that the
lemma holds for any set A; however, we will apply it when A is SDF.)
S = {0, 2, 5, 22, 24, 43, 46} works.

Proof:
Pick a translation of A by picking t ∈ {−n,−n + 1, . . . , n}. The proba-

bility that x ∈ A + t is |A|
2n+1

≥ |A|
3n

. Hence probability that x /∈ A + t is at
most

1− |A|
3n

.
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If we pick s translations t1, . . . , ts at random (s to be determined later) then
the expected number of x that are not covered by any A + ti is

T
(
1− |A|

3n

)s

≤ Te−s
|A|
3n .

We need to pick s such that this quantity is < 1 We take s = 4n ln n
|A| which

yields

ne−s
|A|
3n = ne−(4 ln n/3) = n−1/3 < 1.

Lemma 5.3 Let c, n be such that c ≤ O(n log n
sdf(n)

), and Then Q(c) ≥ n.

Proof: Let A ⊆ [n] be an SDF set of size sdf(n). By Lemma 5.2, there
exist c ≤ O(n log n

sdf(n)
) translates of A such that the union of the translates covers

all of [n]. Call the translates A1, . . . , Ac. Let χ be the c-coloring of [n] that
maps a number x to the least i such that x ∈ Ai. For 1 ≤ i ≤ c let Ci be the
set of numbers that are colored i. Since each Ci is an SDF, this coloring has
no x, y ∈ [n], x 6= y, such that χ(x) = χ(y) and |x − y| is a square. Hence
Q(c) ≥ n.

Theorem 5.4 Q(c) ≥ Ω(c3.75).

Proof: Fix c. We want to find an n as small as possible such that

c ≤ O
(

n log n

sdf(n)

)
.

Since sdf(n) ≥ Ω(n0.7334···)(
n log n

n0.7334···

)
≤ O(n0.2666).

Hence it will suffice to find an n as small as possible such that

c ≤ O(n0.2666).

We can take
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n ≥ Ω(c1/0.2666) ≥ Ω(c3.75).

Hence Q(c) ≥ Ω(c3.75).

6 Open Problem

Combining the upper bound of Pintz, Steiger, Szemerédi with our lower
bound we have:

Ω(n0.7334···) ≤ sdf(n) ≤ n

logO(log log log log n) n

Combining the lower bound of Theorem 5.4 with the upper bound of
Corollary 2.2 we obtain

Ω(c3.75) ≤ Q(c) ≤ 2cO(1/(log log log c)ε)

.

The open problem is to close these gaps. One way to raise the lower
bounds on sdf(n) is to find values of m and |S| that satisfy the premise of
Lemma 4.6 with a larger value of logm |S| then we obtained. The best upper
bounds on Q are from density results that use sophisticated methods. It
would be interesting to obtain upper bounds on Q using purely combinatorial
means.
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orem, 2006. http://arxiv.org/abs/math.CO/0604456.

[18] B. van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw
Arch. Wisk., 15:212–216, 1927.

[19] M. Walters. Combinatorial proofs of the polynomial van der Waer-
den theorem and the polynomial Hales-Jewett theorem. Jour-
nal of the London Mathematical Society, 61:1–12, 2000. http:

//jlms.oxfordjournals.org/cgi/reprint/61/1/1 or http://jlms.

oxfordjournals.org/ or or http://www.cs.umd.edu/~gasarch/vdw/
vdw.html.

[20] J. Wolf. Sets whose differences set is square-free, 2008. Unpublished
manuscript.

14


