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Abst rac t  

Secret Sharing from the perspective of threshold schemes has been well- 
studied over the past decade. Threshold schemes, however, can only handle a 
small fraction of the secret sharing functions which we may wish to form. For 
example, if it  is desirable to  divide a secret among four participants A ,  B:  C, 
and D in such a way that either A together with B can reconstruct the secret 
or C together with D can reconstruct the secret, then threshold schemes (even 
with weighting) are provably insufficient. 

This paper will present general methods for constructing secret sharing 
schemes for any given secret sharing function. There is a natural correspon- 
dence between the set of “generitlized” secret sharing functions and the set of 
monotone functions, and tools developed for simplifying the latter set can be 
applied equally well t o  the former set. 

1 Introduction 
The threshold schemes for secret sharing introduced by Blakley ([Blak79]) and 
Shamir ([Sham79]) have found many applications in recent years. There are, how- 
ever, many secret sharing applications which do not fit into the model of threshold 
schemes. 

In a recent paper ([ISN87]), Ito, Saito, and Nishizeki describe a general method 
of secret sharing whereby a secret can be divided among a set P of trustees such 
that any “qualified subset” of P can reconstruct the secret and such that unqualified 
subsets cannot. As they point out, it is most sensible to talk only about families of 
qualified subsets (or access s t r u c t u r e s )  A which satisfy the property 

It is hard to  imagine a meaningful method of sharing a secret which does not satisfy 
this property. 

The method of Ito, Saito, and Nishizeki can be roughly described as follows. For 
each of the (up to order 21‘1) sets of the access structure A, divide the secret among 
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each member of the set.‘ Thus, in the worst case, each of the n trustees may have 
to hold on the order of 2” shares. 

This paper gives a fax simpler and more efficient method of developing a secret 
sharing scheme for any monotone access structure. The idea is to translate the 
access structure into a monotone formula. 

Each variable in the formula is associated with a trustee in P, and the value 
of the formula is true if and only if the set of variables which are true corresponds 
to a subset of P which is in the access structure ( ie .  the variables which are true 
correspond to a subset of trustees qualified to reconstruct the secret). This formula 
is then used as a template to describe how a secret is to be divided into shares. 

Since every monotone function can implemented using just A N D  operators and 
OR operators, it is sufficient to show how to divide a secret “across” each of these two 
operators. It will be shown later how these formulae can be made more efficient by 
using general THRESHOLD operators and appealing to traditional threshold schemes. 

Let p l  and p2 be trustees in P.  To divide a secret s into shares such that pl and 
p2 can reconstruct s, p l  can be given a value s1 and p2 given a value s2 such that 
s = s1+ s2. If s is selected from the range 0 5 s < rn. then s1 and s2 can be chosen 
uniformly from this range subject to the constraint that s = (sl + 3 2 )  mod m. In 
this case it can be shown in a very strong sense that neither pl nor p2 can, without 
the other, obtain any information whatsoever about s. 

To divide a secret s into shares such that pl or pz can reconstruct s ,  p l  and p2 

can simply both be given the value s. With these two building blocks, it  is easy to 
see how to construct a secret sharing scheme for any monotone access structure. 

For instance, in the earlier example, a secret sharing scheme is sought for which 
either A together with B or C together with D can reconstruct the secret value s. 
The corresponding access structure can be written as ( ( A  A B )  V (C A D)). Thus, to 
share a secret s according to this access structure, the secret is first moved across 
the OR yielding a situation in which the secret s now must be shared among AB and 
among CD. The value s is now moved across the two AYD operators, yielding shares 
S A ,  SB, sc, and SD belonging respectively to A, B,  C, and D such that SA + SB = s 
and sc + SD = S .  If the shares generated when a value is moved across an AND 
gate are random and independent of other selections, then it  is not hard to show 
in a very strong sense that insufficient subsets of trustees obtain no information 
whatsoever about the original secret value. 

There is, of course, no need to limit these gates to two inputs since both of 
the above operations generalize directly to gates with arbitrary fan-in. In general, 
a value can be moved across an arbitrary THRESHOLD operator by appealing to 
a traditional threshold scheme such as the Shamir scheme ([Sham79]). If some 
intermediate value s in a formula is to be moved across a threshold operator with n 
arguments and threshold k, the secret s is divided among the n arguments according 
to a (k, n)-threshold scheme, and these shares become the intermediate values for 
the next level of the formula. 

‘ 

’There is actually some minimization done w will be described later. 
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Since AND operators and OR operators are specid cases of THRESHOLD opera- 
tors, it would suffice to apply the Shamir threshold scheme to each operator of the 
formula. It is, however, often simpler to apply the direct methods above. Although 
the method of moving a secret across an OR operator described above does corre- 
spond exactly to Shamir’s method of constructing a (1,n)-threshold scheme, the 
method given of moving a secret across an AND operator is computationally simpler 
than a Shamir (n, n)-threshold scheme. In addition, the threshold schemes given by 
Shamir and others have limitations which are not present in the scheme presented 
here. These limitations will be discussed later. 

The method described by Ito, Saito, and Nishizeki in [ISN87] corresponds pre- 
cisely to the case of minimal CNF-formulae in which conjunctions are formed by 
use of (n, n)-threshold schemes rather than by simple sums. 

It is of course true that every monotone formula can be expressed as a CNF- 
formula and that there are a great many monotone formulae for which the CNF- 
formula is the smallest possible representation. However, there are also a great 
many cases in which the use of general monotone formulae (especially when ar- 
bitrary threshold operators are allowed) gives a much smaller formula than the 
CNF-formula. The number of shares which must be given to each trustee in these 
schemes as well as the complexity of reconstructing the secret from its shares are 
directly related to the size of the formula. 

2 Preliminaries 
To begin with, we must formally define the necessary access structures. 

Definition 
A C_ 2‘ such that 

Given a set P ,  a monotone access s tructure on P is a family of subsets 

A € d , A C A ’ G P  + A ’ E A .  

Definition Let P be a set. The set V of variables indexed by P is the set V = 
{VP : p E P } .  

Definition Given a monotone function F on variables indexed by a set P, the 
access s t r u c t u r e  de f ined  by F is the set of subsets of A of P for which F is true 
precisely when the variables indexed by A are set to true. 

It is clear that for every monotone function F ,  the access structure defined by 
F is a monotone access structure. 

Definition For a given set P and an monotone access structure A on P, define 
F(A)  to be the set of monotone formulae on IPI variables such that for every formula 
F E F ( d ) ,  the output of F is true if and only if the true variables in F correspond 
exactly to a set A E A. 

Note that F, F’ E F(d) implies that F and F’ denote the same function. They 
may, however, represent entirely different formulae to express this function. 
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3 Generalized Secret Sharing 
We can now begin to d e h e  secret sharing schemes. We start with a standard 
definition for threshold schemes. 

Definition Given a set S of possible secret values, a (Ic,n)-threshold scheme 
on S is a (randomized) method of dividing each s E S into an array of shares 
[sl, s2,. . . , s,,] with each s; E S such that 

1. Given any set of k or more of the si, the secret value s is easily reconstructible. 

2. Given any set of fewer than k of the s;, the secret value s is completely 
undetermined in an information theoretic sense. 

Shamir's polynomially based threshold scheme (see [Sham79]) satisfies the above 
definition whenever IS/ is a prime greater than n. It is not hard to remove the 
restriction that IS1 be prime by, for instance, factoring 1st and using Chinese re- 
maindering to encode secrets and shares. This kind of encoding, however, requires 
that all prime factors of IS1 be greater than n. 

Other threshold schemes have been suggested by Blakley ([Blak79]), Asmuth 
and Bloom ([AsB180]), and Kothari ([Koth84]), for example. 

We want to show that no threshold scheme is sufficient to realize secret sharing on 
general monotone access structures. To do this, we show that there is no threshold 
scheme (eve'n using weighting or multiple shares) such that the access structure 
( ( A  A B )  V (C A 0)) can be achieved. 

Theorem 1 There ezist monotone access structures for which there is n o  threshold 
scheme. 

PTOOf: 
Consider the access structure A defined by the formula 

( ( A  A B )  v (C A D)), 
and assume that a threshold scheme is to be used to divide a secret value s among 
A,  B,  C, and D such that only those subsets of {A, B ,  C, D} which are in A can 
reconstruct s . 

Let a, b, C, and d respectively denote the weight (number of shares) held by each 
of A,  B,  C, and D. Since A together with B can compute the secret, it must be 
the case that a + b 2 t where t is the value of the threshold. Similarly, since C and 
D can together compute the secret, it is also true that c + d 2 t .  

Now assume without loss of generality that a 2 b and c 2 d. (If this is not the 
case, the variables can be renamed.) Since a + b 2 t and a 2 b, a + a 2 a + 6 2 t .  
So a 2 t / 2 .  Similarly, c 2 t / 2 .  Therefore, a + c 2 t .  

Thus, A together with C can reconstruct the secret value s.  This violates the 
assumption of the access structure. I 



31 

Definition For a given threshold scheme, we use $ k ( s ; & , p z , .  . . , p , )  to denote the 
random function which assigns shares [sl, s2, . . . s,] of a secret value s to trustees 
P l l  Pz I . . - ,Pn. 

For certain access structures, every generalized threshold scheme m u t  be able 
to assign multiple shares to each trustee (see theorem 3). In this case, we use S; , j  

to denote the jth share given to trustee p i .  

Definition Given a set P and a monotone access structure A on P ,  a generalized 
secret sharing scheme for A is a method of dividing a secret 5 into shares s;,j such 
that 

1. 

2. 

When A E A, the secret s can be reconstructed from the shares U Usi,j. 

When A $ A, the shares u  US;^ give (in an information theoretic sense) no 

information whatsoever about the value of s. 

iEA j 

i € A  j 

We now define a generalized secret sharing scheme which satisfies the above 
definition. 

Assume that the secret domain S is fixed to be the set (0,1,. . . , m - 1) for 
some positive integer rn. We can now formally define the generalized secret sharing 
scheme described in section 1. 

Let $(s, F )  be the random function for s E S and a monotone formula F defined 
as follows. 

0 $(5,vp) assigns the share s to trustee p .  

0 $ ( s , A  V B )  = $(s, A )  U $(s ,B) .  

0 $ ( s , A  A B )  = $(s1, A )  u $(s2, B ) ,  where s1 and s2 are uniformly chosen from 
the secret domain S such that s = (51 + s2) mod m. 

If operators are allowed to have more than two arguments and if THRESHOLD 
operators are to be used, we add the following. 

0 $(s, A(F1, F?, . . . , Fn)) = U $(s;, F,), where the s ;  are chosen uniformly from 
l < i < n  

S such that s = (C:=l 3;) mod rn. 

We now show that for every monotone access structure A and every monotone 
formula F E F(d), the secret sharing scheme defined by $ ( s , F )  satisfies the defi- 
nition of a generalized secret sharing scheme. 
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Theorem 2 Let P be a se t  and let A be a monotone  access structure o n  P .  Let  
F be a member  of F(d) ,  and let s be a secret value in S = {0,1,. . . , m  - 1). T h e  
secret sharing scheme defined by $(s, F )  i s  a generalized secret sharing scheme  foT 

A. 

Proof: 
It is easy to see that for any set A E A, the shares belonging to the members of 

A are sufficient to reconstruct the secret value s. 
To see that if A $ A then the shares belonging to the members of A give no 

information about the secret value s, we use induction on the number of operators 
of the formula F. 

A formula with no operators consists of a single variable up. The access structure 
defined by v, is the set of subsets of P which contain the trustee p .  Thus, $(s, vP) 
gives the secret value s to p alone and therefore allows only those sets of trustees 
which include p to determine s. 

A monotone formula F with d > 0 operators can always be written in the 
form o(F1, F2,. . . , F,) where o is one of V, A, and THRESHOLDk, and where each of 
Fl, F', . . . , F, is a monotone formula with less than d operators. 

If the operator o is V, then $(s,Fl,P2,. . . ,Fn) is the union over i of $(s, I ? ) .  By 
the inductive hypothesis, for each i, the members of a set A of trustees which is not 
in the access structure A can obtain no information whatsoever about the value of 
s from the values of the shares of $(s, I?) .  Since for i # j ,  the shares of $(s, F;) are 
chosen completely independently of the shares of $(s ,Fj ) ,  no joint information is 
possible, and therefore, the shares of $(s, F )  held by the members of an A not in A 
give no information at  all about 5. 

If the operator o is A, then $(s,  Fl, Fz, . . . , F,,) is the union over i of $(s; ,  F;), 
where the s; are chosen uniformly according the constraint that s = (Cy='=, s;) mod 
m. For each set A of trustees not in A, there must be some i such that the shares 
of $(si,F;) held my members of A give no information about s;. (If this were not 
the case, then A would be in the access structure A.) Since the shares given in 
each sub-formula are independent, this implies that the sum s = (Cy=, s;) mod rn 
is completely undetermined by the shares held by the members of A.  

Finally, if the operator o is  THRESHOLD^, then $(s, PI, F,, . . . , F,,) is the union 
over i of $(s;, &), where the 5; are assigned according to the threshold scheme $ i ~  by 
$k(5; FI ,I%, . . . , F,) = [SI, s2,. . . , s,,]. By assumption, a threshold scheme $k allows 
sets of fewer than k shareholders to obtain no information at all about the value 
of s. If A is a set of trustees not in -4, then the membersof A can obtain direct 
information about fewer than k of the s;. Again by independence, the shares held 
by the members of A provide no information whatsoever about the value of s. I 

Finally, we show that there are access structures which cannot be realized with- 
out giving multiple (or extra large) shares to some trustee. 



33 

Theorem 3 There ezasts access structures for which any generahzed secret sharing 
scheme must  give s o m e  trustee shares which are from a domain larger than  that of 
the secret. 

Proof: 
Consider the access structure A defined by the formula 

( ( A  A B )  v ( B  A C) v ( C A  D ) ) ,  

and fix a value a to be the share held by A.  
Let b,, . . . , b, represent the set of possible shares available to B. Since A and B 

are together sufficient to compute the secret value s, each share b; determines exactly 
one possible value s; of the secret s. Also, since the share a alone is insufficient to 
give any information about the secret value s and since the number of possible 
values of 5 is equal to m (the number of possible d u e s  of the share held by B ) ,  
every possible secret value s, is determined by a togecher with exactly one value b;. 

Thus, for each a, we can construct a set of m pairs (s;, b;) which are consistent 
with a and such that each possible value of the secret and each possible value of 
B’s share appear in ezactly one such pair. 

Now consider the possible value of the share held by C. Since B and C are 
together sufficient to compute the secret value s, and since each bi can be matched 
with exactly one value ci to form the secret 5 ; ,  there is exactly one value ci consistent 
with each pair (si, bi) in the set. (Note that the c, are not necessarily distinct.) 

If any two of these c; are distinct, then considering the value held by A together 
with the value held by C would eliminate at least one of the possible consjstent 
pairs and thereby eliminate at  least one of the possible values of the secret s. But 
A and C are together n o t  sufficient to determine any information about the value 
of the secret 5 .  Thus, the value held by C must be completely determined by the 
value held by A.  

Now since C and D are together sufficient to compute the secret value s ,  the 
value held by C together with the value held by D is sufficient to compute the 
secret value 5. However, the value held by A completely determines the value held 
by C. Thus, the value held by A together with the d u e  held by D is sufficient to 
compute s. This violates the premise that A and D are insufficient. I 

4 Generalized Secret Sharing Homomorphisms 

In [Bena86] and [Bena87], Benaloh describes a homomorphism property that is 
present in many threshold schemes which allows shares of multiple secrets to be 
combined to form “composite shares” which are shares of a composition of the 
secrets. Such secret sharing homomorphisms aIso apply to the generalized secret 
sharing scheme presented here. 
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For instance, if the shares of a secret value z (drawn from a fixed secret domain 
S = {0,1,. . . ,m - 1)) are added to the corresponding shares of a similarly chosen 
secret d u e  y, then the sums represent shares of the value (z + y) mod m. 

The applications of secret sharing homomorphisms includes fault-tolerant ver- 
ifiable secret-ballot elections as well as verifiable secret sharing. The methods of 
verifiable secret sharing developed for threshold schemes in [Bend61 and [Bend71 
and also by Feldrnan in [Feld87] can be used for generalized secret sharing too. The 
approach used by Feldman is actually somewhat better suited to these purposes. 
Here, the secret is distributed in such a way as to enable each trustee to, with- 
out further interaction, verify that its share is a well-formed and valid share of the 
secret. 

The main requirement of these schemes is the presence of an appropriate homo- 
morphism property, and the homomorphism property described above turns out to 
be sufficient. 

5 Conclusions 

This paper has shown how generalized secret sharing can be achieved in a method 
which is simpler and more efficient than in any previous scheme. There are, however, 
many cases in which this method is still unable to be applied efficiently. 

For any given polynomial P, the number of n-variable monotone formulae of 
size no more than P(n)  is exponential in P(n).  However, the total number of 
monotone functions on n variables is doubly exponential in n. Therefore, most 
monotone access structures cannot be realized with a polynomially large number of 
polynomially sized shares. 

Further methods of secret sharing which can efficiently realize additional access 
structures and an analysis of precisely what access structures can be efficiently 
realized are interesting areas for future research. 
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