Good but still Exp Algorithms for 3-SAT and MIS

Exposition by William Gasarch

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Credit Where Credit is Due

This talk is based on parts of the following AWESOME books:

The Satisfiability Problem SAT, Algorithms and Analyzes by Uwe Schoning and Jacobo Torán

Exact Exponential Algorithms by Fedor Formin and Dieter Kratsch

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Definition: A Boolean formula is in 3CNF if it is of the form

 $C_1 \wedge C_2 \wedge \cdots \wedge C_k$

where each C_i is an \vee of three or less literals.

Definition: A Boolean formula is in *3SAT* if it in 3CNF form and is also SATisfiable.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

OUR GOAL

We will show algorithms for 3SAT that

- 1. Run in time $O(\alpha^n)$ for various $\alpha < 1$. Some will be randomized algorithms. NOTE: By $O(\alpha^n)$ we really mean $O(p(n)\alpha^n)$ where p is a poly. We ignore such factors.
- 2. Quite likely run even better in practice, or modifications of them do.

2SAT is in P:

・ロト・西ト・ヨト・ヨー うへぐ

Convention For All of our Algorithms

Definition:

- 1. A Unit Clause is a clause with only one literal in it.
- 2. A *Pure Literal* is a literal that only shows up as non negated or only shows up as negated.

Conventions:

- 1. If have unit clause immediately assign its literal to TRUE.
- 2. If have POS-pure literal then immediately assign it to be TRUE.
- 3. If have NEG-pure literal then immediately assign it to be FALSE.
- 4. If we have a partial assignment z.

4.1 If $(\forall C)[C(z) = TRUE$ then output YES.

4.2 If $(\exists C)[C(z) = FALSE]$ then output NO.

META CONVENTION: Abbreviate doing this STAND (for STANDARD).

DPLL (Davis-Putnam-Logemann-Loveland) ALGORITHM

ALG(F: 3CNF fml; z: Partial Assignment) STAND Pick a variable x (VERY CLEVERLY) ALG(F; $z \cup \{x = T\}$) ALG(F; $z \cup \{x = F\}$)

Key Idea Behind Recursive 7-ALG

KEY1: If *F* is a 3CNF formula and *z* is a partial assignment either 1. F(z) = TRUE, or

2. there is a clause $C = (L_1 \lor L_2)$ or $(L_1 \lor L_2 \lor L_3)$ that is not satisfied. (We assume $C = (L_1 \lor L_2 \lor L_3)$.)

KEY2: In ANY extension of z to a satisfying assignment ONE of the 7 ways to make $(L_1 \lor L_2 \lor L_3)$ true must happen.

Recursive-7 ALG

```
ALG(F: 3CNF fml; z: Partial Assignment)

STAND

if F(z) in 2CNF use 2SAT ALG

find C = (L_1 \lor L_2 \lor L_3) a clause not satisfied

for all 7 ways to set (L_1, L_2, L_3) so that C=TRUE

Let z' be z extended by that setting

ALG(F; z')
```

ション ふぼう メリン メリン しょうくしゃ

VOTE: IS THIS BETTER THAN $O(2^n)$?

Recursive-7 ALG

```
ALG(F: 3CNF fml; z: Partial Assignment)

STAND

if F(z) in 2CNF use 2SAT ALG

find C = (L_1 \lor L_2 \lor L_3) a clause not satisfied

for all 7 ways to set (L_1, L_2, L_3) so that C=TRUE

Let z' be z extended by that setting

ALG(F; z')
```

VOTE: IS THIS BETTER THAN $O(2^n)$? **IT IS!**

The Analysis

$$T(0) = O(1)$$

$$T(n) = 7T(n-3).$$

so

$$T(n) = 7^{n/3}O(1) = O(((7^{1/3})^n) = O((1.913)^n)$$

1. Good News: BROKE the 2ⁿ barrier. Hope for the future!
2. Bad News: Still not that good a bound.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Key Ideas Behind Recursive-3 ALG

KEY1: Given F and z either:

- 1. F(z) = TRUE, or
- 2. there is a clause $C = (L_1 \lor L_2)$ or $(L_1 \lor L_2 \lor L_3)$ that is not satisfied. (We assume $C = (L_1 \lor L_2 \lor L_3)$.)

KEY2: in ANY extension of z to a satisfying assignment either:

- 1. L_1 TRUE.
- 2. L₁ FALSE, L₂ TRUE.
- 3. L_1 FALSE, L_2 FALSE, L_3 TRUE.

Recursive-3 ALG

ALG(F: 3CNF fml; z: Partial Assignment)

STAND

if F(z) in 2CNF use 2SAT ALG find $C = (L_1 \lor L_2 \lor L_3)$ a clause not satisfied ALG $(F; z \cup \{L_1 = T\})$ ALG $(F; z \cup \{L_1 = F, L_2 = T\})$ ALG $(F; z \cup \{L_1 = F, L_2 = F, L_3 = T\})$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

VOTE: IS THIS BETTER THAN $O((1.913)^n)$?

Recursive-3 ALG

ALG(F: 3CNF fml; z: Partial Assignment)

STAND

if F(z) in 2CNF use 2SAT ALG find $C = (L_1 \lor L_2 \lor L_3)$ a clause not satisfied ALG $(F; z \cup \{L_1 = T\})$ ALG $(F; z \cup \{L_1 = F, L_2 = T\})$ ALG $(F; z \cup \{L_1 = F, L_2 = F, L_3 = T\})$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

VOTE: IS THIS BETTER THAN *O*((1.913)^{*n*})? **IT IS**!

The Analysis

$$T(0) = O(1)$$

 $T(n) = T(n-1) + T(n-2) + T(n-3).$
 $T(n) = O((1.84)^n).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

So Where Are We Now?

- Good News: BROKE the (1.913)ⁿ barrier. Hope for the future!
- Bad News: (1.84)ⁿ Still not that good. Good News: Can modify to work better in theory!!

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

IDEAS

Definition: If F is a fml and z is a partial assignment then z is COOL if every clause that z affects is made TRUE.

BILL: Do examples and counterexamples.

Prove to yourself:

Lemma: Let F be a 3CNF fml and z be a partial assignment.

1. If z is COOL then $F \in 3SAT$ iff $F(z) \in 3SAT$.

2. If z is NOT COOL then F(z) will have a clause of length 2.

Recursive-3 ALG MODIFIED MORE

ALG(F: 3CNF fml, z: partial assignment)

COMMENT: This slide is when a 2CNF clause not satis STAND

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

if
$$(\exists C = (L_1 \lor L_2)$$
 not satisfied then
 $z1 = z \cup \{L_1 = T\})$
if $z1$ is COOL then ALG($F; z1$)
else
 $z01 = z \cup \{L_1 = F, L_2 = T\}$)
if $z01$ is COOL then ALG($F; z01$)
else
ALG($F; z1$)
ALG($F; z01$)
else (COMMENT: The ELSE is on next slide.)

Recursive-3 ALG MODIFIED MORE

```
(COMMENT: This slide is when a 3CNF clause not sati
if (\exists C = (L_1 \lor L_2 \lor L_3) not satisfied then
       z1 = z \cup \{L_1 = T\}
       if z1 is COOL then ALG(F; z1)
          else
            z01 = z \cup \{L_1 = F, L_2 = T\}
             if z01 is COOL then ALG(F; z01)
                 else
                   z001 = z \cup \{L_1 = F, L_2 = F, L_3 = T\})
                   if z001 is COOL then ALG(F; z001)
                       else
                         ALG(F; z1)
                         ALG(F; z01)
                         ALG(F; z001)
```

IS IT BETTER?

VOTE: IS THIS BETTER THAN $O((1.84)^n)$?

IS IT BETTER?

VOTE: IS THIS BETTER THAN $O((1.84)^n)$? **IT IS**!

IT IS BETTER!

KEY1: If any of *z*1, *z*01, *z*001 are COOL then only ONE recursion: T(n) = T(n-1) + O(1).

KEY2: If NONE of the *z*0, *z*01 *z*001 are COOL then ALL of the recurrences are on fml's with a 2CNF clause in it.

T(n) = Time alg takes on 3CNF formulas. T'(n) = Time alg takes on 3CNF formulas that have a 2CNF in them.

$$T(n) = \max\{T(n-1), T'(n-1) + T'(n-2) + T'(n-3)\}.$$

$$T'(n) = \max\{T(n-1), T'(n-1) + T'(n-2)\}.$$

Can show that worst case is:

$$T(n) = T'(n-1) + T'(n-2) + T'(n-3).$$

$$T'(n) = T'(n-1) + T'(n-2).$$

The Analysis

$$T'(0) = O(1)$$

 $T'(n) = T'(n-1) + T'(n-2).$
 $T'(n) = O((1.618)^n).$
So

$$T(n) = O(T(n)) = O((1.618)^n).$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

VOTE: Is better known?

VOTE: Is there a proof that *these techniques* cannot do any better?

Definition If x, y are assignments then d(x, y) is the number of bits they differ on.

BILL: DO EXAMPLES KEY TO NEXT ALGORITHM: If F is a fml on *n* variables and F is satisfiable then either

ション ふぼう メリン メリン しょうくしゃ

- 1. F has a satisfying assignment z with $d(z, 0^n) \leq n/2$, or
- 2. F has a satisfying assignment z with $d(z, 1^n) \le n/2$.

HAM ALG

HAMALG(F: 3CNF fml, z: full assignment, h: number) h bounds d(z, s) where s is SATisfying assignment h is distance

STAND

 $\begin{array}{ll} \text{if } \exists C = (L_1 \lor L_2) \ \text{not satisfied then} \\ & \text{ALG}(F; z \oplus \{L_1 = T\}; h-1\} \\ & \text{ALG}(F; z \oplus \{L_1 = F, L_2 = T\}; h-1) \\ \text{if } \exists C = (L_1 \lor L_2 \lor L_3) \ \text{not satisfied then} \\ & \text{ALG}(F; z \oplus \{L_1 = T\}; h-1) \\ & \text{ALG}(F; z \oplus \{L_1 = F, L_2 = T\}; h-1) \\ & \text{ALG}(F; z \oplus \{L_1 = F, L_2 = F, L_3 = T\}; h-1) \\ \end{array}$

REAL ALG

HAMALG(F; 0ⁿ; n/2) If returned NO then HAMALG(F; 1ⁿ; n/2) **VOTE:** IS THIS BETTER THAN $O((1.61)^n)$?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

HAMALG(F; 0ⁿ; n/2) If returned NO then HAMALG(F; 1ⁿ; n/2) **VOTE:** IS THIS BETTER THAN $O((1.61)^n)$? **IT IS NOT!** Work it out in groups anyway NOW.

ANALYSIS

KEY: We don't care about how many vars are assigned since they all are. We care about h.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$T(0) = 1.$$

$$T(h) = 3T(h-1).$$

$$T(h) = 3^{i}T(h-i).$$

$$T(h) = 3^{h}.$$

$$T(n/2) = 3^{n/2} = O((1.73)^{n}).$$

KEY TO HAM ALGORITHM: Every element of $\{0,1\}^n$ is within n/2 of either 0^n or 1^n Definition: A covering code of $\{0,1\}^n$ of SIZE s with RADIUS h is a set $S \subseteq \{0,1\}^n$ of size s such that

$$(\forall x \in \{0,1\}^n)(\exists y \in S)[d(x,y) \leq h].$$

Example: $\{0^n, 1^n\}$ is a covering code of SIZE 2 of RADIUS n/2.

ASSUME ALG

Assume we have a Covering code of $\{0,1\}^n$ of size s and radius h. Let Covering code be $S = \{v_1, \ldots, v_s\}$.

ション ふぼう メリン メリン しょうくしゃ

```
i = 1
FOUND=FALSE
while (FOUND=FALSE) and (i \le s)
HAMALG(F; v_i; h)
If returned YES then FOUND=TRUE
else
i = i + 1
end while
```

Each iteration satisfies recurrence T(0) = 1 T(h) = 3T(h-1) $T(h) = 3^{h}$. And we do this *s* times. ANALYSIS: $O(s3^{h})$. Need covering codes with small value of $O(s3^{h})$.

RECAP: Need covering codes of size s, radius h, with small value of $O(s3^h)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

RECAP: Need covering codes of size *s*, radius *h*, with small value of $O(s3^h)$. **THATS NOT ENOUGH**: We need to actually CONSTRUCT the covering code in good time.

RECAP: Need covering codes of size *s*, radius *h*, with small value of $O(s3^h)$. THATS NOT ENOUGH: We need to actually CONSTRUCT the covering code in good time. YOU"VE BEEN PUNKED: We'll just pick a RANDOM subset of $\{0,1\}^n$ and hope that it works.

ション ふぼう メリン メリン しょうくしゃ

RECAP: Need covering codes of size *s*, radius *h*, with small value of $O(s3^h)$. THATS NOT ENOUGH: We need to actually CONSTRUCT the covering code in good time. YOU"VE BEEN PUNKED: We'll just pick a RANDOM subset of $\{0,1\}^n$ and hope that it works. SO CRAZY IT MIGHT JUST WORK!

ション ふぼう メリン メリン しょうくしゃ

IN SEARCH OF A GOOD COVERING CODE-RANDOM!

ション ふぼう メリン メリン しょうくしゃ

CAN find with high prob a covering code with

• Size
$$s = n^2 2^{.4063n}$$

• Distance h = 0.25n.

Can use to get SAT in $O((1.5)^n)$. Note: Best known: $O((1.306)^n)$.

What is Maximum Ind Set?

Definition: If G = (V, E) is a graph then $I \subseteq V$ is an *Ind. Set* if $(\forall x, y \in V)[(x, y) \notin E]$. The set *I* is a MAXIMUM IND SET if it is an Ind Set and there is NO ind set that is bigger.

Goal: Given a graph G we want the SIZE of the Maximum Ind. Set. Obtaining the set itself will be an easy modification of the algorithms which we will omit.

Abbreviation: MIS is the Maximum Ind Set problem.

1. Will we show that MIS is in P?

OUR GOAL

1. Will we show that MIS is in P?

NO.

- 2. We will show algorithms for MIS that
 - 2.1 Run in time $O(\alpha^n)$ for various $\alpha < 1$. NOTE: By $O(\alpha^n)$ we really mean $O(p(n)\alpha^n)$ where p is a poly. We ignore such factors.

2.2 Quite likely run even better in practice.

If all of the degrees are ≤ 2 then the problem is EASY. (WE OMIT)

IMPORTANT DEFINITION

If G = (V, E) is a graph and $v \in V$ then $N[v] = \{v\} \cup \{u \mid (v, u) \in E\}.$ The NEIGHBORS of v AND v itself.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

MIN DEG ALGORITHM

$$ALG(G = (V, E): A Graph)$$

$$v = vertex of min degree$$
for $u \in N[v]$

$$m_u = ALG(G - N[m_u])$$

$$m = \min\{m_u \mid u \in N[v]\}.$$
RETURN $(1 + m)$

Analysis

Let
$$N[v] = \{v, x_1, \dots, x_{d(v)}\}.$$

$$\begin{array}{ll} T(n) & \leq 1 + T(n - d(v) - 1) + \sum_{i=1}^{d(v)} T(n - d(x_i) - 1) \\ & \leq 1 + T(n - d(v) - 1) + \sum_{i=1}^{d(v)} T(n - d(v) - 1) \\ & \leq 1 + (d(v) + 1)T(n - (d(v) + 1)) \end{array}$$

- 1. Runs in $T(n) = O((3^{1/3})^n) \le O((1.42)^n)$.
- 2. Works well on high degree graphs until they become low degree graphs.

- 3. Upshot: Would not use in practice.
- 4. Makes more sense to take High degree nodes.

MAX DEG ALG

ALG(G)

- 1. If $(\exists v)[d(v) = 0]$ then RETURN(1 + ALG(G v)).
- 2. If $(\exists v)[d(v) = 1]$ then RETURN(1 + ALG(G N[v])).
- 3. If $(\forall v)[d(v) \leq 2]$ then CALL 2-MIS ALG.
- 4. If $(\exists v)]d(v) \geq 3$] then
 - 4.1 Let v^* be of max degree
 - **4.2** Return MAX of $1 + ALG(G N[v^*])$, $ALG(G v^*)$.

ANALYSIS

$$\begin{array}{ll} T(n) & \leq T(n-d(v)-1)+T(n-1) \\ T(n) & \leq T(n-4)+T(n-1) \end{array}$$

- 1. Runs in $T(n) = O((1.38)^n)$.
- 2. Works well on high degree graphs until they become low degree graphs. But better than Min-Degree alg.

3. WORKS really well in practice.

BETTER ANALYSIS

Need to MEASURE progress better.

- 1. We measure a node of degree ≤ 1 as having weight ZERO.
- 2. We measure a node of degree 2 as having weight $\frac{1}{2}$.
- 3. We measure a node of degree \geq 3 as having weight ONE. SO we view |V| as

 $\frac{1}{2}$ (number of verts of degree 2) + (number of verts of degree 3)

We still refer to this as n.

Have picked v^* .

1. Assume there are no vertices of degree ≤ 1 (else would not be in v^* case)

ション ふぼう メリン メリン しょうくしゃ

- 2. Assume v^* has d_2 vertices of degree 2.
- 3. Assume v^* has d_3 vertices of degree 3.
- 4. Assume v^* has $d_{\geq 4}$ vertices of degree ≥ 4 .

BETTER ANALYSIS OF G - N[v] **CASE**

 $G - N[v^*]$:

- 1. Loss of v^* is loss of 1.
- 2. Loss of d_2 vertices of degree 2: Loss is $\frac{d_2}{2}$.
- 3. Loss of d_3 vertices of degree 3: Loss is d_3 .
- 4. Loss of $d_{\geq 4}$ vertices of degree \geq 4: Loss is $d_{\geq 4}$. Total Loss: $1 + \frac{d_2}{2} + d_3 + d_{\geq 4}$. Work to do:

$$T(n-(1+rac{d_2}{2}+d_3+d_{\geq 4}))$$

ション ふぼう メリン メリン しょうくしゃ

BETTER ANALYSIS OF G - v **CASE**

 $G - v^*$:

- 1. Loss of v^* is loss of 1.
- 2. The d_2 verts of deg 2 become d_2 verts of deg ≤ 1 . Loss is $\frac{d_2}{2}$.
- 3. The d_3 verts of deg 3 become d_3 verts of deg ≤ 2 . Loss is $\frac{d_3}{2}$.
- 4. The $d_{\geq 4}$ verts of deg \geq 4. No Loss.

Total Loss: $1 + \frac{d_2}{2} + \frac{d_3}{2}$. Work to do:

$$T(n-(1+\frac{d_2}{2}+\frac{d_3}{2}))$$

ション ふゆ アメビア メロア しょうくしゃ

TOTAL ANALYSIS

$$\begin{array}{ll} T(n) & \leq T(n - (1 + \frac{d_2}{2} + d_3 + d_{\geq 4})) + T(n - (1 + \frac{d_2}{2} + \frac{d_3}{2})) \\ & \leq T(n - 1) + T(n - (1 + d_2 + \frac{3d_3}{2} + d_{\geq 4})) \\ & \leq T(n - 1) + T(n - (d(v^*) + 1)) \end{array}$$

1. If $d(v^*) \ge 4$ then get

$$T(n) \leq T(n-1) + T(n-5)$$

2. If $d(v^*) = 3$ then get

$$T(n) \leq T(n-1) + T(n-4)$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

HOW GOOD?

- 1. Runs in $T(n) \leq O((1.3248)^n)$.
- Using Deg2 weight 0.596601, Deg3 weigh 0.928643, Deg4 weight 1 can get O((1.2905)ⁿ).
- 3. Works well on high degree graphs until they become low degree graphs. But better than Min-Degree alg.
- 4. WORKS really well in practice, and this analysis may say why.

BEST KNOWN

Best known runs in time

 $O((1.2109)^n).$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- 1. Order constant is REASONABLE.
- 2. LOTS of cases depending on degree.
- 3. Sophisticated analysis.