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Let r ,m,a  and be integerj with r > 0,m > O,a 2 O and ai > O for 
1 5 i 5 m. Let A be an r-coloring of N. Hilbert's Cube Lemma guarantees that 

rn 
there &s a monochromatic m-cube of the form Qm(a, al, . .. , am) = {a+ C E i a i  : 

i=L 
Ei = O or 1). Three different proofs of thiç lemma are given. 

Hilbert Cube Lemma can be generalized in two diEerent aspects. First, we 
can give a criterion where to look for a monochromatic rn-cube. Szemerédi's Cube 
Lemma gives that criterion. Secondly, we can give more information about the 
m-cube. This was done by Schur. Schur's Theorem guarantees the existence of a 
monochromatic set of the form Qz (O, al,  aa) \{O) in every h i t e  coloring of [l, N ]  
if N is big enough. 

Schur's result can be extended by replacing Q2 (0, al, a 4  \ {O) with Qm(O, al, . . . 
,%)\(O), where rn is finite and ai # 9 for i # j. This is called the Rade  
Sanders-Folkman's Sheorem or simply Folkman's Theorem. F o h a n ' s  Theorem 
states that for any finite coloring of N there euists an arbitrarily large f i t e  
sets S = {al, ..-,ak) of positive integers such that (C  ai : 0 # 1 (1, k]) 

i E 1  
iç monochromatic. The finite form for Folkman's Theorem k: For a l l  positive 
integers and k there is M = M(, k) such that for every -c oloring of [l, M ]  

k 
there exkt distinct ai, ..., ah E [1, Ml with all ai are distinct such that C 5 M 

i=1 
and {C : 0 # 1 E [l, k]) is monochromatic. 

i € I  

The Finite Unions Theorem, an analogue to  Follanan's Theorem, is &O stud- 
ied. In its finite form, the Finite Unions Theorem guarantees that for all poçitive 
integers and k there exists F = F(, k) such that for any n 2 F, if P,, the 
set of all non-empq subsets of [l, n], is - colored then there is a pairwise disjoint 
collection D P, with 1 V I= k such that FU(V)  , the set of a l l  unions of elements 
of D, is monochromatic. 

Then, we give upper bounds for M and F, where M and F are as in F o h a n ' s  
Theorem and the Finite Unions Theorem respec t i~e l~  

Findy, we prove Eündman's Theorem that guarantees the existence of a mon* 
chromatic 'infinite cube' in every finite coloring of N. We &O prove this theorem 
by using methods of Topological Dynamics. 
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Chapter 1 

INTRODUCTION 

Ramsey Theory is a part of Diçcrete Mathematics that has its root in the works of 
D. Hilbert (l892), 1. Schur (lgl6), B.L. van der Waerden (1927) and F.P. Ramçey 
(1930). These four results were established for different reasons, not being aware 
of each other. In the thïrties, R. Ftado unified and extended the results of Hilbert, 
Schur and van der Waerden and since that time many mathematicians, led by the 
great P. Erdos, have been involved in the development of Ramçey Theory. 

In this thesis two aspects of the generalization of the earLiest result hom above 
will be studied. 

Hilbert's Cube Lemma guarantees that for any finite coloring of N and for 
any m E N there exists a monochromatic structure that we c d  an "m-cube' of 
the form 

In Chapter 2 we give three different proofs of Hilbert's Cube Lemma. In this chap 
ter we also discuss Szemerédi's Cube Lemma. This lemma generalizes Hilbert's 
statement. It tells us where to look for a monochromatic lm-cube1. 

ho the r  way to generalize Hilbert's Cube Lemma is to give more information 
about the 'm-cube'. 

In Chapter 3 we discuss Schur's Theorem. Schur7s Theorem guarantees that 
for any r E N there exists n E N so that for any r-coloring of [1, n] there is a 
monochromatic set of the fom Q (O, a , a )\{O). In this chapter, two problems 
related to Schur's Theorem are discussed in d e t d .  

In Chapter 4 we go one step further. In this chapter we give two different 
ways to prove the fact that for any finite coloring of N and for any m E N there 
is a monochromatic set of the form Q,(O, a , ..., %)\{O) such that all the ai's 
are different. This statement is known as the Rado-Sanders-Folkman Theorem or 
simply FolJsman's Theorem. 

In Set Theory there is a n  analogue to FolJanan's Theorem. It is c d e d  the 
Finite Unions Theorern. In Chapter 5 we give that andogy. Also, we prove the 
Finite Unions Theorem independently. 

Both Folkman's Theorem and the Finite Unions Theorem have their finite 
forms, Le., both of them can be stated in the form where the phrase "...for any 
finite wloring of N..." is replaced by the phrase "...for any r E N the= is n E N 
such that for any r-wloring of [l, n] ...". 



In Chapter 6 we discuss the upper bound for such n in both FoIlcman's The- 
orem and the Finite Unions Theorem. 

As a result of our discussion in Chapter 4, Chapter 5 and Chapter 6,  we have 
3 3 

the following fact. Let m,r E N and let n 2 r3' , where r3" is a tower of 
height 2r(m - 1). Then for any T-coloring of [l, 2*] there is a monochromatic set 
of the form Q,(O, al, ..., u,,J\{O) such that all the ai 's  are difFerent. 

Our last step is to prove f i d m a n ' s  Theorem. Kindmads Theorem guaran- 
tees the aidence of a monochromatic structure that we c d  an 'infinite cuber of 
the form Q(O,a l ,a~  ,...) = {x ai : F N and 1 51 F [< CO). We give two 

~ E F  
different proofk of this fact. In Chapter 7 we give a proof due to  Baumgartner 
and in Chapter 8 we give a proof of Hindmm's Theorem by using the methods of 
Topological Dynamics. Also, in Chapter 8 we prove van der Waerden's Theorem 
by using Topological Dynamics. 

This thesis has two objectives. The fkst objective is to point out the steps 
in the development of Hilbert's result. Secondly, detailed proofç of the results 
mentioned before are given. 

Generdy, this thesis follows the book "Ramsey Theory" by R. Graham, B. 
Rothchild and J. Spencer [16]. Some relatively new papers related to the h t  
objective are also presented. 

In this introduction we provide some background material such as notations, 
definitions and theorems which will be wed in the next chapters. 

1.1 Notations and Definitions. 
In th% thesis, N denotes the set of natural numbers, Z denotes the set of 
integers, Q denotes the set of rational numbers, and R denotes the set of 
real numbers. 

Em,n E N with m 5 n, then [m,n] denotes (i E N : m 5 i 5 n}. 

I fn  E N then Zn denotes {(xl, ..., x,) : xi E 2). 

If p is a prime number then the set of non-zero integers modulo p is denoted 
by 2; = {i, 

I f  X is a set then we define 1 X 1 to be the number of elements of X for 
finite sets X and we write 1 X I= oo if X is an infinite set. The notation 
( X I <  oo indicates that X is a finite set. 

IfXis aset  andm ~ N t h e n w e d e f i n e  P ( X )  to  betheset  {Y: @ # Y  C 
X and 1 Y I< w) and we defme [XIm to be the set (Y : Y 2 X and 



0 EX iç a subset of N then we detùie P ( X )  to be the set { C  x : F E P(X) ) .  
xf F 

For integers m,a,a i  withm 2 1,a 2 O and CI+ 2 1, 1 5  i 5 ml we dehe  
m 

the m-cube Q,(a,al, ..., am) to be the set {a+ C : 4. = O or 1 for 
i=l 

1 5 i S m ) .  

If S is a set and r is a natural number then an r-coloring of S is a fundion 
fiom S into [l, r] . I f  A is a n  T-coloring of S and T S, then we S a y  that T 
is A-monochromatic or simply monochromatic if A(x) iç constant for x E T. 

If Ic E N, then an mithmetic progression of length k is a set of the form 
{ a + i d : O s i s k - l ) w i t h a , d ~ N .  

1.2 Background Theorems 

We introduce two background theorems where the proof of each theorem can 
be found in [16]. 

Theorem 1.1 (Van der Waerden, 1927) Let cl k E N. Then there exists a 
positive integer W = W (c, k )  with the pmperty: If n 2 IV and [l, n] is c-colored 
then (1, n] wntains a monochromatic arithmetic progression of length k. 

Theorem 1.2 (Ramsey, 1930) Let cl k ,  s E N. Then the= &sts a positive 
integer R = R(c, k, s )  vith the pmperty: If n 2 R and [l,nIk is c-colored then 
the- exists a set X E [l, nIS m c h  that [XIk is monochromatic. 

We Say that R(c, k , s )  is a Ramsey number. If k = 2 we mite  R(c ,2 ,s )  as 
m4. 

(Theorem 1.1 will be used in the proob of Lemma 4.1 and lemma 4.2. Theorem 
1.2 will be used in the proofk of Theorem 3.1, Theorem 3.2, and Theorem 5.1.) 



Chapter 2 

HILBERT'S CUBE LEMMA 

In this chapter we wiU discuçs Hilbert's Cube Lemma. Besides the pigeon hole 
principle, this lemma can be considered as the earliest partition theorem. Thiç 
lemma was establiçhed in 1892 in connection with Hilbert's investigation of the 
irreducibilie of rational functions . 

Definition 2.1 Let rn,a,w be integers with a 3 0,m 3 1,ai 2 1,1 5 i < me We 
define the m-cube Q,(a, al, ..., h) to be the set 

Definition 2.2 Let n, r be positive integers. An r-coloring of [l, n] is a finction 
from [1, n] znto [ l ,~] .  If 

A : [l,n] -. [1, r] 

is an r-coloring of [l, n] and A E [l, n], then A is monochromatic if there d t s  
i E [1,r] such that A(x) = i for every x E A. 

Theorem 2.1 (Hilbert's Cube Lemma) Let m,r be positive integers. Then 
there W t s  a positive integer n = H ( m ,  r )  such that for  eue? r-coloring of 11, n] 
there is a aonochromatic m-cube 

contained in [l, n]. 

We will give three different prooh, each of which illutrates a different tech- 
nique. Proof 1 is Hilbert's original proof. Proof 2 proves a density version of 
Hilbert's Cube Lemma. This demity version is often called Szemerédi's Cube 
Lemma. Proof 3 is sornewhat similar tu proof 2. 

Proof 1 (Hilbert, 1892). We want to fbd  n = h, such that if [1, &] is 
r-colored (r is fixed), there is a monochromatic m-cube contained in [1, LI. 

We will make use of the Fibonacci sequeme (Fn}nEN which is defined by Fo = 
O, FI = 1 and Fn+2 = Fn+i+Fni n 2 O- This sequence starts off 0,1,1,2,3,5,8,13, 
... so that F2 = 1, F4 = 3, Fs = 8 ,... . 
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For m = 1, a 1-cube is {a, a + al), Le., a tweelement set. Clearly, if [l, r + 11 
is r-colored then there are at le& two elements with the same color. In other 
words, t h e  is a monochromatic 1-cube. Therefore hl < r + 1- 

\ saine color / 

Furthennore, since there are r different values for al and r different colors 
then there are r2 different types of 1-cubes possibly occurring in an r-coloring of 
[l, r + 11. Hence, if r2 + 1 consecutive blocks each of length r + 1 are r-colored, 
there are at least two blocks, where each of these blocks has a monochromatic 
1-cube of the same type. 

Z 
two similx blocks 

Consider that the union of these two 1-cubes forms a monochromatic 2-cube. 
Hence, h2 < (r  + 1) (r2 + 1) < (r  + l)3. NOW, since there are r different colors, r 
possible values of al and at moçt (r  + 1) (r2 + 1) - 2 possible values of al, theri there 
are at most r - r - ((r + 1) (r2 + 1) - 2) < (r  + 1)5 different types of 2-cubes. Therefore 
if (r + consecutive bloch each of length (r + l)(r2 + 1) are r-colored, there 
are at l e s t  two blocks where each of these blocks has a monochromatic 2-cube 
of the same type. Again, the union of these two 2-cubes forms a monochromatic 
bcube. Hence, h3 < (r + 1) (r2 + 1) (r + 1)5 < ( r  4- I ) ~ .  Since there are r different 
colors, r possible values of al ,  at most (r  + 1) (r2 + 1) - 2 possible values of aî, 
at m a t  (r  + l ) ( r2  + 1)(r + 1)' - 3 possible values of a3, then there are at m a t  
r - r . ( (T + 1)(r2 + 1) - 2)((r + 1)(r2 + i ) ( r  + 1)5 - 3) < (r 1 1)13 different types 
of 3-cubes which can OCCW. 

Contiming the process we have 
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We will show by induction that h, 5 (r  + l)F2m, and that when [l, (r + 1)fim] 
is r-colored, there is a monochromatic m-cube of one of less than ( r  + 1)~2m+l 
different Spes. 

We have seen that this is true for m = 1- 
Suppose that it is true for rn - 1, Le., hm-, 5 (r + 1)~2(m-l)  and there are less 

than (r + 1)F2(--l)+l = (r + 1) F2ni-1 different types of (rn - 1)-cubes. Therefore if 
( r  + 1)%-l consecutive blocks each of length ( r  + 1)F2(m-1) are r-colored, there 
are at l e s t  two blocks where each of these bloclcs has a monohomatic (m - 1)- 
cube of the same type. Again, the union of these two (m - 1)-cubes forms a 
monochromatic m-cube, hence h, 5 (r + 1) F2(--l) - ( r  + 1 ) ~ 2 m - l  = (T + 1) F2m , and 
there are less than ( r  + 1)F2m+1 different mes of m-cubes. 

Proof 2. Fix m and r  and pick n such that n 2 i ( 3 ~ ) ~ " .  Let A C [l, n] with 

[ A 13 3. There are at least ( ) elements of the form b - a, with a, b E A 

and a < b, each of which is in' [1, n]. Therefore some difference occurs at least 

since 2 1 & , or n 3 3s, which is true since n 2 ( 3 ~ ) ~ "  and s = 3 k 5 
m. 

Therefore, 

for 15 k 5 m. 
By taking k = 1, we get 

and fÏom this we get 

n 
al E [l, n], Al = {a E A :  al + a  E A), 1 Al 12 , 

3 ( 3 ~ ) ~  - 

Starting with Al, by the same argument we get 



Since al +Al  C A then elal +-Al C A, where €1 = O or 1. Simitarly, since 
a2 + A2 C Al then € 2 ~  + A2 E AI, where €2 = O or 1 so ha1 + € 2 ~ 2  + A2 C A, for 
€1, €2 = O or 1 .  

By continuhg this process we get 

with 

and 

m 
Since 1 A, 12 1 we can fbd an a E R, such that (a+ Ekaa : ~k = O or 

Let us observe that Proof 2 indeed proves the claim of Hilbert's Cube Lemma. 
Let N = Cl u ... u Cr with Ci n Ci = 0 for i # j ,  and let for n E N and i E [ l ,  r] 

Clearly, 

If for ail i E [i,r] 

In other words, for any T-coloring of (1, n] there are at least elements of the 
same color and Proof 2 shows that there is an m-cube in that color, if n is large 
.-" 6- - 
Luv u $ ~ -  
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This leads us to the following important statement, known as Szemerédi's 
Cube Lemma. Szemerédi's Cube Lemma was a part of Szemerédi's proof of Roth's 
Theorem. 

In 1936 P. Ekd& and P. nir5.11 gave the following question. 
If A C N is a set such that 

does A contain arbitrarily long anthmetic progressions? In 1952, K. F. Roth 
proved that A must contain at least an airithmetic progression of length t h e .  
Using the statement that now we c d  Szemerédi's Cube Lemma, in 1969, Sze- 
merédi gave a different proof of Roth's result and showed that if A is as above 
then A must contain at least an arithmetic progression of length four. ki 1972, 
Szernerédi gave a positive answer to the Erdos-Tur6.n question. 

Corollary 2.1 (Szemerédi's Cube Lemma) Let c be h e d ,  O < c < 1. Let 
2 

n > ( P )  . Let A C [1, n] with 1 A 1 > cn. Then A contains an m-cube, for 
rn 2 loglogn - C, whe~e  C is a constant depending only on c. 

Proof. Given a positive integer n and O < c < 1. We can find an integer m such 
t hat 

Pick a positive integer r such that r 5 $ . n o m  the first inequaliw we have 

From Proof 2, A contains an 
inequalities we have: 

3 
2" log - 

C 

n 
A I> n 3 -. 

7- 

m-cube. Talgng the logarithms of the above 

The second inequality gives: 



Proof 3. Let 
td = 4n1-2?6 . 

log log n log log 9 m >  - - 1 > loglogn - C. 
log 2 log 2 

n be a fxed positive integer and for each positive integer d ,  let 

Let A C [l,n] with 1 A 12 td. It dl be shown that there exkt 
d - 

U,al, ..., a d  E [l,n] with Qd(a,ai ,.-., ad) = {a+ Gai : Ei = 0 or 1) A. 
i=1 

For d = 1, we have tl = 4n'I2. Since a l-cube iç a two element set, we need 
just 4n1I2 2 2, which is true since n > 1. 

Let d 2 2 and assume the result is true for d - 1. Let A = (al, ..., G) S [1,n] 
with 1 A I= t 2 td. 

Consider that 

Since 1 A I= t 5 n, at le& td-1 of the different ai - aj, i > j, are equal, Say 

Let A' = {ajk : 1 5 k 5 td-l}- Since 1 A' I= td-1 by the induction hypothesis, 
there exist a, al ,  ..., at-1 E [I., n] with Qt-i(a, ai ,  ..-, ut-1) C A'. 

But, if x E A' then x + w E A- Hence, Q,(a,al, ..., e-1, w) C A'. 
Now let O < c < 1 be given and d be the largest integer with 

log log n - log log ( 2 )  
d I  log 2 Y 

then td 5 cn, if we take ta = 4n1-3. 
Thus we have shown that if c is given, O < c < 1, and A C 11, n], 1 A 12 n, 

and 
< ~o~~o~n- lo~ lo~($ )  
- log 2 , then 1 A 12 ta, so A contains a d-cube. . 



Chapter 3 

SCHUR'S THEOREM 

Our goal now is to  prove a strengthened form of Hilbert's Cube Lemma. RecalI 
that Hilbert's Cube Lemma guarantees that for any m E N and any finite coloring 
of N there are a non-negative integer a* and positive integers al ,  ..., a, such that 
Qm (ao, al, . .., h) is monochromatic. Two natural questions are: 

1. Can we Say anything about ao? 
2. Can we choose ao, al, ..., a, in such a way that # aj if i # j? 
The ammers to both of these questions are: yes, we c m .  Actudy, in the 

next chapter we will see that for any rn E N and any finite coloring of N we 
can find arbitrarily many monochromatic sets Q,(O, al, ..., &)\{O) with ai f ai 
for i # j. This statement follows fiom the result proved independently by Rado 
(1969)' Sanders (1969) and Folkman (IWO). 

In this chapter we discuss Schur's Theorem, the fit  result that partially 
answered the fkst question above. Schur's Theorem guarantees that for any finite 
coloring of N there exists a monochromatic set of the form Q2 (0, al, az)\{O). 

Let us note that Schur's original paper from 1916 was motivated by the famous 
Fermat's Last Theorem. Some authors (see [16], Ch.3) consider Schur's Theorem 
as the earliest result in Ramsey Theory. 

Theorem 3.1 (Schur's Theorem, 1916) For al1 r 2 1 there &sts n = n( r )  E 
N such that for every r-coloring 

there eî.ist x, y, x + y E [l, n] such that (2, y, x + Y) is monochromatic. 

Proof. To prove this theorem we apply Ramçey's Theorem. Let N be the 
b e y  number R(T, 3), i.e., the minimal n such that for every r-coloring of 
[l, n]* = ( A  C [l ,  n] : 1 A 1= 2) there exists a set T Ç [l, n] with 1 T 1= 3 so that 
[Tl2 = {B c T : 1 B 1= 2) is monochromatic. Let 

A : [l, N - l] -t [l, r] 

be an r-coloring of [l, N - 11. This coloring will induce an r-coloring A* of the 
edges of the complete graph KN on the vertex set {O, 1, ..., N - 1) by 



By the definition of N,  KN muçt contain a triangle with the vertices {i, j, k) 
with A*({i, j ) )  = A*({i, k)) = A'({j, k)). Without lost of generality we can 
assume i > j > k. Let 

We note that Hilbert's Cube Lemma only gives a monochromatic set {a + 
x, a + y, a + x + y}. Also, Hilbert's Cube Lemma is a d e m i e  result, but Schur's 
Theorem is not (take the odd integers). 

Until here we only prove the existence of n. An illustration below shows how 
to get more information about the number n. 

I . Let r = 5 and take no > 327. Let 

be a 5-coloring of [l, no] with no monochromatic x, y ,  x+ y. Let il < 5 be the most 
fi-equently occurring color in [ l ,no] ,  and let xo < xl < ... < xn,-1 have color il. 
Let IVl = {xi - x0,l 5 i 5 nl - 1). Then NI misses color il (otherwise xi - xo, xo 
and (xi - xo) + xo have color il), and nl 2 y or no 5 Snl (or nl 2 66). Now let 
i2 be the most fiequently occurring color in Ni and let 

Let 

Then N2 misses i2 and il. Also n2 2 4' or 721 5 4n2 + 1 (or 722 2 17). Now 
let iJ be the most fkequent color in N2 and let 

Let 

Then, 
(i) N3 misses color i3, since a, zi, 22, ..., all have color iJ. 
(ii) N3 misses color i2, since otherwise 



zi - 20 = (3/k - YO) - (yj - y*) = yk - Y j  has color i2. 
(iü) N3 misSe. color il, since otherwise 

s - 20 = yk - 3/j = (2à. - XO) - (xP - 20) = X, - XP has color il. 
lUso n3 3 9 or TL, 5 3n3 + 1 (or n3 2 6) .  
Let i.4 = moût fiequent color in N3 and let 

Let 

Then, 72, 2 9 or 7x3 5 Zn4 + 1 (or n4 2 3) and N4 misses colors : 
- i4, since otherwise wi - WO, wo, wi are monochromatic. 
- i3, sime otherwise wi - ut0 = (zk - zo) - (zj - zo) = z,, - zj hm color i3 , but 
then a - zj , zj , zk axe monochromatic. 
- i2, since otherwise wi - W* = ~k - zj = (y, - yo) - (yp - yo) = y, - yp has color 
i2, but then y, - yp, yp, y= me monochromatic. 
- il, since otherwise wi - wo = y, - y~ = (x, - xo) - (xt - 10) = x. - xt h m  color 
il, but then x, - x,, x, , xt are monochromatic. 

Thus Nq is monochromatic in color i5. 
Since (w2 - wl) + (wl - wO) = (w2 - wo), and zul - wo, w2 - wo have color iS, 

w2 - w1 can not have color i5. But, checking as before, w2 - u i ~  must also avoid 
colors i4, i3, il, il - This is impossible. Therefore there must be a monochromatic 
set (2, y, x + y) in p, no]. 

This argument can be restated as follows : 
Let 

be a 5-coloring of [l, no] such that there is no monochromatic set {x, y, x + y) in 
[l, no]. Then by the above arguments we get 



Therefore, 

We define S(r) to be the minimum of n(r) where n(r) satisfies Schur's Theo- 
rem. One c m  use the method of the illustration t o  show that 

for allr > 1. 
However one can show directly that if m = lr!eJ + 1, then every r-coloring 

of the edges of Km gives a monochromatic K3. Therefore by the proof of Schur's 
Theorem given previously one gets S(r) 5 [r !eJ + 1. We note that so far, the best 
known upper bound is S(r) 5 r!(e - h). 

Rom Schur's theorem we can derive the following corollary. 

Corollary 3.1 For all m 2 1, the* &sts N = N(m)  such that 

always has a non-trivial sclution for each prime p 1 N .  

Proof. Fix m 2 1 and let p be a prime with p > S(m) , where S(m) is as in 
Theorem 3.1. Then every m - c o l o ~ g  of [l, p - l] giveç monochromatic u, v, ui with 
u+v=w. Let 

the set of non-zero integers modulo p. This forms a cyclic group under multipli- 
cation modulo p. Say 



for some g E Z;. 
Let t E ZG, thent =gk andtm =gh, forsome k with 1 < k s p -  1. Hence, 

the mth powers in Z; are exactly 

so these mth powers form a subgroup generated by gm- This subgroup has order 

Now let 

H is a subgroup of 2; of index n = gcd(m,p  - 1) < m. Sherefore 2; is 
decomposed into cosets 

where t j  E ZG, 1 5 j 5 n. 
Since a, b belong to the same coset if and only if ab-' E H, we see that the 

cosets of 2; (relatively to X) define an n-coloring A of ZP with 

A(a) = A(b) if and only if ab-' E H. (ii ) 

Since n 5 m, by Schur's Theorem there exkt a, 6, c E [1,p - 11 with 

A(a) = A(b) = A(c) and a + 6 = c. 

Fkom A(a) = A(b) = A (c) , by (ii) we have 1, a-% and a-'c E H. 
Therefore in 2; we have 

a% + a-'b = a-'c 

with 1, a-'b and a-% E X. By ( i ) ,  there &t x, y, a E 2; with 1 = xm, a-'b = ym 
and a% = t", Le., there aist x, y, t in [l, p- 11 such that xm + y" = r" (modulo 
P )  . 

Now, we finish th& chapter with two problems related to Schur's Theorem. 
First, let 



be the function defined in the following way. For r E N, let f ( r )  be such that 
(i). There is A : [ I l  f (r)] -+ [l, r ]  such that for any x7 y E [l, f ( y ) ]  

In other words, f ( r )  is the maximum of a l l  n with the property that we can h d  
an T-coloring of [l, n] with no monochromatic solution to the equation x + y = z. 

Theorem 3.2 For al1 r f N we have that 

Proof. F'rom the proof of Schur's Theorem we have that if [l, R(r, 3) - 11 is 
r-colored there is a monochromatic set {x ,  y, x + y}. Thus 

be defined in the following way. 

A ( 4  9 
for x E 11, n] 

Af(x) = { T +  1, for x E [n+1,2n+ 11 
A(x - (271 + 1))) for x E [2n +2,3n + 11. 

Suppose that A is such that for any x, y E [l, n], 

and let ul v E [1,3n + 11 be such that Ar(u) = Af(v) and u + v 5 3n + 1. 



Clearly, there are four cases. 
The first case is that u, v E [1, n] and u + v 5 n. Then 

and we have that {u, v ,  u + v) is not Al-monochromatic. 
The second case is that u, v E [l, n] and u + v E [n + 1,2n + 11. In this case, 

A1(u) = A(u) E [1,r] and Af(u + v) = r f 1 

and again {u, u, u + u} is not A'-monochromatic. 
The third case is that u, v E [n + 1,2n + 11. Now we have that 

and, since 
u + v  > 2n + 1, then A1(u + v) E [l, r]. 

Thus, +u, u ,  u + v) is not At-monochromatic. 
Thefourthcaseisthatu E [1,n] a n d v  E [2n+2,3n+l ] .  Sinceufv 5 3n+1 

we have that u + v  - (2n  + 1) 5 n and 

it follows that 

Hence, {u, v, u + v) is not Al-monochromatic. 
Therefore, if A is such that there is no monochromatic solution for x + y = z 

in (1, n] then Al is such that there is no monochromatic solution for x + y = z in 
[1,3n+ 11. In other words, if n < f(r) then 3n+ 1 5 f(r + 1). 

Cieariy, f (1) = 1 = 4(3l - 1). Let r 2 2 be such that 

Therefore by the principle of mathematical induction we have that for a l l  
TEN 



A Schur number is any element of the range of the function f .  So far the only 
known exact values of f (y) are f (1) = 1, f ( 2 )  = 4, f (3) = 13 and f (4) = 44. The 
best b o r d s  for f (5) are 160 5 f (5) 5 321. The lower bound of f (5) was proved 
by G. Exoo in [8] and the upper bound was proved by E.G. Whitehead in [26]. 

For the second problem related to Schur's Theorem that we discuss, let us 
introduce the following notation. 

For n E N let Sn be the family of non-empty subsets of [l, n] such that S E Sn 
if and only if 

x , y € S ~ z +  y$% 

Let N = a  x{I S 1: S €Sn) andlet 

Note that for any a, b E [1, n] 

Thus, Sn # 0 and Sn # 0. 
B is easy to see that for any n E N 

and 

Here, for a E R+, 

and 
La] denotes ax{k E 2: k 5 a). 

We prove the folIowing. 

Theorem 3.3 S E S: -1 
ProoE Let S E and let 

s [= [;1. 
m = ax{x : x E S}. Let 



be defineci in the following way. For a E S and i E [O, r-l] let g ( a )  = i if and 
only if a E {i, m - i). Since 

we have that 

Note that if m is an even numba 
and if m is an odd number then [y] 

Therefore 

Hence, g is well dehed. Furthmore, if a, b E S are such that g(a) = g(b)  = i 
then {a,b) C { i , m - i ) .  If a # b  then {a,b) = {i,m-2) and a f b  = m E S. This 
is not possible and therefore a = b. Thus, g is 1 - 1. This rneass that 

Remark 3.1 Let n = 8 and let us uns ider  the set A = {1,4,6}. Clearly, A E Ss. 
Let w note the following tuo facts. First, 1 A 1= 3 < rgl = 4. S m d l y ,  f o r  any 
x E [1, 8]\A7 A U {x) $ &. ThiS meam that there are n such that 

s: 5 {SE&:SU{X) $S, for a l l x  E [I,n]\S). 

Next, we discuss the fouowing problem. 

Problem. For given n, find al1 elements of S:. 

Theorerr 3.4 Let k E N. Then 



and 
s; = ((1, 3, 51, C374, 5)) = {O;, T'I  

so that the clairn is true for k = 1 and k = 2. 
Let k 3 3 be the smdest integer such that there exist a set S E S&+, with 

which is impossible. I f  2 k  $ S, then 

Since, by our choice of k, 

in the case if 2k $ S we would have that 

Since k 2 3 wehave that k+l  E [k, 2k-11. Thus, if 2k @ S then {k, k + l ,  2 k + l )  
S. this contradicts the fact that S E S&+,. Therefore {2k, 2k + 1) E S. Hence, 
1, k 6 S. 

Now, let 

thea S Ç B and 
1 Sr I = ( k + l ) - 2 = k - 1 .  

Let 
S; = Sn [2, k - l ]  

and 
5'; = Sr n [k + 1,2k - 11. 

Then we c m  express S' as a disjoint union of Si and Si, Le., 

sr = s; u s;. 



which contradicts (*). If Si = 0 then S' = Si. it implies 

Impossible. Therefore 
S' = s; u s; 

with 
s; #0 # s;. 

Let Si = {al, ..., $) where 2 < al < ... < a, 5 k - 1. Since for 1 5 i < p, we 
h a v e a i + 2 k - a i = 2 k f S a n d % + 2 k + 1 - % = 2 k + l ~ S t h e n  

Note that 1 C 13 p + 1. Hence 
k - 1 =l Sr I=I Si ( + 1 Si II p + {(k - 1) - ( p  + 1)) = k - 2. Impossible. 

Conclusion: S&+, = {O;,,, TG,,) for all k E N. 

Now, we want to h d  Sz if k is even. It is easy to check that 

Theorem 3.5 For k > 5, 

Proof. Let k > 5. Clearly, (T;k-li O&, T;k) C S;k. It is enough to show that 
if T E S& with 2k  E T then T = T&. Let n 2 5 be the srnallest integer such that 
2n E T E S&,\{T&}- 

Suppose that 2n - 1 6 T. Then 1 T\{2n) I= n - 1 and T\{2n) E SL-> 
I f  T\(2n) = T;n-3 = [n - 1,2n - 31, then {n, 272) C_ T. This contradicts the 

fact that T E S;,. 
If T\(2n) = 0;n-37 then {3,2n - 3) C T\(2n). This irnplies {3,2n - 3, Zn) Ç 

T which contradicts the fact that T E S&. 
I f  T\{2n) = T2,-* = [n, 2 n  - 21, then {n, 2n)  C S. Tbis contradicts the fact 

that T E Si,. Therefore, by the choice of n, the only possibility is n = 5. In this 
case 

T\{2n) E = {O;, T;, Tl) U {{2,3,7,8)). 



Since T\{2n) # O;, T\{2n) # T; and T\{2n) # T{ then T\{2n) = {2,3,7,8). 
This implies {2,8,10) E T which contradicts the fact that T E S;,. 

Hence, 272 - 1 E T if 2n E T E SL. Note that in this case 1, n 6 T. 
Let Tl = T\{2n-172n). Then 1 T (= n-2 andTt E [2,n-1]~[n+l,2n-21. 

F'urthermore, we can express Tl as 

where 
Ti = T f n  [2,n - l] 

and 
T; =T1n[n+1,2n-21. 

IfT; = 0 thenTf =Ti = [n+1,2n-21. This implies T = [n+ 1,2721 = T&, 
contradicting the fact that T E S&\{T;,). 

If T; = 0 then Tt = Ti = [2,n - 11. Since n 2 5 then {2,4} E [2,n - 11 = 
Tt T, contradicting the fact that T E SL. 

Therefore 
T; # 0 # T'. 

Let 

with 

There are two possibilities: either 2n - 2 E Ti or 272 - 2 @ Ti. 
If 2n - 2 E Ti then a, < n - 1 (otherwiçe {n - 1,2n - 2) Ç T' C T which is 

impossible since T E S&). Therefore 

where 
k + 1 5 bl 5 ... < b, < 2n - 2. 

Therefore 

Note that 1 E 12 q + 1. Hence, 
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This contradiction completes the proof. 



Chapter 4 

GENERALIZATION OF 
SCHUR'S THEOREM 

In this chapter we will see two closely related generalizations of Schur's Theorem. 
They are Rado's Theorem and Folkman's Theorem. 

Since Folkman's Theorem c m  be derived hom Rado's Theorem, we will state 
and prove Rado's Theorem first. To do this we need the d f i t i o n  of the regularity 
of a system of equations. 

Let S = S(xl, .. . , xn) denote a system of equations in the variables XI, . .. , xn. 
Definition 4.1 Let T be a set of real numbers. We cal1 S to be r-regular on T 
if for every r-wloring of T we can find al, ..., a, E T which are not necessady 
distznct such that {al, .. . , G) Zs monochromatzc and (al, .. ., 4) is a solution to 
the system S. Furthemore, if S is r-regdar on T for every positive integer r ,  
then we Say that S is regular on T. 

According to Schur7s Theorem, for each positive int eger r and any r-coloring of 
N we can find al, a*, a3 such that al +a2 -a3 = O and al, az, as are monochromatic, 
hence the equation 11 + 22 - xs = O is regdar on N- 

Theorem 4.2 below gives the s&icient and necessary conditions of regulariw 
of a system of linex homogeneous equations. We prove this for the special case 
of a single linear homogeneous equation. 

Theorem 4.1 Let S : clxl  i- ... + ~ x ,  = O, c E Z be a lznear homogenwus 
equation. Then, S ZE regular on N if and only if there exists a positive hteger k 
with O < k < n such that . 

k 

with not all cj = 0. 

To prove the theorem, we need a lemma : 

Lemma 4.1 Let T,  k, s 2 1. Then there exists n = n(r, k ,  s)  so that if 11, n] Zs 
r-colored, there exist a, d > O with 

{a, a + d, a + 2d, ..., a + kd) U {sd)  (*) 



Proof. Induction on r. Let r = 1 - There are two possibilities, either k < s or 
k z s :  

- If k < s, then by taking n = s and a = d = 1 we have 

{a,a + d,a +2d, ...,a+ kd) U {sd) = {l, 2, ..., 1 + k) u {SI, 
a monochromatic set in [1, n]. 

- If k 2 s, then by taking n = k+ 1 and a = d = 1 we have 

{a, a + d, a + 2d, ..-, a + kd} U {sd) = {1,2, ..., 1 + k}, 

a monochromatic set in [l, n] . 
Therefore we can take n(k, 1, s) = max{k + 1, s}. 
Using van der Waerden's Theorem, let W(r, t) be the minimal W such that if 

[l, W] iç r-colored there exists a monochromatic arithmetic progression of length 
t + l .  

Let r, k, s be given. Assume that r 2 2 and that n(r - 1, k, s) &S. Take 

n = sW(r, kn(r - 1, k, s)) 

and let 

be an r-coloring of [l, n] . 
Let us consider the restriction of x on [l, W(r, kn(r - 1, k, s))] . By van der 

Waerden's Theorem, among [l, W(T, kn(r - 1, k, s ) ) ]  we can find a monochromatic 
a.rithmetic progression 

a', a + dl, a' + 2dt, ..., a' + kn(r - 1, k, s)df 

for some positive integers a' and dt. 
Consider two possibilities : 
(i) . There &ts j E [1, n(r  - 1, k, s)] such that sd'j has the same color as 

(**) - 
(ii) - For every j E [l, n(r - 1, k, s)]  , sd'j and (**) have diaerent color. 
If (i) happens then we &O have 

sio.ce kjd' 5 kn(r - 1, k, s)dr. 
By taking a = a' and d = jd' we conclude that (*) has the same color as (4, 

and we are done. 
If (ii) happens then {sd'j : 1 5 j 5 n(r - 1, k, s)) is (r - 1)-colored. Let 

f : (sd',2sd',3sdt, ..., n(r - 1, k, s)sd) - (1,2, ..., n(r - 1, k, s ) }  



with 

Then f is 1 - 1. So an (r - 1)-coloring of {sd', 2sdf, 3sdt, ..., n(r - 1, k, s)sd') 
will resdt in an (r - 1)-coloring of [l, n(r - 1, k, s)] and vice versa. Therefore the 
(r - 1)-coloring x of {sd', 2sdr, 3sdr, ..., n(r - 1, k ,  s)sdf) will result in an (r - 1)- 
coloring $ of 11, n(r - 1, k ,  s)] . (Here, we take 2 (x) = x (sd'z) .) By the induction 
hypothesis, there exkt a", dtf > O such that 

(a", a'' + dl', ... , a" + kd') U {sd") 

is a monochromatic set under $ in [l, n(r - 1, k, s)] . Therefore 

(sd'a", sdl(a'' + d") , . . . , sd' (a" + kd") ) U {sd'sd"} 

is monochromatic under x in 

By taking a = sd'a" and d = sd'd", then (*) iç rnonochromatic in [l, n]. . 
Let us note that Lemma 4.1 generalizes both van der Waerden's Theorem and 

Schur's Theorem. Clearly Lemma 4.1 implies van der Waerden's Theorem. If in 
Lemma 4.1 we take s = 1 and k = 1, then we have Schur's Theorem. 

Corollary 4.1 Let r, k, s 2 1. Then there &sts n = n(r, k, s) so that if [l, n] is 
r-wlored, there exist a, d > O such that 

{a+ Ad : 1 X 15 k) u {sd) 

is monochromatic. 

The proof of thiç Corollary is simply hom Lemma 4.1 by taking k' = 2k to 
h d  a', d' such that {a', a' + dl, a' + 2df, . . ., a' + 2kd') U {sd'} is monochromatic. 
Then by taking d = d and a = a' + kd', the CoroLlary is proved. 

Proof of Theorem 4.1 (+=) Suppose O < k 5 n and ci, + ... + s, = O with 
not a.ll cij = O for 15 j 5 k. If k = n then (xl ,... xn) with XI = ... = x , = r n  
satisfies the equation for every m E N. Therefore we can assume O < k < n. 
Renumbering if necessary, assume that 

Let 



If B = O then ( x ~ ,  ..., 2,) with X I  = ... - - ~ k  = m  and ~ k + l  = ... = xn = p  
satiçfies the equation for every m , p  E N. Hence we may assume O < k < n and 
c k + l +  ... + C, # O. Let 

and 

where w = gcd(A, B). 
Since w 1 B we find v E Z such that B = vw. Hence, 

T a h g  t = -v, we have 

F'urthermore, since A = gcd(cl, .. . , ck ) , we find al, . .. , a k  E Z such that clal + 
... + C ~ C Y ~  = A. Letting Xi = ait, we have 

cl& f ... ~ c ~ X ~  = At. 

Rom (i) and (ii), we have 

Let x : N -+ [l, r] be an r-coloring of N and let M = max{l Xi  1 : 1 5 i 5 k). 
By CoroUaq 4.1 there are a, d > O such that 

is monochromatic. Note that a + Xid E X, 1 5 i 5 k. Now, let (xl, --., 2,) E Zn 
be such that 

xi = a+Xid,for 1s i 5 k, 

and 

xi = sd, for k + 1 5 i 5 n. 



Then {xl, .. ., xn) C X. Thus {xl , . .. , ln) is monochromatic. Furthermore, 

Thus, ( 2 1 ,  . . . , 2,) is a monochromatic solution of S. Therefore S iç regular. 

(+) . We will prove the contrapositive. 
L e t { q , . ~ - , c , ) ~ Z b e s u c h t h a t i f 0 # F ~ [ l 7 n ] t h e n ~ ~ # O . L e t p b e a  

iEF 
prime such that p > max{l ci 1: 0 # F E [l, n]}. Define Fp, the ( p  - 1)-coloring 

i€F 
on N in the following way. If a E N and b E [l, p - 11, then Fp(a) = b if and only 
if there are a non-negative integer i and an integer m such that 

a = pi(mp + b) .  

Thus, F,(a) = b if and only if there is a non-negative i such that 

For example, F5 (25) = F5 (52 (O - 5 + 1)) = 1 and F5 (37) = Fj (5' (7 5 + 2)) = 2. 
Note that, for a,x, y E N 

and 

Since Fp (ax) = Fp(a y) then babz babY(mod p) ,). 
If, let us Say, 6, > b,, then there is q E N such that 

- b,) = b,b, - b,b, = qp. 

This contradicts the fact that p is prime and b,, b, - b, E [1, p - 11 so p t 
&(b, - b,). Thus, 



Now, let us consider the equation S: 

and suppose that (al, ..., a,.,) is an F,-monochromatic solution of (*) . Let a = 
gcd(al, ..., a,J and let ai = au:, i = 1, ..., n. By our note above, we have that 
(a',, .. ., an) is an F,-monochromatic solution of (*) where gcd(a:, ..., an) = 1. 

Hence, 

Since (a;, .. ., an) is an F,-monochromatic solution of (*), there eüsts b E 
[ l , p  - 11 such that 

For i E F, let % E Z be such that 

and let m E Z be such that 
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Hence, 

Rom the facts that b < p and p is prime 

This contradicts the fact that p > 1 q I# 0. 
ZEF 

Therefore S is not regular. This completes the proof. 

Theorem 4.1 characterizes the regularity of a single linear homogeneous equa- 
tion. It is usually named as Rado's Theorem-Abrïdged. This next theorem gives 
the necessary and suEcient conditions for the regulazïty of an arbitrary system 
of linear homogeneous equations. Before doing this we need the definition of the 
columns condition of a matrix. 

DeWtion 4.2 A matriz C = c, &th entries f rom Z i s  said to satisfy the 
Columns condition i f  we can order the column vectors cl, ..., c, so that there exist 
O = ko < kl < 4 < ... < kt = n such that if we define wlumns Al, A*, ..., At by 

then Al = O and 
ki-1 

for 1 ci 5 t and a, E Q. 

Now we are ready to state the generalization of Theorem 4.1. 

Theorem 4.2 (Radoys Theorem Complete). The system of linear homoge- 
neow equations (unth weficients from Z )  Cx = O is regillar on  N if and only zf 
C satZîfies the Columns condition. 

It turns out that this Theorem is equivalent to: 
The system of linear homogeneous equation Cx = O is regular on  N i f  and 

only if for every prime number p the system hm a monochromatic sclution m'th 
the wloring F, defined in the proof of Theorem 4.1. 

The proof of this Theorem can be found in [16]. 
A special case of Rado's Theorem is Folkmads Theorem. 



Definition 4.3 Let S C N. We define P(S) ,  the sum-set of S to be P(S)  = {x ~,s,where = 0, 1 and E, = 1 for af ini te  non-zero number of s ) .  
SES 

Theorem 4.3 (Folkman's Theorem). If N W finitely w l o d  then the* ezist 
arbitraarily large finate sets S such that P (S )  is monochromatic. 

Folkman's Theorern is a generalization of Schur's Theorem. To see that, it is 
enough to ask that the set S in Folkman's Theorem has two elements. If S = {a,  b)  
then P(S)  = {a, b, a + b) ,  and for such S F o h a n ' s  Theorem gives us the claim 
of Schur's Theorem. 

Here is a way to connect 
Let k E N and Pk = {T 

2k - 1 equations with 2k - 1 

Folkman's Theorem and Rado's Theorem- 
: 0 # T E [l, k] ). Let us consider the system 
UILknowns, given by: 

If the claim of Folkman's Theorem is true, then for any finite coloring of 
N there exists S C N such that 1 S I= k and P(S)  is monochromatic. Let 
S = {al, ..., ak}. For T E Pk, let a~ = C ai- Note th& for i E [l, k], ai = a{i)- 

i€T 

Also, a~ E P(S)  for all T E Pk . Thus, (& : T E Pk) iÇ a monochromatic solution 
of the system Sk. 

Hence, Folhan's Theorem implies that Sk is a regular system for any k E N. 
Now, assume this system Sk is a regular system for every k E N. Let 1 be 

given. It is not ficult to check that there are distinct AT, T E 8, such that { 
AT : T E Pl ) is the set of solutions of Si. By CoroUazy 8$ in [16] pp.62, since 
the system is regular, then for any h i t e  coloring of N, the systern has a 
monochromatic solution L = {aT : T E 4)  such that T # T' aT # a ~ - 1 .  

Let S = {aIi), . . . , ap)). Then 1 S 1 = 1 and P(S)  = L is monochromatic. 
Hence if Sk is regular for every k E N, then the claim of Folkman's Theorem is 
true. 

Therefore, Folkman's Theorem is equivalent to the regularity of the system 
S,,  EN. 

It can be shown that & satisfies the Columns condition. Hence Folkman's 
Theorem follows from Rado's Theorem. 

The statement that is now generally cded  F o ~ a n ' s  Theorem was inde- 
pendently proved by Rado, Sanders and Folkman, so sometirne it is c d e d  the 
Rad&anders-Folkman Theorem. 

However, we wilI prove Folkman's Theorem without using Rado's Theorem. 
Here, we shall prove the finite form of Folkman's Theorem. 

Let {ai)  be a sequence and I be a finite non-empw set. We define a(1) to be 
c ai. 
i E I  



Then, using a standard compactness argument Folkman's Theorem can be 
restated as : 

Theorem 4.3' For all c and k ,  there &ts M = M(c, k )  such that for every 
c-wloring of [l, M ]  there exist al, ..., ak E [l, M ]  with all distinct, such that all 
a(1) are monochromatic, 1 E Pk- 

To prove Theorem 4.3' we use the following lemma : 

Lemma 4.2 F w  all positive integers c and k there exists n = n(c, k )  so that i f  
[1, n] is c-wlored there ezist al < a2 < ... < ak wïth ail a(1) 5 n so that the color 
of a(1) depends on$ on max(1) , 1 E Pk. 

Proof. The proof of TRmma 4.2 is based on van der Waerden's Theorem. 
Fix c. We show the d e n c e  of n(c, k )  by induction on k. Cleady, it is trivial 

for k = 1. Suppose that it is true for k. Let 

where W ( c ,  n(c,  k )  ) denotes the minimal W such that if [l , W ]  is c-colored there 
exiçts a monochromatic arithmetic progression of length n(c,  k) + 1. Now, let 

be a c-coloring of 

[l,n] = {i, .-., W ( c ,  n(c, k)), W ( c ,  n(c,  k)) + 1, ..., 2W(c, n(c, k ) ) ) .  

Consider the second half of the c-coloring of [l , n] , i.e. the c-coloring of 

n {Z + 1, ..., n) = ( W ( c ,  n(c, k ) )  + 1, ..., 2W(c, n(c,  k ) ) ) .  

By van der Waerden's Theorem and the fact that 

is a translate of the set 

among the set 

n 
{Z + 1, ..., n )  = {W(C, "(c, k)) + 1, ..., 2W(c, n(c,  k ) ) )  

we can find positive integerç a w l  and d so that {aM1 + Ad : O < X 5 n(c, k ) )  
iç monochromatic in {W(c ,n(c ,k ) )  + 1,...,2W(c,n(c,k))). Here, ak+l > > 
n(c, k)d. 



Now consider the c-coloring of {d, 2d, .. . , n (c, k) d). Since 

{d ,  2d, ..., n(c,  k ) d )  and {1,2, -.-, n(c, k)) 

are equivalent, by the induction hypothesis we can find al < a* < ... < al, in 
{d, 2d, ..., n(c, k)d)with all 

k 
so that the color of ai depends only on max(ll). 

i=l 
Let 

A = {ai, a*, --., ah+& 

If j < k + 1, then by the induction hypothesis, the a( I )  where rnax(1) = j are 
monochromatic. If max(I) = k + 1 then 

with O 5 X 5 n(c, k), so all of the a(I) with max(I) = k + 1 have the same color. 
Therefore the temma is proved. I 

Proof of Theorem 4.3' Fix c and k and take 

Perform a c-ccloring of [l, Ml. By Lemma 4.2 there & 

with 

Then 

with all  a(I)  5 M so that the color of a(1) depends only on max(1). Now, color 
the indices of ai's, Le., 

[l, ~ ( k  - 1) + II 
by colaring i with the color of all a ( I )  , with max(I) = i. Since we color a set of 
c(k - 1) + l members with at most c colors, the pigeon hole principle guarantees 
that we can find a subset 

S G [l, ~ ( k  - 1) + 11 
1 S I= k such that S is monochromatic. Let 

. P(A)  is monochromatic. H 



Chapter 5 

THE FINITE UNIONS 
THEOREM 

In Set Theory, we have a theorern analogue to Folkman's Theorem. It is called 
the Finite Unions Theorem. In this chapter fist we show that analogy. Then, we 
also prove the Finite Unions Theorem independently. 

For a non-empty set X, let P ( X )  be the set of al1 non-empty finite subsets of 
X. For convenience, we write P([1, n] ) as P,. 

Definition 5.1 Let X be a non-empty set and let I be a non-empty index set. A 
family of sets D = {Di : i E 1) C P(X) is called a disjoint wllection if for any 
i, j E 1, i f j, me have Di n Dj = 0. Next, we define FU(D) ,  the family of finite 
unions of D, to be the set {U Di : T E P(1)). 

iET 

In the rest of this chapter we assume that 1 is a finite set. 

Theorem 5.1 (Finite Unions Theorem). If P(N) is finitely colored then there 
ex& arbitrarily large disjoint wllectzons D EP(N) such that FU(D) is monochro- 
matic. 

As in the case of Fohan ' s  Theorem, we prove Theorem 5.1 in its finite fom. 

Theorem 5.1' For all c, k E N, there @ts F = F(c, k) such that for any n > F, 
if P, W c-colorai then there m-sts a disjoznt collection 2, EP, with 1 D 1= k such 
that FU(D) is monochromatic. 

There is a naturd correspondence between P(N) and N. This correspondence 
is given in the foIlowing way. 

Let : P(N) --+ N be defined by 

We show that 1 = J if and cnly if @(I) = Q( J). 
Let 1, J E P ( N )  with I # J. We can express I and 3 as 

where 



Note that at least one of A and B is not empty. Without loss of generality 
assume A f 0  # B .  

If @(I)  = @ ( J )  then 

Without loss of generality assume that 

contradicting the fact that the left hand side is an odd number and the right hand 
side is an even number. Therefore 9 (1) # a( J )  if 1 # J. Since fkom the definition 
of 9 we have @ ( I )  = @ ( J )  if I  = J ,  then we have 

I = J if and only if @(I)  = <P(J). 

To prove that Theorem 5.1' and Theorem 4.3' are equident, we k t  prove 
that Theorem 5.1' implies Theorem 4.3'. To show this, let c, k E N and let x be 
a c-coloring of [l, 2F(çk)].  Next , define the c-colorhg 2 of PF(Gk) by 



for D E PF(,=,~)- 
Let us note that X' is well defined. Indeed, for D C [l, F(c, k ) ]  we have 

Thus, if D E PF(qk) then @(D)  E [l, 2F(çk)] and >I is well defined. 
By Theorem 5.lr, there exists a disjoint collection D = {Di  : 1 < i 5 k) & 

P F ( ~ ~ )  such that FU(V)  is 2-monochromatic. Let ai = @(Di), 1 & < k. For 
I E Pk we have 

Thus,  for each 1, J E Pk we have 

Thus,  M(c, k )  < 2F(c*k), so that the claim of Theorem 4.3' is true. 

To prove the converse we need a lemma : 

Lemma 5.1 Let k ,  nl , .. . , n k  and t be positive integers. There is a positive integer 
m' so that i f  1 S I =  m > m' and [SIi = { A  S : 1  A I= i) is ni -colored for 
1 $ i 5 k ,  then the= exists T E S, m'th 1 T I= t so that for each i, l 5 i < k, 
[Tli = { B  C T : 1  B I= i )  is monochromatic. 

Proof. Let k, nl , . . . , nk and t be aven. Rom Ramsey's Theorem we lcnow that 
for every triple of positive integers (c, k, s) there exists no = no@, k ,  s) such that 
for every c-colorhg of [l, noIk = ( A  E [l, no] : 1 A I= k) there exist j, 1 5 j 5 c, 
and a set T C [l,no] with 1 T I= s so that [Tlk = {B E T : 1 B [= k) is colored j. 

Now, define a sequence ml, . . . , mk inductively with 

and 

Next, let m' = mfc and 1 S I= m > m'. Perform an ni-coloring of [SIi, 1 5 i 5 
k. By the definition of m k ,  there exkt jk, 1 5 jk 5 n k ,  and a set Sk-I C S with 
1 S k - 1  I= mk-1 so that [Sk-llk = ( B  C Sk-l : 1 B I= k) is colored jk. Then ,  by 
the definition of mk-1, there exkts a set Sk4 C Sk-1 ~ 4 t h  / S k 4  I= m>t-2 so that 
[Sk-2]k-' = { B  c Sk4 : 1 B I= k - 1) is colored jk+ Continuing this process 
we have a sequence S = S k  > Sk-1 2 -.. > Sl > So, where 1 So [= t so that for 
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i with 1 5 i 5 k, [Soli = {B C Sa : 1 B [= i) is colored ji and the lemma is 
proved- I 

Now we axe ready to prove that Theorem 4.3' implies Theorem 5.1'. Let c and 
k be fxed positive întegers and let t = M(c, k) be as in Theorern 4.3'. Let 

and let m' be a positive integer whose existence is guaranteed by Lernma 5.1. 
Let m > m' and let f : Pm - [l, c] be a c-coloring of Pm. We note that for 

[1,rnli = ( A  [&ml : 1 A I= i), i = 1, ..., t ,  

is a c-coloring of [l, mli. Since m > m', by Lernma 5.1 there is T C [1, ml, 1 
T I= t = M(c,k) such that each [Tli = { A  C T : 1 A I= i) C [l,mIi is 
monochromatic. In other words, for each i E [l, M (c, k)] there is j E [l, cl such 
that for aU A E [l, ml', 

f (A) = j- 

Thw, we can define g, a c-coloring of [l, M(c, k)] in the following way. 
For i E [l, M (c, k)] , 

g(i) = j if and only if f (A)  = j, 

we can find a disjoint collection 

such that 

Since 

for i # j then for any Di=, -.., Di, E D, 



Rom g (T )  = p and Dil U ... U Di, E [Tlr we have that 

Therefore F U  (D) is f -monochromatic. Hence, F(c, k) exists and F (c, k) 5 m' m. 
To prove the Finite Unions Theorem without using Folkman's Theorem, we 

need two lemmas : 

Lemma 5.2 For each pair of positive Zntegers c and k the% is a positive integer 
n = n(c, k) sa that if 

V = { ~ : l ~ i ~ n }  

is a disjoint collection and x is an equiuulence relation on FU(V) &th ut most c 
equivalence classes, then there &ts a disjoint collection 

so that 
D 1 = D 1 u S  

for every S E FU(V). 

Proof. Induction on k. For k = 1 we have n(c, 1) = 1 for every positive integer 
C. 

Fork > 1 we show that 

To prove (*j, let n = (cfl) +n(f (c2+c3), k-l),  let V = {K : 1 5 i 5 n) be a 
disjoint collection and let x b e  an equivalence relation on FU(V) with equivalence 
classes Al, ..., A,. 

Let T E FU({K+,, ..., V,)). Then the set { ~(6: ..., 4) U T : 1 5 j 5 c + 1) 
has (c + 1) elements. Since in FU(V) there are at most c equivalence classes, we 
can find a triple p,q, i  with 1 5 p < q 5 c + l , l  5 i 5 c such that the sets 
u{V1, ..., V,} u T and u{K, ..., V,) U T are both in Ai. 

Now, for each T E FU({Vc+2, . . ., V,)) let us fk a triple f (T) = ( p ,  q, 2) with 
the property as above. Next, on F U  ({K+*, . .. , V,)) we define a binary relation r 
with 

Tl I T2 if and only if f (TI) = f (T2)- 

Clearly, = is an q u i d e n c e  relation on FU({G2,  ... , V,)) . 
Since the number of elements of the set {(p, q, i) : 1 5 p < q 5 c+ l,1 5 i 5 c} 

is ( : ) c = i(d + c3) , theo the number of elements of the set { f (T) : T E 



FU({VçCP , .. ., h))) is at most $ (c2 + c3). Thus the number of eqUvalence classes 
L 2 with respect to the equivalence relation = is at most 5(c  + c3). By the induction 

hypothesis there exkts a disjoint collection 

so that 

for every Sr E FU (7). 
Let f (Tl) = ( p ,  q,i) with 1 5 p < q 5 c + 1 and 1 5 i 5 c. Hence, for every 

Sr E F U ( I ) ,  we have 

u(Vl, . . . , V,) U Tl, u {VI, . . . , V,) U Tl, u{& , . . . ,4} U Tl U Sr 
and 

u{K, ..., V,) U Tl U S' 
are al1 in A+ 

Now define Dl = u(V~, ..., V,) U Tl, Di = z, for 2 5 i 5 k - 1, Dk = 
u{VW1 ,..., V,) and let D = {Dl, ..., Dk). Note that V is pairwise disjoint and 
that Dl E A+ 

Next, define Sr = S - u{K, ..., G1), for S E FU(V) .  Since S E FU(D),  we 
cm express: 

where 

U V  . V}, if Dl C S 
ifD1 gs, 

and u{%, ..., T,} E F U ( I ) .  
Note that for S as above, 

Consider the two possibilitieç : either Dk Jf S or Dk C S. 
- I fQ  P S  then Bk=0  and^= B ~ U S .  Thus, 



Since S E F U ( I ) ,  by (**) we have that Di U S E A. 
- If Dk E S then Bk = u(V*~, ..., V,) and S = B1 U (u(V'&, ..., Vq)) u St. 

Thus, 

= (u{V,, ..., 4)) U Tl U S, and again by (**), Dl U S E A-. 

Therefore in both cases, we have Dl = Dl U S as required. 

Lemma 5.3 Giuen positive integers c and k ,  there exists a positive integer T = 

r(c, k) so that i f  
V = {VI, ---, Vr) 

is a disjoint collection and - is a n  equivalence relation on FU(V) îÿi-th ut most c 
equivalence classes, then t h e z  is a disjoint collection 

so that 
Ei Ei U S 

for i 5 i 5 k and S E FU({Ei7 ..., Ek)). 
Proof. Induction on k. Cleady, r(c,  1) = 1 for every c. Now let k > 1. We show 
that 

Take T = n(c, 1 + ~ ( c ,  k - l)), where n(c, 1 + ~ ( c ,  k - 1)) refers to Lemma 5.2, 
let 

be a disjoint collection and let x be an quivalence relation on FU(V) with at 
rnost c equivalence classes. By Lemma 5.2 there exists a disjoint collection 



for every 5' E FU(D). 
By applying the induction hypothesis to 

t here exists a disjoint collection 

so that 

with S E FU({& ..., Ek)) and i = 2, ..., k. 
To prove our lemma it is enough to show that El = ElUS for S E FU({El, ..., Ek}). 
Let S E FU({E1, ..., Ek}). Then we can express: 

where 

and 

Thus, 

= El us'. 
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Since S' E FU(V) ,  El u S = El u S = El(by (* * *)). 
Now, let E = {El, ..., Ek). Then E is a disjoint collection, E C FU(V) and 

Ei = Ei U S for S E FU((Ei, ..., Ek)) and i = 1, ..., k. . 
Now we are ready to prove the Finite Unions Theorem : 
Take n = r(c, c(k - 1) + 1) and let Al, ..., A, be a partition of P,. Let 

Shen V is a disjoint collection with n sets. On FU(V) we define a binary 
relation x by 

for some i E (1, ..., c).  Then = is an equivalence relation. 
By Lemma 5.3 there eKists a disjoint collection 

so that Ei = Ei U S with S E FU({&, ..., Ec(k-l)+l)) and i = 1, ..., c(k - 1) + 1. 
C 

L ~ ~ & = { E E & : E E A ~ ) , ~ ~ ~ ~ C .  C l e a r l y , & = u & a n d & n d j = @  
i-1 

for i # j. Iffor al l  i E [l,c] 1 15 k -  1 t h e n c ( k - l ) + l  =[ E 15 c ( k -  1). 
Thuç, there is j E [1,c] such that 1 A, 12 k. Let 

Since Ei E A, and Ei, E 4 h p l y  that 

for every p, q with 1 5 p, q 5 k then 

FU(D) C Aj 

and the theorem is proved. . 



Chapter 6 

UPPER BOUNDS 

For positive integers c and k, let M(c,  k) denote the least integer n so that if 
[1, n] is c-colored, then there exist distinct al, an, ..., ak such that all a(I )  are 
monochromatic, and let F(c, k) denote the least integer n so that if is c- 
colored there exists a disjoint collection V of cardinaliw k such that FU(Z)) is 
monochromatic. (Recall that for 0 # 1 C {l,2, ..., k ) ,  a ( I )  =z ai, and that 

i E l  

FU(D) is the set of ail finite unions of elements of D.) We recall that Folkman's 
Theorem and the Finite Unions Theorem guarantee the d e n c e  of M(c, k )  and 
F(c, k ) ,  respectively. Now we will find upper bounds for M(c, k )  and F(c, k ) .  

At the beginning of Chapter 5, we have shown that 

Thus zF(qk) is an upper bound of M(c,  k) . 4 

To find an upper bound of F(c, k), we will prove the following theorem: 

Theorem 6.1 Let c, k 2 2 be positive integers and let F(c, k )  be defined as above. 
Then 

3 

F (c, k )  5 c3'- , 
3 

where c 3' is a tower of height 2c(k - 1).  

The following lemma is required to prove Theorem 6.1: 

Lernma 6.1 Let n(c,  k )  and r(c,  k )  be the fîmctions given in Lemma 5.2 and 
Lemma 5.3 respectively. Then for c 2 2, k > 2, 

(i). 2(k-2ICOk-') < (3') ) 

(ii). n (c,  k )  < 2(k-2) c ( ~ ~ - ' )  , and 
3 3 

(iii). r (c ,  k )  < c3" ) w h e ~ e  c 3C' is a tower of height 2(k - 1).  

Proof. (i). Note that 

and since c 3 2, 
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For evmy real number x we have 3"+' > x. Therefore 3'-' > k - 2. Shus, 

(ii). 'Io show that n(c, k) < 2(k-2)~(3k-') , for C,  k 2 2, we use induction on k: 
From the proof of Lemma 5.2 we have 

and for k 2 2, 

Therefore, fur c 2 2 and k = 2 we have 

Thus, the Lemma is tme for k = 2. 
For the induction step, we need h t  to show that n(c, k) > c, for c, k 2 2. 

To show that this inequality is tme, let us observe the following special case. Let 
c 2 2 be fked and let V = ((1): ..., {c}). We define a relation x on FU(V) by 

Then = is a n  q u i d e n c e  relation on F U  (V). Furthemore, for any S E FU(V) 
we have S # 0 and S C [1, cl, so 1 S 1 E [l, cl. Therefore, there are at most c 
equivalence classes. (On the other hand we lmow that (11, [l ,2], [l, 31, . . ., [l, c] are 
in different classes. Thus, there are exactly c equidence classes.) 

Now, let k 2 2 and D = {Dl ,  ..., Dr,) FU(V) be a disjoint collection. 
Therefore 

so Dl and Dl U D2 are in the Merent equidence classes. Here, D2 E FU(D). 
By the dehition of n(c, k) we have n(c, k) >I V 1 = c. In particular we have 
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for c > 2 and k > 2. 
Hence, for k > 2 

Thw, by the induction hypothesis 

and our c l h  is proved. 
(iii). To prove this inequality we use induction on k. 
From the proof of Lemma 5.3 we have 

T(C, 1) = 1, 

and 

r(c, k) 5 n(c, 1 + r(c, k - 1)). 

Therefore, 

T ( c , ~ )  5 n(c, 1 + r ( c ,  1)) = n(c,2). 

By (ii), we have 

Here, c3 is a tower of height 2 = 2 (2 - 1). Thus, the Lemma is true for k = 2. 
3 

Now, let m = c3" be a tower of height 2(k  - 2) with k > 2. By the induction 
hypothesis, 

Let us observe that from the definition of n(c, k) we have 



Thus, for k > 2 

and because of (ii) and (i), 

Since c3- k a tower of height 2 + 2(k - 2)  = 2(k - l), o u  claim is proved. 

Proof of Theorem 6.1 Fkom the defmition of F(c, k )  and the proof of the Finite 
Unions Theorem on p. 41 we have 

3 

where 2' iç a tower of height 2(ck - c + 1 - 1)  = 2c(k - l), so the Theorem is 
proved. II 



Chapter 7 

HINDMAN'S THEOREM 

A natural question which arises kom the Folkman's Theorem is: can we consider 
S to be an innnite set? In fact, the m e r  is yes, we can. Therefore we have the 
following theorem : 

Theorem 7.1 (Hindman's Theorem) Let N be finitely wlored Then there Zs 
an infinite set 11 < xz < ... such that {x xi : I E P(N)) is monochnnnatic. 

i€I  

We must note that Hindman's Theorem is not a corollaxy of FoIkmilll's The- 
orem since the existence of finite arbitrarily large monochromatic structures does 
not imply the existence of infinite monochromatic structures. This theorem was 
proved by Neil Hindman in 1974. His proof is very long and needs several d.8icult 
preliminary lemmas. In the same year James E. Baumgartner gave a much shorter 
proof. 

We can see that Hindman's Theorem is equident to: 

Theorem 7.2 Let P ( N )  be partitioned into sets Hl,  ..., Hk. Then the= exist i 
with 1 5 i 5 k and an infinite disjoint collection D such that FU(Z>) C Hi. 

The equidence is given in the same way as  the analogy between Folkman's 
Theorem and The Finite Unions Theorem. 

In the rest of this chapter, we assume that all disjoint collections are infinite. 

We follow the proof of Theorem 7.2 due to Baumgartner [l] . 
We start with the following definition. 

Definition 7.1 Let 2, be a disjoint collection. We say that X C P(N) is large 
for D i f  for any disjoint collection 2)' C FU(D) we have that 

Let D* be the f d y  of d sets that are large for V .  Note that V* # 0, since 
(P(N), F U ( V ) )  G 27'- 

Baumgartner's proof of Theorem 7.2 is based on the following four lemmas. 
k 

Lemma 7.1 a). If X E V* and i f  X = U Xk for some k E N ,  then the= is a 
i=1 

disjoint collection V f  C FU(V)  and io E [l, k] such that Xi, E Vf*.  



b). If X E D* then for euery n E N ,  

X ( n ) = { A ~ X : m i n A > n )  ED'. 

Proof. a). It is enough to show that if X E V* and X = Xl U X2 then there is a 
disjoint collection V' FU(D) such that either XI E Df* or X2 E 2)". 

Let X = XI U Xz E D*. Suppose that our claim is not true. Let D' E 
FU(D).Then XI 6 P. By Defhition 7.1 there is ZY' C F U ( D f )  such that 

The assumption that the claim is not true implies that X2 4 V". Hence, there is 
a disjoint collection 9'' C FU(V") FU(D)  such that 

Clear ly, 
FU(ZY") n X, = 0. 

This contradicts the fact that X E V*. 

b). Let n E N and let 2)' C FU(D)  be a disjoint collection. Since V' is 
infinite, 

D1(n) = { B  E Dr : minB > n) # 0 
( o t h e h e ,  for ail B E V', min B 5 n and 1 2)' 15 n). It follows that D f ( n )  is 
infinite. Since X V*, 

FU(V1(n))  n X # 0. 
Let A E FU(D'(n))  n X.  Since A E FU(Vf  (n))  we have that 

Therefore 
A E F U ( V )  n X(n) 

and X(n) E 2)'. W 

Lemma 7.2 Let X E D*. Then there ezists E C FU(V), 1 E I< oo, such that if 
A E FU(V)  &th 
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then there is D E FU(&) with 

Proof. Suppose that the claim of Lemma 7.2 is not true. Let & E FU(V).  By 
our assumption that the claim of the lemma iç not true, if we take Eo = {&), 
there is Al E FU(P)  with 

& n A 1 = O  

Let, for k 2 2, Ak be defined in the following way. Let Ao, . .., Ac-i be defined and 
let 

Ek-1 = {Ao, - - - y  Ak-1) .  

Let Ak E FU(2)) be such that 

and that for all D E FU(&k-l), 

and let 
D'= {B,: n 2 0). 

Clearly, Dl is a disjoint collection and V' FU(V).  I f  D E FU(D') n X then 
there &ts F C P(N) with 

Let rn = max F. Then 

Clearly, 

contradicts our choice of Thus, 



and this contradicts the fact that X E V*- Therefore the claim of Lemma 7.2 is 
true. i 

Lemma 7.3 Let X E V'. Then them exists D E FU(V)  such that 

for some V' C FU(D). 

Proof. Let E be as  in Lemma 7.2. Since E is finite, there is a disjoint collection 
V f  FU(V)  such that 

A n ( u  B ) = 0  
S E E  

for a l l  A E FU(V'). Let V" C FU(ZY) be a disjoint collection. Since X E D*, we 
have that 

FU(V") n x # 0 

and fkom FU(DU) C FU(Df)  we have that 

By our choice of E and Df7 for any A E X n FU(D') there is D E FU(&) such 
that 

A u D E X ,  

or in other words, for each A E X n FU(D1) there is D E FU(&) such that 
A € XD. T h m ,  

Since X n F U ( V f )  E V* we have that 

Since E is finite, by Lemma 7.la), there is D E E such that XD E 23". 

Lernma 7.4 Let X E 2)'. Then the= exists a disjoint collection D' C FU(D) 
such that 

F U ( D f )  C X.  

Proof. Let X E D*. Take Do = V and Xo = X. Let Do E FU(Vo) and 
Dl C FU(%) be as in Lemma 7.3, Le-, Do and Dl are such that 

xi = x,, E v;. 



Note that by the proof of Lemma 7.3 we can take D, to be such that 

Thus, we can choose Di in a way such that 

Let 
V a = { D n : n > O } .  

Let & E FU(V-) n X- We define {&)z, in the following way- Let n E N and 
let &, ..., E FU(Vm) be dehed. let us consider the set 

Since &, ..., L - 1  E FU(V-) we have that n ~ l  Ai E FU(Vm) and therefme C, is 
i=O 

a fiuite set. Let 
kn = max C,,. 

we have that 
voqn C FU('Dk,+i)- 

Hence, 
x,+, n F U ( ~ m , n )  # 0. 

we take A, to be any element of Xk,,+l n FU('D,,n). Note that 

Let 
D1 = {A : i 2 O}. 

Clearly, Dl is a disjoint colIection. We daim that 



Since, for any i 2 0, 
R E Xk;+l E X 

we have that 

Let A E FU(V') and let il < ... < in < r be such that 

n m 
Let Djl , . .. , Dj, be SU& that jl < .. . < j, and -U Aij = U Djp* Since T > ij, for 

3=1 P==l 

all j E [1,n] we have that 

and hence 

Thus, 

we have that 
A, U Dj, E Xj,- 

Since j, 2 jm-l + 1 we have that 

and 

Clearly, 

*, 

Therefore, 
FU(D1) C X. 1 

Proof of Theorem 7.2. Since P(N) E D*, for any D, by Lemma ?.la) there 
are i E [l, k] and a disjoint collection D' such that 



By Lemma 7.4 there is Dr' Y' FU(2Y) such that 

FU(Ur)  G Hi. i 



Chapter 8 

TOPOLOGICAL DYNAMICS 

In this chapter we study the application of Topological Dynamics to Ramsey 
Theory- We will use these methods to  prove van der Waerden's Theorem and 
Hïndman's Theorem. In t h  chapter generally we follow [17]. 

Definition 8.1 We say that (X,T) is a dynamical system i f  X = ( X ,  p)  is a 
compact metric space and T : X - X is a hornwmorphim. 

Definition 8.2 A dynamical system (X, T) is minimal i f f o r  any non-ernpty closed 
subset Y of X we have that 

In other words, (X, T) is a minimal dynamical system if the only non-empty closed 
T-invariant subset of X is X itself. 

Our step is to  prove the following theorem. 

Theorem 8.1 For any dynamical system ( X , T )  there m-s t s  a non-empty closed 
T-invariant subset Xo of X such that (Xo, T )  is minimal. 

Proof. Let I ( X )  be the family of ail non-empty closed T - i n h a n t  subsets of X. 
Note that I(X) # 0 since X E T ( X ) .  

Let C be a chah in I(X). Thus, C c T(X) and for any Y, Z E C we have 
t hat 

Y C Z o r Z C Y .  

Since X is compact we have that 

n Y#@. 
YEC 

Clearly, 
n Y E I ( X ) .  

Y E C  

Hence, any chain in 7 ( X )  has a lower bound that belongs to I ( X ) .  By Zorn's 
Lemma, there is Xo E I(X) such that for any Y E I ( X )  , 

To check that (Xo , T) is a minimal dynamical system it is enough to show that 
T(Xo) = Xo. Clearly, T(Xo) C Xo. Therefore, T(T(Xa)) C T(Xo), i-e., T(X0) E 
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I (X) .  Thus, T(Xo) E I ( X )  and T(&) C XO- By (*), we have T(Xo) = X', so 
that (Xo, T) is a minimal dynamical system- 

Now we introduce secalled uniformly recurrent points. They are closely re- 
lated to minimal dynamical systems and that relationship will be given in Theorem 
8.2 and Theorem 8.3. Also, they play the major role in the proof of the Topolo@cal 
Hindman's Theorem. 

Definition 8.3 We say that x E X Zs a zlnifomly z c u m n t  point for the dynami- 
c d  system ( X ,  T )  if for any E > O there exists N E N vith the propertyr if a E N 
then there is n E [a, a + NI such that 

For x E X let 

Hence, X, is the smdest  closed set containing { P x  : n E 2). Since T is a 
homeomorphism we have that (X,, T) is a dynamieal system. 

Let 

Note that X: is T-invâ~iant, but it is not clear if T : Xh - XL is onto. For 
example, from the definition of X: we do not see if T-'x belongs to XL. 

Theorem 8.2 If a dynamical system ( X , T )  i s  minimal then each z E X is a 
uniformly recurrent point. 

Proof. Let ( X ,  T )  be a miaimal dynamical system and let E > O. Let x E X and 
let 

V = { y € X : p ( x , y )  < E ) .  

Let 

and let 
x' = x\u. 

Since U is open then X' is a closed subset of X. Since T is 1 - 1 and 

we have that 



Hence, X' is a closed T-invitriant subset of X. Since X is minimal then we have 
that 

x' = 0. 

Therefore 
U = X  

and {T-"V : n = 0,1 ,2  ...) is an open cover of X. Since X is compact then there 
exists N E N such that 

N 
X = U T-"V. 

n=O 

Let a f N a d  let 
y = T a x  E X .  

There is n E [O, N] such that 
y E T - Y  

Thus, there is n E [O, NI such that 

Note that N does not depend on the choice of a. Therefore, x is a unifody 
recurrent point. I 

Theorem 8.3 If x E X is a u n i f o m l y  recuvent point for ( X , T )  then (XL,T)  
is a minimal dynamical system. 

Proof. Let x E X be a uniformly recurrent point for (X, T). Let Z X: be 
closed and T-invariant. Note that such Z exists. The reason is that the family of 
all closed T-inmiant subsets of XL is not empty, since XL belongj to this f d y Y  

If x E Z then since Z is closed and T-invariant we have that 

Thus, if x E Z then XL = Z and XL is minimal. 
Suppose that x $2. Since Z is closed then we have that 

Let 

Cleariy, 

Let 



Since x is a uniformly recurrent point, there is N E N such that for a l  a E N 
there is n E [ a , a + N ]  with 

E 
~ ( ~ 7 ~ ~ )  < 5- 

Note that since x E V C XL and since X: is T-invaJriant we have that for all 
n E N, 

P x  E x:. 
T h ,  for any a E N there is n E [O,  N ]  with 

Let z E 2. Since X: there is a sequence { a k ) k E N  with 

For each ak, k E N, let n k  E [O, N ]  be such that 

Since [O, N]  is fmite, there are n E [O, N] and a sequence { b k ) ~ ~ ~  such that, for 
d k f  N 

~ " ( ~ ~ k s )  = y C b k x  = ~~~~~z E V. 

Since {bkIkEN is a subsequence of {ak)kEw we have that 

Note that F a  E 2, since Z is T-invariant. Thus, 

On the other hand, fiom 
T ( T ~ ~ X )  E V, k E N 

we have that 

Hence, 



This contradiction means that we must have that x E 2. 
Therefore, Xi  is minimal. H 

One of our main goals is to prove the following theorem known as the Topo- 
logical van der Waerden Theorem. 

Theorem 8.4 (the Topologid van der Waerden Theorem) Let (X, T) be 
a dynamical systern. Then for any r E N and any E > O there are x E X and 
n E N such that 

max{p(x7 P x )  : i E [I, T ] )  < e. 

Rom Theorern 8.1 we have that it is enough to consider the case when (X, T) 
is a minimal dynamical system. 

Also, it is clear that Theorem 8.4 is a special case of the following theorem. 

Theorem 8.5 Let r E N. For a n y  compact metric space X,  for any set {Tl, ..., Tr) 
of commuting homeomorphisms of X ,  and for any E > O there are x E X and 
n E N such that 

max{p(x, Fx) : i E [l, T I )  < E .  

Proof. We prsve Theorem 8.5 by induction on r. 
Let r = 1 and let (X, T) be a minimal dynarnical 

and Theorem 8.3, if x E X then X = X: and for given 
t hat 

p(x,Snx) < E. 

Therefore the c l a h  of Theorem 8.5 is tme for r = 

system. By Theorem 8.2 
E > O there is n f N such 

Let r > 1 be such that the claim of the theorern is tme for r - 1. Let X be a 
compact metric space and let {Tl, ..., T,) be a set of commuting homeomorphisms 
of X.  

Let 
x r = x x  ... X X  

and let pCr) : Xr x Xr - R be given by 

Let 

be given by 



It is not dïfEcult to see that (X, T) is a dynamical system. 
For i E [l, r - 11, let 

si = zT;l. 

we have that (SI, . . ., Sr-1) is a set of r - 1 cornmutkg homeomorphisms of X. 
Let p > O. By the induction hypotheçis there are x E X and n E N such that 

Now we have that 

Let 
A(.) = {(z, ..., I) : 2 E X) C Xr. 

We have seen that for any p > O there are a, 0 E Ab) and n E N such that 

Let e > O and let €1 = z .  Since, by the Tychonoff Sheorem, Xr is compact, 
there are rn E N and Ul, --., Um such that 

Let çro, cul E and nl be such that 

Since T " 1  is continuous, there is €2 E (O, €1) such that for all a E A(') 

Let q E and nz E N be such that 



Note that 

Now we proceed inductively and we f k d  sets (ao, al, . . . , k) C ~ ( ~ 1 ,  {nl, . . . , %) 
N and Celt .-., L), O < ~ i f l  < ~i with 

and, for a E A(') 

Note that since 
P(r)  ai+^, ai) < e+l 

we have that 
p(r) (P+'+~' , ) < Ei 

and g e ~ e r d y ~  for i < j 

Since 

and 

Since aj E there is x E X SU& that aj = (1, ..., 2). 
Hence, 

and consequently 
d m ,  4 < E 

for d i E [l, r] .  Thus, Theorem 8.5 is proved. 

Note that Theorem 8.4 follows if we apply Theorem 8.5 for the set {T, T2, . . . , F) . 



Before proving that the Topological van der Waerden Theorem and van der 
QTaerden's Theorem are equivalent, let us introduce a special dynamical system 
that connects the set of all finite colorings of Z and Topological Dynamics. 

Let r E N and let Cr be the set of all colorings of Z with r colors. Let 

if and only if, for a l l  i E 2, 
4(i) = ai 

is bijective. We shall identïfy Cr and R. 
For a = and b = {bi}iszj  let 

Let p : R x R - R be defined by 

id{& : k E M(a,  b ) } ,  if M(a, b) # 0 
if M(a, b) = 0. 

If 1 E N is such that 
-l 

then there is L E M(a, b) with 

and consequently 
1 5 k. 

Therefore, if 1 E N is such that 



and 
d a ,  6 )  = 1 - ao # bo. 

It is not W c d t  to see that 

p (a ,b )  = O ~ a = b  

and 
6 )  = 4% 4. 

Also, for any a, b7 c E R we have that 

~ ( ~ 1  b, 5 ~ ( ~ 1  + ~ ( ~ 1  b)-  

or 
1 € 

the last i n e q u w  is obvious. Let 

and 

1 $ 
Note that since 1 $ {p(a,  c )  , p(c, b ) ) ,  we have that a* = bo = Q and hence 

Let 
1 

Thus, k = max M(a, b ) .  This means t h t  

and 

Let 
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we are done. Otherwise, 

Thus, 

Consequent ly, 

And 

Hence, in this case 

and again we have that 

Therefore, (O, p) is a metric space. By the Tychonoff Theorem, (R, p )  is 
compact. (It is easy to check that the product topology and the metric topology 
are the sarne.) 

Let T : i2 - Q be the shift operator, Le., for a = {%)iEz E C! and b = 
{bi)iEz E R then 

Ta = b if and only if ai-1 = bi, i E Z. 

Clearly, T is bijective. 
Let U be any non-empty open subset of 0. There are a = and n E N 

such that 1 

Let b = {bi}icz be S U C ~  that 

and let 

Note that 
T b  = a. 

Let y = {yi)iez E V let z = E R be such that 
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we have that 

In other words, 
~ E V - T Y E U ' C U ,  

and T is continuous. In the same way we check that T-' is continuous. Therefore, 
T is a homeomorphism and (R, T) is a dynamical system. If X is any closed T- 
invariant subset of R we c d  (X, T) a s ymbolic dynamical system 

Theorem 8.6 T h e  Topological van der Waerden Theorem and van der Waerden's 
Theorern are equiualent. 

Proof. First we prove that van der Waerden's Theorem implies the Topological 
van der Waerden Theorem. 

Let (X, T) be a dynamical system. Let c > O and let {A : i E [l, r ] )  be a 
covering of X with 

x,y - L - p ( z , y )  

and 
i #  j * A i n A j = O .  

Let y  E X and let 
f : N - [l, r] 

be given by 
f (n) = m ?-y E &- 

Clearly, f is an r-coloring of N and 

Let 1 E N. By van der Waerden's Theorem there are i E [l, r ] ,  a E N and 
n E N such that 

a+ jn E f-'(i), j E [O,[]. 

we have 
max{p(x, T ~ " x )  : j E [O, 21) < E ,  



Le., we have the claim of the Topological van der Waerden Theorem. 

NOW, we prove that the Topological van der Waerden Theorem implies van 
der Waerden's Theorem. 

Let (IZ, T) be the symbolic dynamical system discwed above. Let 

and let 
X, = { P x :  n E 2). 

Then (X,, T )  is a symbolic dynamical system. 
Let 1 E N. By the Topological van der Waerden Theorem there are y = 

{yi)iEz E X, and n E N SU& that 

max(p(y,T'ny) : i E [O, 11) < 1. 

On the other hand, for all i E [0,1] and all j E Z 

This, for 
T"z = {zi(m))iEZ 

we have, for ail i E 2 ,  

Hence, 

or equivalently 

In other words, 
{m, m + n, ... m + ln) 



is a monochromatic arïthmetic progression of length (1 + l), and we have the claim 
of van der Wmrden's Theorem. 8 

Note that we have proved that the Topologicd van der Waerden Theorem im- 
plies that for any finite coloring of Z we have an arbitrarily long monochromatic 
anthmetic progression with its common difference in N. The following obsenm- 
tion shows t hat this fact guar ant ees an arbitrarily long monochromatic azit hmetic 
progression for any fùiite coloring of N. 

Let r E N and let 
f : N - [l,r]. 

Let 
F : Z -[1,2r+ 11 

be defked in the following way 

f(n), forn>O 
F(n)  = ( f(-n) + r, for n < O 

2 r f 1 ,  for n = 0 .  

Let k E N. Let a  E Z , d  E N andi E [1,2r+1] besuch that 

F(a)  = F ( a + n )  = ... = F(a+ kn)  =i. 

If i E [l, r] we have that a > O and 

If i E [T + 1,2r] then 
a + j n < O ,  j E [ O , k ] .  

Let 
b = -(a + kn). 

For any j E [l, k] we have that 

b +  jn = -(a+ kn) + jn = -(a+ (k - j)n) 



Our second main goal is to prove the Topological IIindman's Theorem. 
To formulate and prove the Topologicd Hindman's Theorem we need two 

definitions and one lemma. 
We consider a dynamical system (X, T) and let p denote the metnc on X. 

Definition 8.4 Two points x, y E X are pmxirnal if there is u sequeme { n k I k E N  2 
N such that 

lim p ( F k z ,  Y k y )  = o. 
k + d ~  

Let XX be the space of all mappings of X to itself with the produci; topology. 
One bais for thiç topology on xX is the family of all sets of the f o m  

where k E N, XI, ..., x k  E X, and open subsets Ul, ..., U,, of X are given- The 
space XX is also a semigroup under composition. 

Let g E xx and let 
R~ : xx --+ xx 

be defined by 
%(f) = fg-  

We claim that R, is continuous. 
To see this, let XI, ..., x k  E X be given and let {Ui, ... Uk) be a given set of 

open subsets of X. Let 
X: = g(xi), i E [l, k]. 

Let 
U = {h E xX : h(xi)  E Ui? i E [l, t]) 

and 
V = {f E xX : f(x:) E U', i E [I, k]}. 

Both U and V are open in XX. For f E V we have that 

for ail i E [l, k]. 
Thus, 

and R, is continuous. 
For g E xX let 

be defined by 



We claim that if g is continuous then Lg is continuous too. To see thk, let, as 
above, XI, . - .xk  E X, Ul, ... Uk C X, 6 open for each i E [l, k], and 

Since g is continuous and Ui, i E [l, k] are open, for any i E [l, k] there ïs K, an 
open subset of X, such that 

g(K) C ui- 

is open in Xx . Clearly, 
LJV) c CJ 

and L, is continuous. 
Let E be the closure of {Y : n E 2) in XX. Thus, f E E if ard only if for 

any XI, ..., x k  E X and any open IIl, ..., Uk such that 

f E U = {h E xX : h(xi) E U., i E [l, k]) 

there is n E N with T" E U. In other words, f E E if and only if for any 
11, ..., x k  E X and any open Ul, ..., Uk there is n E N with 

for all i E [l, k]. 
We can reformulate the last statement in the following way: 
f E E if and only if for any XI, ..., x k  E X and any E > O there is n E N with 

for ail i E [ l ,  k]. 
We claim that E is cloçed under composition. Indeed. h t  f ,  g E E,  let 

11, ..., x k  E X and let E > O. Since f E El there is n E N such that 

for all i E [l, k]- 
Since T" is continuous on X and X is compact, there is 6 > O such that 

Let m E N be such that 
P (g (xi), T x i )  < 6- 



Hence, 

-7 

Definition 8.5 E is called the enveloping semig~oup of ( X ,  T )  . 

Note that E is a compact semigroup and for any g E E the restriction of R, 
on E is continuous. 

Lemma 8.1 If G is a compact semigroup such that for any g E G, the function 
R, : G --+ G given by 

RJf)  = fg 

zs continuous, then there exists f E G w*th 

Proof. Let A be the farnily of all A E G su& that A is a compact semigroup. 
Since G E A, we have that A # 0. Let C C A be a c h a h  Since all elements of C 
are compact we have that 

n A f 0 .  
AEC 

This fact together with 

n A E A .  
AEC 

Hence, any chain in A has its lower bound and that lower bound belongs to A. 
By Zorn's Lemma, there is A. E A such that for any A E A 

Let g E A, and let us consider the set 

Aog = {fg: f E A). 



Clearly, Aog E 4. Since A. k compact and since Rg is continuous we have that 
AOS = Rg(&) is compact. Secondly, for any f ,  f' E A. we have that fgf' E & 
and consequently 

(f d ( f  'g) = (fL?f')g E Aog- 

Thus, Aog E A and &g A*. Hence, &g = &. This means that 

we have t hat A' is compact. This fact together with, for any f ,  f' E A' 

means that A' E A. Thus, A' = &. Therefore, g E A' and g2 = g. i 

The following result is often c d e d  the Topological Hindmads Theorem. It 
iç due to J. Auslander(l960) and R Elk(1960). (Note that Hindman's Theorem 
was proved in 1974.) 

Theorem 8.7 (Topological Hindman's Theorem) If (X,T) is a dynamzcal 
systern and i f  x  is any point in X, the= exists a uniformly recuwent point y E X 
such that x and y are proximal. 

Proof. Let (X, T) be a dynamical system, let x  E X and let Y X, be minimal. 
Let E be the enveloping sernigroup of (X,, T) and let 

F = (f E E : f(x) GY). 

Let x' E Y and let { n k ) k E N  be a sequence such that 

Lim p ( T k x ,  x i )  = O 
k - r w  

Since E is compact and since (Pk : n E N) C E, there is f E E such that 
any open U XI-, f E U, there is nt with 

for 

n o m  1 



for all i E N, we have that 

which meam that f (x) = z' . 
Hence, f E F and F # 0. 
To see that F is closed, let us consider g E E and a sequence {giI iEN C F 

with the property that for any open set U Ç X,X'. , g E U, there is gi with gi E U. 
Hence, for any j E N there is gij such that 

Since ( g i j ( x ) l j E N  C Y and Y is closed, there iç x' E Y such that for bfbitely 
many j's we have that 

1 

Thus, for those j ' s  

and consequently, 
g (x) = x' E Y. 

Therefore, g E F and F is closed, hence compact. 
Let f ,  f' E F. Then 

Since (f f ')(x) E Xz, there is a sequence {m-IiEN such that 

Since Y is closed and T-invariant , there is x' E Y and infbitely many i's with 

For those i's we have that 



which means that 
f(ff(x)) =x' E Y 

Therefore, for any f ,  f' E F we have that 

This means that F is a semigroup. 
By Lemma 8.1, there is h E F with 

Note that y = h(x)  E Y and by Theorem 8.2, y is a uniformly recurrent point. 
We claim y is proximal to x. 

Since h E E, for any i E N there is pi E N with 

Thus, since h2 = h we have 
1 

and 1 

Now, we nrill prove the following theorem. 

Theorem 8.8 The Topological Hindman's Theorem implies Hindman's Theorem. 

Proof. Let x be any r-coloring of N and x be any element of R = [l, rIz such 
that 

x I N =  x- 
Let (X,, T) be a symbolic dynamical system as before. By the Topological Hind- 
man's Theorem there exiçts a d o - r m l y  recurrent point y E X, so that x and y 
are proximal. 

Let 6 > O. Since y is a uniformly recurrent point, there is N E N such that 
for any n E N there is i E [l, NI with 

Since T is continuous and X, is compact, for each i E [l, NI there is 6; > O with 



Let n E N be such that 
p(T"x, ?=y) < 6. 

Note that n exists, since x and y are proximal. Let i E [l, N] be such that 

Ther 
6 6 

p ( ~ + ' z ,  y )  j p(Tn+i~7 ~ n + ~ y )  + p ( T f i y 7  y )  c 5 + s = 6. 

Thuç, by taking p = n + i, we have proved that for any 6 > O there is p E N with 

Let pl E N be such that 

Let E ( 0 , l )  be such that 

For such and r E X,  with p(z,  y )  < cl ,  we have that 

Let pz E N be such that 

and 
P(F+~'X, y )  < 1 and p(TPlrp1y7 y )  < 1. 

Now we proceed inductively. Suppose that we have found In = {pi);=, so that 
for any p E l'(In) 

p(7='27 Y )  < 1 and P(FY, Y) < 1. 

Aç above, for any p E P(I,) there is E (O, 1) with 

Let %+i = min($: p E P(I,)). Clearly, E,.,+I < 1. Let p,+, E N be such that 



Thus, for any p E P(I,) we have 

and conçequently, for any p E 

Let I = (Pi)iEN and let p E P( I ) .  From 

we have that 
y(0) = TPx(0) = x(p)  = ~(p ) .  

Thus, I = {pi) iEN is SU& that there i~ j E [l, r ]  , j = y(O), so that for any 
il < i2 < ... < ik 

~ ( P i i  f piZ + --. + p i k )  = j- 

This is the daim of Hindman's Theorem- W 
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