
Introduction
Backdoors

General Results
Conclusions

Backdoors for SAT

Marco Gario

EMCL / TUD

June 27, 2011

Marco Gario Backdoors 1 / 44

Introduction
Backdoors

General Results
Conclusions

Backdoors in a nutshell

What?

Given a combinatorial problem, we call backdoor variables set
(backdoors set) a set of variables that, once decided, make the rest
of the problem “easy” to solve.

Why?

Backdoors have been introduced by Williams et al. ([12]) to try to
explain the good performances of modern SAT solvers.

Marco Gario Backdoors 2 / 44

Introduction
Backdoors

General Results
Conclusions

Content

1 Introduction
Notation
Classes and Subsolvers

2 Backdoors
Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

3 General Results
Complexity Highlights
Experimental results

4 Conclusions

Marco Gario Backdoors 3 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Outline

1 Introduction
Notation
Classes and Subsolvers

2 Backdoors
Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

3 General Results
Complexity Highlights
Experimental results

4 Conclusions

Marco Gario Backdoors 4 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Notation (1/2)

We refresh the usual notation:

F : Formula (possibly in CNF)

var(F) : the set of variables appearing in F .

v , v : a variable v or its negation v

J : (partial) interpretation. (Partial) mapping from var(F) to
the boolean values {>,⊥}. We represent an interpretation
compactly by listing the literals in it. Eg. J = {x1, x3}
F |J : reduct of F w.r.t. the (partial) interpretation J; it is
obtained by replacing each variable v in F with J(v).

Marco Gario Backdoors 5 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Notation (2/2)

Definition

Given a CNF formula F and a set of variables V ′ ⊆ var(F) we
denote with F − V ′ the formula obtained from F by removing all
the occurrences of the variables in V ′ from F .

Example

Given a CNF formula F and V = {e} we obtain:

F − {e} =a ∧ ¬b ∧ (d ∨ �e) ∧ (��¬e ∨ ¬d) =

=a ∧ ¬b ∧ d ∧ ¬d

Marco Gario Backdoors 6 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Outline

1 Introduction
Notation
Classes and Subsolvers

2 Backdoors
Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

3 General Results
Complexity Highlights
Experimental results

4 Conclusions

Marco Gario Backdoors 7 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Class

We call class a set of formulas that share some property.
Well-known classes of SAT problems are:

2SAT:For F in CNF: F ∈ 2SAT iff each clause of F has at
most two literals

Horn:For F in CNF: F ∈ Horn iff each clause of F has at most
one positive literal

Renamable Horn (RHorn)

Unit Propagation and Pure Literal (UP+PL)

Marco Gario Backdoors 8 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Class

We call class a set of formulas that share some property.
Well-known classes of SAT problems are:

2SAT:For F in CNF: F ∈ 2SAT iff each clause of F has at
most two literals

Horn:For F in CNF: F ∈ Horn iff each clause of F has at most
one positive literal

Renamable Horn (RHorn)

Unit Propagation and Pure Literal (UP+PL)

Marco Gario Backdoors 8 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Renamable Horn (RHorn)

Definition: Variable flipping

We call a variable flipping for the variable x ∈ var(F), the
substitution of all occurences of x in F with ¬x and, similarly, of
all ¬x with x .

For F CNF formula: F ∈ RHorn iff there exists a set of
variables that, once flipped, make the formula in Horn.

Example

Fb = (x1 ∨ x3) ∧ (¬x2 ∨ ¬x1) ∧ (¬x3 ∨ x2)

Fb 6∈ Horn but Fb ∈ RHorn because of the flipping {x1}:

(¬x1 ∨ x3) ∧ (¬x2 ∨ x1) ∧ (¬x3 ∨ x2)

Marco Gario Backdoors 9 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Unit Propagation and Pure Literal (UP+PL)

For F CNF formula: F ∈ UP + PL iff it can be solved by
applying only unit propagation and pure literal elimination to
F

Example

Fc =x1 ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ x1) ∧ (¬x3 ∨ x2) ∧ (x3 ∨ x4)

Marco Gario Backdoors 10 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Unit Propagation and Pure Literal (UP+PL)

For F CNF formula: F ∈ UP + PL iff it can be solved by
applying only unit propagation and pure literal elimination to
F

Example

Fc =x1 ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ x1) ∧ (¬x3 ∨ x2) ∧ (x3 ∨ x4)

Fc |{x4} =x1 ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ x1) ∧ (¬x3 ∨ x2) ∧�����(x3 ∨ x4)

Marco Gario Backdoors 10 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Unit Propagation and Pure Literal (UP+PL)

For F CNF formula: F ∈ UP + PL iff it can be solved by
applying only unit propagation and pure literal elimination to
F

Example

Fc =x1 ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ x1) ∧ (¬x3 ∨ x2) ∧ (x3 ∨ x4)

Fc |{x4} =x1 ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ x1) ∧ (¬x3 ∨ x2) ∧�����(x3 ∨ x4)

Fc |{x4,x1} =��x1 ∧ (��¬x1 ∨ x3) ∧�����
(¬x2 ∨ x1) ∧ (¬x3 ∨ x2)

=x3 ∧ (¬x3 ∨ x2)

Marco Gario Backdoors 10 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Unit Propagation and Pure Literal (UP+PL)

For F CNF formula: F ∈ UP + PL iff it can be solved by
applying only unit propagation and pure literal elimination to
F

Example

Fc =x1 ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ x1) ∧ (¬x3 ∨ x2) ∧ (x3 ∨ x4)

Fc |{x4} =x1 ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ x1) ∧ (¬x3 ∨ x2) ∧�����(x3 ∨ x4)

Fc |{x4,x1} =��x1 ∧ (��¬x1 ∨ x3) ∧�����
(¬x2 ∨ x1) ∧ (¬x3 ∨ x2)

=x3 ∧ (¬x3 ∨ x2)

Fc |{x4,x1,x3} =��x3 ∧ (��¬x3 ∨ x2) = x2

Fc |{x4,x1,x3,x2} =>

Marco Gario Backdoors 10 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Class properties (1/2)

Definition: Clause Induced

A class C is said to be clause induced whenever a formula belongs
to the class iff each of its clauses (viewed as a formula) belongs to
the class; i.e. F ∈ C ↔ ∀Gi ∈ F .Gi ∈ C

A weaker property is being closed under clause removal:

Definition: Closed under clause removal

A class C is closed under clause removal if for all formulas in the
class, it holds that each subset of the clauses (when treated as a
formula) belongs to the class; i.e. ∀F ∈ C, ∀F ′ ⊆ F it holds that
F ′ ∈ C

Marco Gario Backdoors 11 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Class properties (2/2)

Example

Horn and 2SAT are both closed under clause removal and clause
induced :

Fa = (¬x1 ∨ x3) ∧ (¬x2 ∨ x1) ∧ (¬x3 ∨ x2)

Fa ∈ Horn and ∀F ′ ⊆ F ∈ Horn.
Fa ∈ 2SAT and ∀F ′ ⊆ F ∈ 2SAT .

G1 = Fa

G2 = (¬x1 ∨ ¬x3)

G = G1 ∧ G2 = (¬x1 ∨ x3) ∧ (¬x2 ∨ x1) ∧ (¬x3 ∨ x2) ∧ (¬x1 ∨ ¬x3)

G2 ∈ Horn, G ∈ Horn. G2 ∈ 2SAT , G ∈ 2SAT .

Marco Gario Backdoors 12 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Class properties (2/2)

Example

Horn and 2SAT are both closed under clause removal and clause
induced :

Fa = (¬x1 ∨ x3) ∧ (¬x2 ∨ x1) ∧ (¬x3 ∨ x2)

Fa ∈ Horn and ∀F ′ ⊆ F ∈ Horn.
Fa ∈ 2SAT and ∀F ′ ⊆ F ∈ 2SAT .

G1 = Fa

G2 = (¬x1 ∨ ¬x3)

G = G1 ∧ G2 = (¬x1 ∨ x3) ∧ (¬x2 ∨ x1) ∧ (¬x3 ∨ x2) ∧ (¬x1 ∨ ¬x3)

G2 ∈ Horn, G ∈ Horn. G2 ∈ 2SAT , G ∈ 2SAT .

Marco Gario Backdoors 12 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Class properties (2/2)

Example

RHorn is only closed under clause removal but not clause induced :

Fb = (x1 ∨ x3) ∧ (¬x2 ∨ ¬x1) ∧ (¬x3 ∨ x2)

Fb ∈ RHorn for the flipping {x1} and ∀F ′ ⊆ F ∈ RHorn for the
same flipping.

G1 = Fb

G2 = (¬x1 ∨ x3)

G = G1 ∧ G2 = (x1 ∨ x3) ∧ (¬x2 ∨ ¬x1) ∧ (¬x3 ∨ x2) ∧ (¬x1 ∨ x3)

G 6∈ RHorn.

Marco Gario Backdoors 12 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Class properties (2/2)

Example

RHorn is only closed under clause removal but not clause induced :

Fb = (x1 ∨ x3) ∧ (¬x2 ∨ ¬x1) ∧ (¬x3 ∨ x2)

Fb ∈ RHorn for the flipping {x1} and ∀F ′ ⊆ F ∈ RHorn for the
same flipping.

G1 = Fb

G2 = (¬x1 ∨ x3)

G = G1 ∧ G2 = (x1 ∨ x3) ∧ (¬x2 ∨ ¬x1) ∧ (¬x3 ∨ x2) ∧ (¬x1 ∨ x3)

G 6∈ RHorn.

Marco Gario Backdoors 12 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Notational Disclaimer

Disclaimer

Some authors (eg. Szeider, Nishimura, Samer and Kottler) use
“clause induced” to indicate what we call “closed under clause
removal.”

Marco Gario Backdoors 13 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Subsolvers (1/2)

We are interested in classes for which there is a “good” solving
algorithm:

Definition: Subsolver [12]

We call an algorithm C a subsolver if, given an input formula F :

Tricotomy: C either rejects the input F , or “determines” F correctly
(as unsatisfiable or satisfiable, returning a solution if
satisfiable),

Efficiency: C runs in polynomial time,

Trivial solvability: C can determine if F is trivially true (has no
constraints) or trivially false (has contradictory constraint),

Self-reducibility: if C determines F , then for any assignment v of the
variable x C determines F |{x 7→v}

Marco Gario Backdoors 14 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Subsolvers (1/2)

We are interested in classes for which there is a “good” solving
algorithm:

Definition: Subsolver [12]

We call an algorithm C a subsolver if, given an input formula F :

Tricotomy: C either rejects the input F , or “determines” F correctly
(as unsatisfiable or satisfiable, returning a solution if
satisfiable), Weakening this axiom we obtain heuristic
backdoors [9]

Efficiency: C runs in polynomial time,

Trivial solvability: C can determine if F is trivially true (has no
constraints) or trivially false (has contradictory constraint),

Self-reducibility: if C determines F , then for any assignment v of the
variable x C determines F |{x 7→v}

Marco Gario Backdoors 14 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Subsolvers (1/2)

We are interested in classes for which there is a “good” solving
algorithm:

Definition: Subsolver [12]

We call an algorithm C a subsolver if, given an input formula F :

Tricotomy: C either rejects the input F , or “determines” F correctly
(as unsatisfiable or satisfiable, returning a solution if
satisfiable),

Efficiency: C runs in polynomial time, Removing this axiom we
obtain pseudo backdoors [9]

Trivial solvability: C can determine if F is trivially true (has no
constraints) or trivially false (has contradictory constraint),

Self-reducibility: if C determines F , then for any assignment v of the
variable x C determines F |{x 7→v}

Marco Gario Backdoors 14 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Subsolvers (2/2)

There exists a subsolver for: 2SAT, Horn, RHorn and UP+PL

In the following we do not distinguish between subsolver C and
related class C.

Marco Gario Backdoors 15 / 44

Introduction
Backdoors

General Results
Conclusions

Notation
Classes and Subsolvers

Subsolvers (2/2)

There exists a subsolver for: 2SAT, Horn, RHorn and UP+PL

In the following we do not distinguish between subsolver C and
related class C.

Marco Gario Backdoors 15 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Outline

1 Introduction
Notation
Classes and Subsolvers

2 Backdoors
Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

3 General Results
Complexity Highlights
Experimental results

4 Conclusions

Marco Gario Backdoors 16 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Strong/Weak Backdoors (1/3)

Definition: Strong C-Backdoor

A non-empty subset B of the variables of the formula F
(B ⊆ var(F)) is a strong backdoor w.r.t. the subsolver C for F iff
for all interpretations J : B → {>,⊥}, C returns a satisfying
assignment or concludes unsatisfiability of F |J .

If a formula F is satisfiable, we can define a simpler type of
backdoor:

Definition: Weak C-Backdoor

A non-empty subset B of the variables of the formula F
(B ⊆ var(F)) is a weak backdoor w.r.t. the subsolver C for F iff
there exists a interpretation J : B → {>,⊥} such that C returns
a satisfying assignment of F |J .

Marco Gario Backdoors 17 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Strong/Weak Backdoors (2/3)

Example

Lets consider the satisfiable formula F0:

F0 = (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x4 ∨ x1) ∧ (¬x1 ∨ x6) ∧
(¬x1 ∨ ¬x6 ∨ x5) ∧ (¬x5 ∨ x4) ∧ (¬x5 ∨ ¬x6 ∨ x2)

B = {x1, x2} is a strong 2SAT-backdoor and therefore, since F0 is
satisfiable, it is also a weak 2SAT-backdoor:
J0 = {x1, x2}, J1 = {x1, x̄2}, J2 = {x̄1, x2} and J3 = {x̄1, x̄2}.

Marco Gario Backdoors 18 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Strong/Weak Backdoors (2/3)

Example

Lets consider the satisfiable formula F0:

F0 = (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x4 ∨ x1) ∧ (¬x1 ∨ x6) ∧
(¬x1 ∨ ¬x6 ∨ x5) ∧ (¬x5 ∨ x4) ∧ (¬x5 ∨ ¬x6 ∨ x2)

B = {x1, x2} is a strong 2SAT-backdoor and therefore, since F0 is
satisfiable, it is also a weak 2SAT-backdoor:
J0 = {x1, x2}, J1 = {x1, x̄2}, J2 = {x̄1, x2} and J3 = {x̄1, x̄2}.

Marco Gario Backdoors 18 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Strong/Weak Backdoors (2/3)

Example

Lets consider the satisfiable formula F0:

F0 = (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x4 ∨ x1) ∧ (¬x1 ∨ x6) ∧
(¬x1 ∨ ¬x6 ∨ x5) ∧ (¬x5 ∨ x4) ∧ (¬x5 ∨ ¬x6 ∨ x2)

B = {x1, x2} is a strong 2SAT-backdoor and therefore, since F0 is
satisfiable, it is also a weak 2SAT-backdoor:
J0 = {x1, x2}, J1 = {x1, x̄2}, J2 = {x̄1, x2} and J3 = {x̄1, x̄2}.

F0|J0 = x3 ∧ x6 ∧ (¬x6 ∨ x5) ∧ (¬x5 ∨ x4)

Marco Gario Backdoors 18 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Strong/Weak Backdoors (2/3)

Example

Lets consider the satisfiable formula F0:

F0 = (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x4 ∨ x1) ∧ (¬x1 ∨ x6) ∧
(¬x1 ∨ ¬x6 ∨ x5) ∧ (¬x5 ∨ x4) ∧ (¬x5 ∨ ¬x6 ∨ x2)

B = {x1, x2} is a strong 2SAT-backdoor and therefore, since F0 is
satisfiable, it is also a weak 2SAT-backdoor:
J0 = {x1, x2}, J1 = {x1, x̄2}, J2 = {x̄1, x2} and J3 = {x̄1, x̄2}.

F0|J1 = x6 ∧ (¬x6 ∨ x5) ∧ (¬x5 ∨ x4) ∧ (¬x5 ∨ ¬x6)

Marco Gario Backdoors 18 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Strong/Weak Backdoors (2/3)

Example

Lets consider the satisfiable formula F0:

F0 = (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x4 ∨ x1) ∧ (¬x1 ∨ x6) ∧
(¬x1 ∨ ¬x6 ∨ x5) ∧ (¬x5 ∨ x4) ∧ (¬x5 ∨ ¬x6 ∨ x2)

B = {x1, x2} is a strong 2SAT-backdoor and therefore, since F0 is
satisfiable, it is also a weak 2SAT-backdoor:
J0 = {x1, x2}, J1 = {x1, x̄2}, J2 = {x̄1, x2} and J3 = {x̄1, x̄2}.

F0|J2 = x3 ∧ (¬x3 ∨ ¬x4) ∧ (¬x5 ∨ x4)

Marco Gario Backdoors 18 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Strong/Weak Backdoors (2/3)

Example

Lets consider the satisfiable formula F0:

F0 = (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x4 ∨ x1) ∧ (¬x1 ∨ x6) ∧
(¬x1 ∨ ¬x6 ∨ x5) ∧ (¬x5 ∨ x4) ∧ (¬x5 ∨ ¬x6 ∨ x2)

B = {x1, x2} is a strong 2SAT-backdoor and therefore, since F0 is
satisfiable, it is also a weak 2SAT-backdoor:
J0 = {x1, x2}, J1 = {x1, x̄2}, J2 = {x̄1, x2} and J3 = {x̄1, x̄2}.

F0|J3 = (¬x3 ∨ ¬x4) ∧ (¬x5 ∨ x4) ∧ (¬x5 ∨ ¬x6)

Marco Gario Backdoors 18 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Strong/Weak Backdoors (3/3)

For a given formula F we define:

Definition: Minimal backdoor

A strong (resp. weak) C -backdoor B is called minimal iff there is
no proper subset of B that is a strong (weak) C-backdoor, i.e.
∀B ′ ⊂ B, B ′ is not a strong (weak) C-backdoor.

Eg. The set of all variables of a SAT problem is a backdoor (for
any subsolver) but, most likely, it is not minimal.

Definition: Smallest backdoor

A strong (resp. weak) C -backdoor B is called smallest iff it is
minimal and |B| ≤ |B ′| for any minimal C -backdoor B ′

Note: There can be more than one smallest C-backdoor for the
same formula F !

Marco Gario Backdoors 19 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Strong/Weak Backdoors (3/3)

For a given formula F we define:

Definition: Minimal backdoor

A strong (resp. weak) C -backdoor B is called minimal iff there is
no proper subset of B that is a strong (weak) C-backdoor, i.e.
∀B ′ ⊂ B, B ′ is not a strong (weak) C-backdoor.

Eg. The set of all variables of a SAT problem is a backdoor (for
any subsolver) but, most likely, it is not minimal.

Definition: Smallest backdoor

A strong (resp. weak) C -backdoor B is called smallest iff it is
minimal and |B| ≤ |B ′| for any minimal C -backdoor B ′

Note: There can be more than one smallest C-backdoor for the
same formula F !

Marco Gario Backdoors 19 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Deletion (1/2)

Definition: Deletion C-backdoor [6]

A non-empty subset B of the variables of the formula F
(B ⊆ var(F)) is a deletion backdoor w.r.t. a class C for F iff
F − B ∈ C.

Example

F0 6∈ 2SAT :

F0 = (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x4 ∨ x1) ∧ (¬x1 ∨ x6) ∧
(¬x1 ∨ ¬x6 ∨ x5) ∧ (¬x5 ∨ x4) ∧ (¬x5 ∨ ¬x6 ∨ x2)

but F0 − {x1, x2} ∈ 2SAT . Recall from a previous example that
B = {x1, x2} is a strong 2SAT-backdoor for F0

Marco Gario Backdoors 20 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Deletion (2/2)

The following properties make deletion backdoors interesting:

Property ([6])

If the class C is closed under clause removal then every deletion
C -backdoor is also a strong C -backdoor (deletion → strong)

Property ([2])

If the class C is clause induced (eg. 2SAT or Horn) then strong
C -backdoor and deletion C -backdoor are equivalent (deletion ↔
strong).

Given F and |B| = k we need to perform only 1 test (F − B ∈ C)
instead of 2k !

Marco Gario Backdoors 21 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Outline

1 Introduction
Notation
Classes and Subsolvers

2 Backdoors
Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

3 General Results
Complexity Highlights
Experimental results

4 Conclusions

Marco Gario Backdoors 22 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (1/4)

Definition: Search tree exploration

Given a formula F , we call search tree exploration an ordered list
of literals (l1, .., ln) such that li ∈ {vi , v̄i} with vi ∈ var(F).

Example

Lets consider the search tree exploration (x1, x2, x̄3, x̄1, x3) for the
following formula:

F = (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x1)

the search algorithm traversed the search space as follows:

Marco Gario Backdoors 23 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (1/4)

Definition: Search tree exploration

Given a formula F , we call search tree exploration an ordered list
of literals (l1, .., ln) such that li ∈ {vi , v̄i} with vi ∈ var(F).

Example

Lets consider the search tree exploration (x1, x2, x̄3, x̄1, x3) for the
following formula:

F = (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x1)

the search algorithm traversed the search space as follows:

F |{x1} =x2 ∧ (¬x2 ∨ x3) ∧ ¬x3

Marco Gario Backdoors 23 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (1/4)

Definition: Search tree exploration

Given a formula F , we call search tree exploration an ordered list
of literals (l1, .., ln) such that li ∈ {vi , v̄i} with vi ∈ var(F).

Example

Lets consider the search tree exploration (x1, x2, x̄3, x̄1, x3) for the
following formula:

F = (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x1)

the search algorithm traversed the search space as follows:

F |{x1,x2} =(x3) ∧ (¬x3)

Marco Gario Backdoors 23 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (1/4)

Definition: Search tree exploration

Given a formula F , we call search tree exploration an ordered list
of literals (l1, .., ln) such that li ∈ {vi , v̄i} with vi ∈ var(F).

Example

Lets consider the search tree exploration (x1, x2, x̄3, x̄1, x3) for the
following formula:

F = (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x1)

the search algorithm traversed the search space as follows:

F |{x1,x2,x̄3} =⊥

Marco Gario Backdoors 23 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (1/4)

Definition: Search tree exploration

Given a formula F , we call search tree exploration an ordered list
of literals (l1, .., ln) such that li ∈ {vi , v̄i} with vi ∈ var(F).

Example

Lets consider the search tree exploration (x1, x2, x̄3, x̄1, x3) for the
following formula:

F = (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x1)

the search algorithm traversed the search space as follows:

F |{x̄1} =(¬x2 ∨ x3)

Marco Gario Backdoors 23 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (1/4)

Definition: Search tree exploration

Given a formula F , we call search tree exploration an ordered list
of literals (l1, .., ln) such that li ∈ {vi , v̄i} with vi ∈ var(F).

Example

Lets consider the search tree exploration (x1, x2, x̄3, x̄1, x3) for the
following formula:

F = (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x1)

the search algorithm traversed the search space as follows:

F |{x̄1,x3} =>

Marco Gario Backdoors 23 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (2/4)

How does clause learning influence backdoors?

Definition: Learning-sensitive backdoors [3]

A non-empty subset of variables B of the formula F is a
learning-sensitive C -backdoor for F iff there exists a search tree
exploration such that a clause learning SAT solver branching only
on the variables in B, in this order and with C as subsolver at
every leaf of the search tree, either finds a satisfying assignment or
proves F unsatisfiable.

Marco Gario Backdoors 24 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (3/4)

Example

F1 =(x ∨ p1) ∧ (x ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ q)∧
(¬q ∨ a) ∧ (¬q ∨ ¬a ∨ b) ∧ (¬q ∨ ¬a ∨ ¬b)∧
(¬x ∨ q ∨ r) ∧ (¬r ∨ a) ∧ (¬r ∨ ¬a ∨ b) ∧ (¬r ∨ ¬a ∨ ¬b)

Claim: B = {x} is a learning-sensitive UP+PL-backdoor for F1 for
the search tree exploration (x̄ , p1, p2, q, a, b, x , q̄, r , a, b).

Marco Gario Backdoors 25 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (3/4)

Example

F1 =(x ∨ p1) ∧ (x ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ q)∧
(¬q ∨ a) ∧ (¬q ∨ ¬a ∨ b) ∧ (¬q ∨ ¬a ∨ ¬b)∧
(¬x ∨ q ∨ r) ∧ (¬r ∨ a) ∧ (¬r ∨ ¬a ∨ b) ∧ (¬r ∨ ¬a ∨ ¬b)

Claim: B = {x} is a learning-sensitive UP+PL-backdoor for F1 for
the search tree exploration (x̄ , p1, p2, q, a, b, x , q̄, r , a, b).

F1|{x̄} =p1 ∧ p2 ∧ (¬p1 ∨ ¬p2 ∨ q) ∧ (¬q ∨ a)∧
(¬q ∨ ¬a ∨ b) ∧ (¬q ∨ ¬a ∨ ¬b)∧
(¬r ∨ a) ∧ (¬r ∨ ¬a ∨ b) ∧ (¬r ∨ ¬a ∨ ¬b)

Marco Gario Backdoors 25 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (3/4)

Example

F1 =(x ∨ p1) ∧ (x ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ q)∧
(¬q ∨ a) ∧ (¬q ∨ ¬a ∨ b) ∧ (¬q ∨ ¬a ∨ ¬b)∧
(¬x ∨ q ∨ r) ∧ (¬r ∨ a) ∧ (¬r ∨ ¬a ∨ b) ∧ (¬r ∨ ¬a ∨ ¬b)

Claim: B = {x} is a learning-sensitive UP+PL-backdoor for F1 for
the search tree exploration (x̄ , p1, p2, q, a, b, x , q̄, r , a, b).

F1|{x̄ ,p1,p2} = q∧(¬q ∨ a) ∧ (¬q ∨ ¬a ∨ b) ∧ (¬q ∨ ¬a ∨ ¬b)∧
∧ (¬r ∨ a) ∧ (¬r ∨ ¬a ∨ b) ∧ (¬r ∨ ¬a ∨ ¬b)

Marco Gario Backdoors 25 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (3/4)

Example

F1 =(x ∨ p1) ∧ (x ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ q)∧
(¬q ∨ a) ∧ (¬q ∨ ¬a ∨ b) ∧ (¬q ∨ ¬a ∨ ¬b)∧
(¬x ∨ q ∨ r) ∧ (¬r ∨ a) ∧ (¬r ∨ ¬a ∨ b) ∧ (¬r ∨ ¬a ∨ ¬b)

Claim: B = {x} is a learning-sensitive UP+PL-backdoor for F1 for
the search tree exploration (x̄ , p1, p2, q, a, b, x , q̄, r , a, b).

F1|{x̄ ,p1,p2,q,a} = b ∧ ¬b ∧ (¬r ∨ b) ∧ (¬r ∨ ¬b)

Marco Gario Backdoors 25 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (3/4)

Example

F1
′ =(x ∨ p1) ∧ (x ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ q)∧

(¬q ∨ a) ∧ (¬q ∨ ¬a ∨ b) ∧ (¬q ∨ ¬a ∨ ¬b)∧
(¬x ∨ q ∨ r) ∧ (¬r ∨ a) ∧ (¬r ∨ ¬a ∨ b) ∧ (¬r ∨ ¬a ∨ ¬b)

∧ ¬q

Claim: B = {x} is a learning-sensitive UP+PL-backdoor for F1 for
the search tree exploration (x̄ , p1, p2, q, a, b, x , q̄, r , a, b).
Conflict: 1-UIP learning scheme gives us the clause ¬q

Marco Gario Backdoors 25 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (3/4)

Example

F1 =(x ∨ p1) ∧ (x ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ q)∧
(¬q ∨ a) ∧ (¬q ∨ ¬a ∨ b) ∧ (¬q ∨ ¬a ∨ ¬b)∧
(¬x ∨ q ∨ r) ∧ (¬r ∨ a) ∧ (¬r ∨ ¬a ∨ b) ∧ (¬r ∨ ¬a ∨ ¬b)

∧ ¬q

Claim: B = {x} is a learning-sensitive UP+PL-backdoor for F1 for
the search tree exploration (x̄ , p1, p2, q, a, b, x , q̄, r , a, b).

F1|{q̄,x} =(¬p1 ∨ ¬p2) ∧ r ∧ (¬r ∨ a)∧
(¬r ∨ ¬a ∨ b) ∧ (¬r ∨ ¬a ∨ ¬b)

Marco Gario Backdoors 25 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (3/4)

Example

F1
′ =(x ∨ p1) ∧ (x ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ q)∧

(¬q ∨ a) ∧ (¬q ∨ ¬a ∨ b) ∧ (¬q ∨ ¬a ∨ ¬b)∧
(¬x ∨ q ∨ r) ∧ (¬r ∨ a) ∧ (¬r ∨ ¬a ∨ b) ∧ (¬r ∨ ¬a ∨ ¬b)

∧ ¬q

Claim: B = {x} is a learning-sensitive UP+PL-backdoor for F1 for
the search tree exploration (x̄ , p1, p2, q, a, b, x , q̄, r , a, b).

F1|{q̄,x ,r ,a} =(¬p1 ∨ ¬p2)∧
b ∧ ¬b

Marco Gario Backdoors 25 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (3/4)

Example

F1 =(x ∨ p1) ∧ (x ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ q)∧
(¬q ∨ a) ∧ (¬q ∨ ¬a ∨ b) ∧ (¬q ∨ ¬a ∨ ¬b)∧
(¬x ∨ q ∨ r) ∧ (¬r ∨ a) ∧ (¬r ∨ ¬a ∨ b) ∧ (¬r ∨ ¬a ∨ ¬b)

The tree search exploration is important, since B = {x} is
not a UP+PL-backdoor if we consider x before x̄ :

F1|{x} =(¬p1 ∨ ¬p2 ∨ q) ∧ (¬q ∨ a)∧
(¬q ∨ ¬a ∨ b) ∧ (¬q ∨ ¬a ∨ ¬b)∧
(∨q ∨ r) ∧ (¬r ∨ a) ∧ (¬r ∨ ¬a ∨ b) ∧ (¬r ∨ ¬a ∨ ¬b)

Marco Gario Backdoors 25 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (3/4)

Example

F1 =(x ∨ p1) ∧ (x ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ q)∧
(¬q ∨ a) ∧ (¬q ∨ ¬a ∨ b) ∧ (¬q ∨ ¬a ∨ ¬b)∧
(¬x ∨ q ∨ r) ∧ (¬r ∨ a) ∧ (¬r ∨ ¬a ∨ b) ∧ (¬r ∨ ¬a ∨ ¬b)

F1|{x ,p̄1} =(¬q ∨ a)∧
(¬q ∨ ¬a ∨ b) ∧ (¬q ∨ ¬a ∨ ¬b)∧
(∨q ∨ r) ∧ (¬r ∨ a) ∧ (¬r ∨ ¬a ∨ b) ∧ (¬r ∨ ¬a ∨ ¬b)

at this point UP+PL is not enough to decide the formula.

Marco Gario Backdoors 25 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Learning-sensitive (4/4)

Why are learning-sensitive backdoors interesting?

Property ([3])

There are SAT instances for which the smallest learning-sensitive
UP-backdoors are smaller than the smallest strong UP-backdoor
(even exponentially if the instance is unsat)

Property ([3])

There are unsatisfiable SAT instances for which one value-ordering
of the variables can lead to exponentially smaller learning-sensitive
UP-backdoor than a different value ordering

Marco Gario Backdoors 26 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Trees (1/3)

Definition: Decision Tree

A binary decision tree is a rooted binary tree T , such that every
node in T is either a leaf or has exactly 2 children. The nodes of
T , except for the root, are labeled with literals s.t. the following
conditions are satisfied:

two nodes vi and vj with the same father are labeled with
complementary literals x and x̄ ;

the labels of the node on a path from the root to a leaf do
not contain the same literal twice nor a complementary pair of
literals.

We call Jv the partial interpretation expressed by the path that
links the root to the node v , and var(T) the set of variables
appearing in T .

Marco Gario Backdoors 27 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Trees (2/3)

Definition: Backdoor Tree

A binary decision tree T (with var(T) ⊆ var(F)) is a C-backdoor
tree of F if F |Jv ∈ C for every leaf v of T .

Backdoor trees are interesting because of the following property:

Property ([10])

If B is a smallest strong C-backdoor for F and T is a smallest
C-backdoor tree of F , then:

|B|+ 1 ≤ |T | ≤ 2|B|

where |T | is the number of leaves of T .

Marco Gario Backdoors 28 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Trees (3/3)

Example

F1 = (x ∨ p1) ∧ (x ∨ p2) ∧ (¬x ∨ q ∨ r) ∧ H

B1 = {x , q} is a strong Horn-backdoor for F1, but neither {x} nor
{q} are. The Horn-backdoor tree for F1 looks like:

v2: x̄ v3: x

v4:q̄ v5:q

Marco Gario Backdoors 29 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Trees (3/3)

Example

F1 = (x ∨ p1) ∧ (x ∨ p2) ∧ (¬x ∨ q ∨ r) ∧ H

B1 = {x , q} is a strong Horn-backdoor for F1, but neither {x} nor
{q} are. The Horn-backdoor tree for F1 looks like:

v2: x̄ v3: x

v4:q̄ v5:q

In particular, we note that there are 3 leaf nodes (v2,v4,v5) and
therefore 3 partial interpretations that lead to a Horn formula:
Jv2 = {x̄}, Jv4 = {x , q̄} and Jv5 = {x , q}.

Marco Gario Backdoors 29 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Trees (3/3)

Example

F1 = (x ∨ p1) ∧ (x ∨ p2) ∧ (¬x ∨ q ∨ r) ∧ H

B1 = {x , q} is a strong Horn-backdoor for F1, but neither {x} nor
{q} are. The Horn-backdoor tree for F1 looks like:

v2: x̄ v3: x

v4:q̄ v5:q

Without using the concept of backdoor trees, we would end up
testing more assignments, in this case 2|B| = 4.

Marco Gario Backdoors 29 / 44

Introduction
Backdoors

General Results
Conclusions

Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

Trees (3/3)

Example

F1 = (x ∨ p1) ∧ (x ∨ p2) ∧ (¬x ∨ q ∨ r) ∧ H

B1 = {x , q} is a strong Horn-backdoor for F1, but neither {x} nor
{q} are. The Horn-backdoor tree for F1 looks like:

v2: x̄ v3: x

v4:q̄ v5:q

Note that variable order is important for the size of the tree, a
bigger backdoor tree for F1 is obtained by considering q before x
and has 4 leaf nodes.

Marco Gario Backdoors 29 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Outline

1 Introduction
Notation
Classes and Subsolvers

2 Backdoors
Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

3 General Results
Complexity Highlights
Experimental results

4 Conclusions

Marco Gario Backdoors 30 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Complexity Intro

We looked into classes/subsolvers that run in P,

⇒ Given a backdoor set for a formula, we can decide satisfiability
in polynomial time

SAT is NP-complete and assuming P 6= NP ⇒ finding the
backdoor set is NP-hard

Marco Gario Backdoors 31 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Complexity Intro

We looked into classes/subsolvers that run in P,

⇒ Given a backdoor set for a formula, we can decide satisfiability
in polynomial time

SAT is NP-complete and assuming P 6= NP ⇒ finding the
backdoor set is NP-hard

Marco Gario Backdoors 31 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Parameterized Complexity in one Slide

Parameterized complexity is an interesting (but not really
known) field in which we “cheat” when measuring complexity
Classical complexity: Worst-case runtime in the size n of the
input
Parameterized complexity: Worst-case runtime both in the
size n of the input AND of a parameter k
SAT: O(2n)
p-SAT: SAT parameterized by the number of variables
⇒ O(2knc), for c constant
Algorithms that are function only of the parameter k are
called fixed parameter tractable (FPT) : O(f (k)nc)
Observation: p-SAT is in P by considering classical
complexity!
Question: Can we find a parameter for backdoor detection to
obtain a polynomial (ie. FPT) running time?

Marco Gario Backdoors 32 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Parameterized Complexity in one Slide

Parameterized complexity is an interesting (but not really
known) field in which we “cheat” when measuring complexity
Classical complexity: Worst-case runtime in the size n of the
input
Parameterized complexity: Worst-case runtime both in the
size n of the input AND of a parameter k
SAT: O(2n)
p-SAT: SAT parameterized by the number of variables
⇒ O(2knc), for c constant
Algorithms that are function only of the parameter k are
called fixed parameter tractable (FPT) : O(f (k)nc)
Observation: p-SAT is in P by considering classical
complexity!
Question: Can we find a parameter for backdoor detection to
obtain a polynomial (ie. FPT) running time?

Marco Gario Backdoors 32 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Parameterized Complexity in one Slide

Parameterized complexity is an interesting (but not really
known) field in which we “cheat” when measuring complexity
Classical complexity: Worst-case runtime in the size n of the
input
Parameterized complexity: Worst-case runtime both in the
size n of the input AND of a parameter k
SAT: O(2n)
p-SAT: SAT parameterized by the number of variables
⇒ O(2knc), for c constant
Algorithms that are function only of the parameter k are
called fixed parameter tractable (FPT) : O(f (k)nc)
Observation: p-SAT is in P by considering classical
complexity!
Question: Can we find a parameter for backdoor detection to
obtain a polynomial (ie. FPT) running time?

Marco Gario Backdoors 32 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Parameterized Complexity in one Slide

Parameterized complexity is an interesting (but not really
known) field in which we “cheat” when measuring complexity
Classical complexity: Worst-case runtime in the size n of the
input
Parameterized complexity: Worst-case runtime both in the
size n of the input AND of a parameter k
SAT: O(2n)
p-SAT: SAT parameterized by the number of variables
⇒ O(2knc), for c constant
Algorithms that are function only of the parameter k are
called fixed parameter tractable (FPT) : O(f (k)nc)
Observation: p-SAT is in P by considering classical
complexity!
Question: Can we find a parameter for backdoor detection to
obtain a polynomial (ie. FPT) running time?

Marco Gario Backdoors 32 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Parameterized backdoor detection

Definition: {weak, strong, deletion, tree} C -backdoor detection

Input: A CNF formula F ;

Parameter: An integer k ≥ 0, size of the backdoor;

Question: Does F have a {weak, strong, deletion, tree}
C -backdoor of size at most k?

This problem can be solved in O(nk) for k << n, can we do
better?

Class Weak Strong Deletion Tree
2SAT,Horn W[2]-complete1 FPT1 FPT1 FPT2

RHorn W[1]-hard3 FPT4

UP,PL,UP+PL W[P]-complete5 W[P]-complete5

1 = [7],2 = [10],3 = [1], 4 = [8],5 = [11]
Marco Gario Backdoors 33 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Parameterized backdoor detection

Definition: {weak, strong, deletion, tree} C -backdoor detection

Input: A CNF formula F ;

Parameter: An integer k ≥ 0, size of the backdoor;

Question: Does F have a {weak, strong, deletion, tree}
C -backdoor of size at most k?

This problem can be solved in O(nk) for k << n, can we do
better?

Class Weak Strong Deletion Tree
2SAT,Horn W[2]-complete1 FPT1 FPT1 FPT2

RHorn W[1]-hard3 FPT4

UP,PL,UP+PL W[P]-complete5 W[P]-complete5

1 = [7],2 = [10],3 = [1], 4 = [8],5 = [11]
Marco Gario Backdoors 33 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

What does this mean?

The problems that are FPT, can be solved efficiently if the
formula has a (small) backdoor of that size.

Eg. For Horn and 2SAT we have agorithms for strong/deletion
that run in O(2kn) and O(3kn) respectively([7])

There are several techniques that have been developed for
FPT problems, that might allow us to improve the above
result: kernelization, iterative compression etc.

Marco Gario Backdoors 34 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

What does this mean?

The problems that are FPT, can be solved efficiently if the
formula has a (small) backdoor of that size.

Eg. For Horn and 2SAT we have agorithms for strong/deletion
that run in O(2kn) and O(3kn) respectively([7])

There are several techniques that have been developed for
FPT problems, that might allow us to improve the above
result: kernelization, iterative compression etc.

Marco Gario Backdoors 34 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Outline

1 Introduction
Notation
Classes and Subsolvers

2 Backdoors
Strong, Weak, Deletion
Extensions: Learning-Sensitive, Trees

3 General Results
Complexity Highlights
Experimental results

4 Conclusions

Marco Gario Backdoors 35 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Problems in experimental data

Most of the experimental work done on backdoors does not
consider the FPT complexity. Mainly two approaches are used:

Local Search: Get a variable set, “shuffle” it until it is a
backdoor, remove unneeded elements (minimize) ⇒ cannot
guarantee to find smallest backdoors, provides only an idea on
the upperbound of the backdoor size.

Complete: test every nk subset of k variables ⇒ easy to find
smallest backdoor, unfeasible for almost any value of k

Most of the experimental work considers different classes C: use a
SAT solver as subsolver (eg. Satz) study Satz-backdoors ⇒ hard
to put results together

Marco Gario Backdoors 36 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Problems in experimental data

Most of the experimental work done on backdoors does not
consider the FPT complexity. Mainly two approaches are used:

Local Search: Get a variable set, “shuffle” it until it is a
backdoor, remove unneeded elements (minimize) ⇒ cannot
guarantee to find smallest backdoors, provides only an idea on
the upperbound of the backdoor size.

Complete: test every nk subset of k variables ⇒ easy to find
smallest backdoor, unfeasible for almost any value of k

Most of the experimental work considers different classes C: use a
SAT solver as subsolver (eg. Satz) study Satz-backdoors ⇒ hard
to put results together

Marco Gario Backdoors 36 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Problems in experimental data

Most of the experimental work done on backdoors does not
consider the FPT complexity. Mainly two approaches are used:

Local Search: Get a variable set, “shuffle” it until it is a
backdoor, remove unneeded elements (minimize) ⇒ cannot
guarantee to find smallest backdoors, provides only an idea on
the upperbound of the backdoor size.

Complete: test every nk subset of k variables ⇒ easy to find
smallest backdoor, unfeasible for almost any value of k

Most of the experimental work considers different classes C: use a
SAT solver as subsolver (eg. Satz) study Satz-backdoors ⇒ hard
to put results together

Marco Gario Backdoors 36 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Problems in experimental data

Most of the experimental work done on backdoors does not
consider the FPT complexity. Mainly two approaches are used:

Local Search: Get a variable set, “shuffle” it until it is a
backdoor, remove unneeded elements (minimize) ⇒ cannot
guarantee to find smallest backdoors, provides only an idea on
the upperbound of the backdoor size.

Complete: test every nk subset of k variables ⇒ easy to find
smallest backdoor, unfeasible for almost any value of k

Most of the experimental work considers different classes C: use a
SAT solver as subsolver (eg. Satz) study Satz-backdoors ⇒ hard
to put results together

Marco Gario Backdoors 36 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Experimental overview

Nevertheless we can try to answer the question: Are backdoor sets
small w.r.t. the number of variables?

Dilkina et al. ([4]) provide a nice comparison among different
classes of backdoors establishing the following “order”: Horn
(9− 67%), del RHorn (2− 66%),UP (0.15− 12%), UP+PL
(0.13− 1.4%) and Satz (0− 0.6%);

Samer and Szeider ([10]) confirm that backdoor trees are
smaller than strong backdoors (for Horn and RHorn)

Marco Gario Backdoors 37 / 44

Introduction
Backdoors

General Results
Conclusions

Complexity Highlights
Experimental results

Experimental overview

? Random instances: Gregory et al. ([5]) show how weak
UP+PL-backdoors are usually bigger in random instances
(10%) than in structured SAT (2− 5%). No information is
available for other classes.

? Preprocessing: The results form Dilkina et al. ([4]) are
somehow inconclusive. In some cases pre-processing is “bad”,
in other is not relevant. Moreover they are not considering
smallest backdoor but upperbounds.

Marco Gario Backdoors 37 / 44

Introduction
Backdoors

General Results
Conclusions

Conclusions

Backdoors allow to solve efficiently a SAT problem

There are different types and classes of backdoors

Finding backdoors is hard, but not-that-hard for some
classes/types (FPT)

Experimental results are hard generalize and compare.
Moreover, they require an awful amount of time to be
repeated.

Marco Gario Backdoors 38 / 44

Introduction
Backdoors

General Results
Conclusions

What is next?

Define more polynomial time classes, and study their
detection complexity

Study the concept of backdoor by removing the “efficiency”
constraint

? Apply FPT techniques to FPT detection problems to speed-up
the search (eg. kernelization, parallelization and iterative
compression)

? Try to identify domains or properties of SAT instances for
which C-backdoors are small, and C-backdoor detection can
be solved in FPT.

Devise heuristics that “guess” backdoors incredible well!

Apply the backdoor idea to other domains: eg. QBF, ASP,
#SAT have been covered by Szeider.

Marco Gario Backdoors 39 / 44

Introduction
Backdoors

General Results
Conclusions

References I

A. Biere, M. Heule, H. van Maaren, and T. Walsh.
Handbook of Satisfiability.
IOS Press, 2009.

Y. Crama, O. Ekin, and P.L. Hammer.
Variable and term removal from Boolean formulae.
Discrete Applied Mathematics, 75(3):217–230, 1997.

Bistra Dilkina, C. Gomes, and Ashish Sabharwal.
Backdoors in the Context of Learning.
Theory and Applications of Satisfiability Testing-SAT 2009,
pages 73–79, 2009.

Marco Gario Backdoors 40 / 44

Introduction
Backdoors

General Results
Conclusions

References II

Bistra Dilkina, C.P. Gomes, and Ashish Sabharwal.
Tradeoffs in backdoors: Inconsistency detection, dynamic
simplification, and preprocessing.
In ISAIM-08: 10th International Symposium on Artificial
Intelligence and Mathematics, 2007.

Peter Gregory, Maria Fox, and Derek Long.
A new empirical study of weak backdoors.
In Principles and Practice of Constraint Programming, pages
618–623. Springer, 2008.

Naomi Nishimura and Prabhakar Ragde.
Solving #SAT using vertex covers.
Acta Informatica, 44(7):509–523, 2007.

Marco Gario Backdoors 41 / 44

Introduction
Backdoors

General Results
Conclusions

References III

Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider.
Detecting backdoor sets with respect to Horn and binary
clauses.
Seventh International Conference on Theory and Applications
of Satisfiability Testing (SAT 2004), 2004.

Igor Razgon and B. O’Sullivan.
Almost 2-SAT is fixed-parameter tractable.
Journal of Computer and System Sciences, 75(8):435–450,
2009.

Marco Gario Backdoors 42 / 44

Introduction
Backdoors

General Results
Conclusions

References IV

Roberto Rossi, Steven Prestwich, S.A. Tarim, and Brahim
Hnich.
Generalizing Backdoors.
In Proceedings of the 5th International Workshop on Local
Search Techniques in Constraint Satisfaction (LSCS 2008),
number 03, 2008.

Marko Samer.
Backdoor trees.
Proceedings of the 23rd Conference on Artificial, pages
363–368, 2008.

Stefan Szeider.
Backdoor sets for DLL subsolvers.
SAT 2005, pages 73–88, 2006.

Marco Gario Backdoors 43 / 44

Introduction
Backdoors

General Results
Conclusions

References V

Ryan Williams, C.P. Gomes, and Bart Selman.
Backdoors to typical case complexity.
In Proceeding of IJCAI-03, volume 18, pages 1173–1178, 2003.

Marco Gario Backdoors 44 / 44

	Introduction
	Backdoors
	General Results
	Conclusions

