
Algorithms for 3-SAT

Exposition by William Gasarch



Credit Where Credit is Due

This talk is based on Chapters 4,5,6 of the AWESOME book

The Satisfiability Problem SAT, Algorithms and Analyzes
by

Uwe Schoning and Jacobo Torán



What is 3SAT?

Definition: A Boolean formula is in 3CNF if it is of the form

C1 ∧ C2 ∧ · · · ∧ Ck

where each Ci is an ∨ of three or less literals.

Definition: A Boolean formula is in 3SAT if it in 3CNF form and
is also SATisfiable.

BILL- Do examples and counterexamples on the board.



Why Do We Care About 3SAT?

1. 3SAT is NP-complete.

2. ALL NPC problems can be coded into SAT. (Some directly
like 3COL.)



OUR GOAL

1. Will we show that 3SAT is in P?

NO.

Too bad.

If we had $1,000,000 then we wouldn’t have to worry about
whether the REU grant gets renewed.

2. We will show algorithms for 3SAT that

2.1 Run in time O(αn) for various α < 1. Some will be
randomized algorithms. NOTE: By O(αn) we really mean
O(p(n)αn) where p is a poly. We ignore such factors.

2.2 Quite likely run even better in practice.
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2SAT

2SAT is in P:
We omit this but note that the algorithm is FAST and
PRACTICAL.



Convention For All of our Algorithms

Definition:

1. A Unit Clause is a clause with only one literal in it.

2. A Pure Literal is a literal that only shows up as non negated
or only shows up as negated.

BILL: Do EXAMPLES.
Conventions:

1. If have unit clause immediately assign its literal to TRUE.

2. If have pure literal immediately assign it to be TRUE.

3. If we have a partial assignment z .

3.1 If (∀C )[C (z) = TRUE then output YES.
3.2 If (∃C )[C (z) = FALSE ] then output NO.

META CONVENTION: Abbreviate doing this STAND (for
STANDARD).



DPLL ALGORITHM

DPLL (Davis-Putnam-Logemann-Loveland) ALGORITHM



DPLL ALGORITHM

ALG(F : 3CNF fml; z : Partial Assignment)

STAND
Pick a v a r i a b l e x (VERY CLEVERLY)
ALG(F ; z ∪ {x = T})
ALG(F ; z ∪ {x = F})

BILL: TELL CLASS TO DISCUSS CLEVER WAYS TO PICK x .



DPLL and Heuristics Functions

Choose literal L such that

1. L appears in the most clauses. Try L = 1 first.

2. L appears A LOT, L appears very little. Try L = 1 first.

3. L is an arbitrary literal in the shortest clause.

4. (Jeroslaw-Wang) L that maximizes

∞∑
k=2

(number of times L occurs in a clause of length k) 2−k .

5. Other functions that combine the two could be tried.

6. Variant: set several variables at a time.



Key Idea Behind Recursive 7-ALG

KEY1: If F is a 3CNF formula and z is a partial assignment either

1. F (z) = TRUE , or

2. there is a clause C = (L1 ∨ L2) or (L1 ∨ L2 ∨ L3) that is not
satisfied. (We assume C = (L1 ∨ L2 ∨ L3).)

KEY2: In ANY extension of z to a satisfying assignment ONE of
the 7 ways to make (L1 ∨ L2 ∨ L3) true must happen.



Recursive-7 ALG

ALG(F : 3CNF fml; z : Partial Assignment)

STAND
i f F (z) i n 2CNF use 2SAT ALG
f i n d C = (L1 ∨ L2 ∨ L3) a c l a u s e not s a t i s f i e d
f o r a l l 7 ways to s e t (L1, L2, L3) so t h a t C=TRUE

Let z ′ be z e x t e n d e d by t h a t s e t t i n g
ALG(F ; z ′ )

VOTE: IS THIS BETTER THAN O(2n)?

IT IS! Work it out in groups NOW.
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The Analysis

T (0) = O(1)
T (n) = 7T (n − 3).
T (n) = 72T (n − 3× 2)
T (n) = 73T (n − 3× 3)
T (n) = 74T (n − 3× 4)
T (n) = 7iT (n − 3i)
Plug in i = n/3.
T (n) = 7n/3O(1) = O(((71/3)n) = O((1.913)n)

1. Good News: BROKE the 2n barrier. Hope for the future!

2. Bad News: Still not that good a bound.

3. Good News: Can Modify to work better in practice.

4. Bad News: Do not know modification to work better in theory.



Recursive-7 ALG MODIFIED

ALG(F : 3CNF fml; z : partial assignment)

STAND
i f ∃C = (L1 ∨ L2) not s a t i s f i e d then

f o r a l l 3 ways to s e t (L1, L2) s . t . C=TRUE
Let z ′ be z e x t e n d e d by t h a t s e t t i n g
ALG(F ; z ′ )

i f ∃C = (L1 ∨ L2 ∨ L3) not s a t i s f i e d then
f o r a l l 7 ways to s e t (L1, L2, L3) s . t . C=TRUE

Let z ′ be z e x t e n d e d by t h a t s e t t i n g
ALG(F ; z ′ )

Formally still have : T (n) = 7T (n − 3).

Intuitively will often have: T (n) = 3T (n − 3).



Generalize?

BILL: ASK CLASS TO TRY TO DO 4-SAT, 5-SAT, etc using this.



Monien-Speckenmeyer

MS (Monien-Speckenmeyer) ALGORITHM



Key Ideas Behind Recursive-3 ALG

KEY1: Given F and z either:

1. F (z) = TRUE , or

2. there is a clause C = (L1 ∨ L2) or (L1 ∨ L2 ∨ L3) that is not
satisfied. (We assume C = (L1 ∨ L2 ∨ L3).)

KEY2: in ANY extension of z to a satisfying assignment either:

1. L1 TRUE.

2. L1 FALSE, L2 TRUE.

3. L1 FALSE, L2 FALSE, L3 TRUE.



Recursive-3 ALG

ALG(F : 3CNF fml; z : Partial Assignment)

STAND
i f F (z) i n 2CNF use 2SAT ALG
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The Analysis

T (0) = O(1)
T (n) = T (n − 1) + T (n − 2) + T (n − 3).
Guess T (n) = αn

αn = αn−1 + αn−2 + αn−3

α3 = α2 + α + 1
α3 − α2 − α− 1 = 0
Root: α ∼ 1.84.
Answer: T (n) = O((1.84)n).



So Where Are We Now?

1. Good News: BROKE the (1.913)n barrier. Hope for the
future!

2. Bad News: (1.84)n Still not that good.

3. Good News: Can modify to work better in practice!

4. Good News: Can modify to work better in theory!!



Recursive-3 ALG MODIFIED

ALG(F : 3CNF fml, z : partial assignment)

STAND
i f ∃C = (L1 ∨ L2) not s a t i s f i e d then

ALG(F ; z ∪ {L1 = T})
ALG(F ; z ∪ {L1 = F , L2 = T})

i f (∃C = (L1 ∨ L2 ∨ L3) not s a t i s f i e d then
ALG(F ; z ∪ {L1 = T})
ALG(F ; z ∪ {L1 = F , L2 = T})
ALG(F ; z ∪ {L1 = F , L2 = F , L3 = T})

Formally still have : T (n) = T (n − 1) + T (n − 2) + T (n − 3).

Intuitively will often have: T (n) = T (n − 1) + T (n − 2).



Generalize?

BILL: ASK CLASS TO TRY TO DO 4-SAT, 5-SAT, etc using this.
BILL: ASK CLASS FOR IDEAS TO IMPROVE 3SAT VERSION.



IDEAS

Definition: If F is a fml and z is a partial assignment then z is
COOL if every clause that z affects is made TRUE.
BILL: Do examples and counterexamples.
Prove to yourself:
Lemma: Let F be a 3CNF fml and z be a partial assignment.

1. If z is COOL then F ∈ 3SAT iff F (z) ∈ 3SAT .

2. If z is NOT COOL then F (z) will have a clause of length 2.



Recursive-3 ALG MODIFIED MORE

ALG(F : 3CNF fml, z : partial assignment)

COMMENT: This s l i d e i s when a 2CNF c l a u s e not s a t i s f i e d . )
STAND
i f (∃C = (L1 ∨ L2) not s a t i s f i e d then

z1 = z ∪ {L1 = T})
i f z1 i s COOL then ALG(F ; z1)

e l s e
z01 = z ∪ {L1 = F , L2 = T})
i f z01 i s COOL then ALG(F ; z01)

e l s e
ALG(F ; z1)
ALG(F ; z01)

e l s e (COMMENT: The ELSE i s on n e x t s l i d e . )



Recursive-3 ALG MODIFIED MORE

(COMMENT: This s l i d e i s when a 3CNF c l a u s e not s a t i s f i e d . )
i f (∃C = (L1 ∨ L2 ∨ L3) not s a t i s f i e d then

z1 = z ∪ {L1 = T})
i f z1 i s COOL then ALG(F ; z1)

e l s e
z01 = z ∪ {L1 = F , L2 = T})
i f z01 i s COOL then ALG(F ; z01)

e l s e
z001 = z ∪ {L1 = F , L2 = F , L3 = T})
i f z001 i s COOL then ALG(F ; z001)

e l s e
ALG(F ; z1)
ALG(F ; z01)
ALG(F ; z001)



IS IT BETTER?

VOTE: IS THIS BETTER THAN O((1.84)n)?

IT IS! Work it out in groups NOW.
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IT IS BETTER!

KEY1: If any of z1, z01, z001 are COOL then only ONE
recursion: T (n) = T (n − 1) + O(1).
KEY2: If NONE of the z0, z01 z001 are COOL then ALL of the
recurrences are on fml’s with a 2CNF clause in it.
T (n)= Time alg takes on 3CNF formulas.
T ′(n)= Time alg takes on 3CNF formulas that have a 2CNF in
them.
T (n) = max{T (n − 1),T ′(n − 1) + T ′(n − 2) + T ′(n − 3)}.
T ′(n) = max{T (n − 1),T ′(n − 1) + T ′(n − 2)}.
Can show that worst case is:
T (n) = T ′(n − 1) + T ′(n − 2) + T ′(n − 3).
T ′(n) = T ′(n − 1) + T ′(n − 2).



The Analysis

T ′(0) = O(1)
T ′(n) = T ′(n − 1) + T ′(n − 2).
Guess T (n) = αn

αn = αn−1 + αn−2

α2 = α + 1
α2 − α− 1 = 0
Root: α = 1+

√
5

2 ∼ 1.618.
Answer: T ′(n) = O((1.618)n).
Answer: T (n) = O(T (n)) = O((1.618)n).
VOTE: Is better known?
VOTE: Is there a proof that these techniques cannot do any
better?



Hamming Distances

Definition If x , y are assignments then d(x , y) is the number of
bits they differ on.

BILL: DO EXAMPLES
KEY TO NEXT ALGORITHM: If F is a fml on n variables and F is
satisfiable then either

1. F has a satisfying assignment z with d(z , 0n) ≤ n/2, or

2. F has a satisfying assignment z with d(z , 1n) ≤ n/2.



HAM ALG

HAMALG(F : 3CNF fml, z : full assignment, h: number) h bounds
d(z , s) where s is SATisfying assignment h is distance

STAND
i f ∃C = (L1 ∨ L2) not s a t i s f i e d then

ALG(F ; z ⊕ {L1 = T}; h − 1}
ALG(F ; z ⊕ {L1 = F , L2 = T}; h − 1)

i f ∃C = (L1 ∨ L2 ∨ L3) not s a t i s f i e d then
ALG(F ; z ⊕ {L1 = T}; h − 1)
ALG(F ; z ⊕ {L1 = F , L2 = T}; h − 1)
ALG(F ; z ⊕ {L1 = F , L2 = F , L3 = T}; h − 1)



REAL ALG

HAMALG(F ; 0n ; n/2)
I f r e t u r n e d NO then HAMALG(F ; 1n ; n/2)

VOTE: IS THIS BETTER THAN O((1.61)n)?

IT IS NOT! Work it out in groups anyway NOW.
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ANALYSIS

KEY: We don’t care about how many vars are assigned since they
all are. We care about h.
T (0) = 1.
T (h) = 3T (h − 1).
T (h) = 3iT (h − i).
T (h) = 3h.
T (n/2) = 3n/2 = O((1.73)n).



BETTER IDEAS?

BILL: Ask Class for Ideas on how to use the HAM DISTANCE
ideas to get a better algorithm.



KEY TO HAM

KEY TO HAM ALGORITHM: Every element of {0, 1}n is within
n/2 of either 0n or 1n

Definition: A covering code of {0, 1}n of SIZE s with RADIUS h is
a set S ⊆ {0, 1}n of size s such that

(∀x ∈ {0, 1}n)(∃y ∈ S)[d(x , y) ≤ h].

Example: {0n, 1n} is a covering code of SIZE 2 of RADIUS n/2.



ASSUME ALG

Assume we have a Covering code of {0, 1}n of size s and radius h.
Let Covering code be S = {v1, . . . , vs}.

i = 1
FOUND=FALSE
w h i l e (FOUND=FALSE) and ( i ≤ s )

HAMALG(F ; vi ; h )
I f r e t u r n e d YES then FOUND=TRUE

e l s e
i = i + 1

end w h i l e



ANALYSIS OF ALG

Each iteration satisfies recurrence
T (0) = 1
T (h) = 3T (h − 1)
T (h) = 3h.
And we do this s times.
ANALYSIS: O(s3h).
Need covering codes with small value of O(s3h).



IN SEARCH OF A GOOD COVERING CODE

RECAP: Need covering codes of size s, radius h, with small value
of O(s3h).

THATS NOT ENOUGH: We need to actually CONSTRUCT the
covering code in good time.
YOU”VE BEEN PUNKED: We’ll just pick a RANDOM subset of
{0, 1}n and hope that it works.
SO CRAZY IT MIGHT JUST WORK!
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IN SEARCH OF A GOOD COVERING CODE-
RANDOM!

Let A = {α1, . . . , αs} be a RANDOM subset of {0, 1}n.
Let h ∈ N. Let α0 ∈ {0, 1}n.
We want PROB that NONE of the elements of A are within h of
α0.
We consider just one α = αi first:

Pr(d(α, α0) > h) = 1− Pr(d(α, α0) ≤ h) = 1−
∑h

j=0 (nj)
2n

≤ e−
∑h

j=0 (nj)
2n



IN SEARCH OF A GOOD COVERING CODE-
RANDOM!

Pr(d(α, α0) > h) ≤ e−
∑h

j=0 (nj)
2n

So Prob that NONE of the s elements of A are within h of α is
bounded by

e−t
∑h

j=0 (nj)
2n

Let

t =
n22n∑h
j=0

(n
j

) .
Prob that NONE of the s elements of A are within h of α is
≤ e−n

2
.



SETTING THE PARAMETERS

Want t = n22n∑h
j=0 (nj)

to be small.

Set h = δn.

s = n22n∑h
j=0 (nj)

= n22n∑δn
j=0 (nj)

∼ n22n

( n
δn)
∼ n22n

2h(δ)n
= n22n(1−h(δ))

Where h(δ) = −δ lg(δ)− (1− δ) lg(1− δ).

Recall: We want a small value of O(s3h) = O(n22n(1−h(δ))3δn)



SETTING THE PARAMETERS

Recall: We want a small value of O(s3h) = O(n22n(1−h(δ))3δn)

1. δ = 1/4

2. s = n2 × 2.188n30.25n ∼ O((1.5)n).



RANDOMIZED ALG

Pick S ⊆ {0, 1}n , |S | = n2(1.5)n , RANDOMLY.
i = 1
FOUND=FALSE
w h i l e (FOUND=FALSE) and ( i ≤ s )

HAMALG(F ; vi ; n/2)
I f r e t u r n e d YES then FOUND=TRUE

e l s e
i = i + 1

end w h i l e

CAUTION: Prob of error is NONZERO! Its ≤ e−n
2
.

TIME: O((1.5)n).



ALT VIEW

If you know you will be looking at MANY FMLS of n variables can
pick an S , TEST IT, and if its find then use it. Expensive
Preprocessing.



Faster in Practice

Speed up tips for ALL algorithms mentioned:
Which clause to pick?

1. Always pick shortest clause.

2. Find clause where all three literals in many other clauses.


