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MONOCHROMATIC HOMOTHETIC COPIES
OF f1Ò 1 + sÒ 1 + s + tg

TOM C. BROWN, BRUCE M. LANDMAN AND MARNI MISHNA

ABSTRACT. For positive integers s and t, let f (sÒ t) denote the smallest positive
integer N such that every 2-colouring of [1ÒN] = f1Ò 2Ò    ÒNg has a monochromatic
homothetic copy of f1Ò 1 + sÒ 1 + s + tg.

We show that f (sÒ t) = 4(s + t) + 1 whenever sÛg and tÛg are not congruent to 0
(modulo 4), where g = gcd(sÒ t). This can be viewed as a generalization of part of
van der Waerden’s theorem on arithmetic progressions, since the 3-term arithmetic
progressions are the homothetic copies of f1Ò 1 + 1Ò 1 + 1 + 1g. We also show that
f (sÒ t) = 4(s + t) + 1 in many other cases (for example, whenever s Ù 2t Ù 2 and t does
not divide s), and that f (sÒ t) � 4(s + t) + 1 for all s, t.

Thus the set of homothetic copies of f1Ò 1 + sÒ 1 + s + tg is a set of triples with
a particularly simple Ramsey function (at least for the case of two colours), and one
wonders what other “natural” sets of triples, quadruples, etc., have simple (or easily
estimated) Ramsey functions.

1. Introduction. Van der Waerden’s Theorem on Arithmetic Progressions [5] states
that for every positive integer k there exists a smallest positive integer w(k) such that
for every 2-colouring of [1Òw(k)] = f1Ò 2Ò    Òw(k)g, there is a monochromatic k-term
arithmetic progression. (In other words, if [1Òw(k)] is partitioned in any way into two
parts A and B, then either A or B must contain a k-term arithmetic progression.) The only
known non-trivial values of w(k) are w(3) = 9, w(4) = 35, w(5) = 178. Furthermore the
estimation of the function w(k) for large k is one of the most outstanding (and presumably
one of the most difficult) problems in Ramsey theory. For a discussion of this, see [2].

The function w(k) is often called the Ramsey function for the set of k-term arithmetic
progressions. Landman and Greenwell ([3], [4]) considered the Ramsey function g(n)
of the set of all n-term sequences that are homothetic copies (see the definition below)
of f1Ò 2Ò 2 + tÒ 2 + t + t2Ò    Ò 2 + t + t2 + Ð Ð Ð + tn�2g for some positive integer t. They
obtained a lower bound for g(n) and an upper bound for g(r)(3), where the (r) indicates
that r colours are used. Other “substitutes” for the set of k-term arithmetic progressions
were introduced in [1].

In contrast, in this paper we consider the Ramsey function associated with a much
smaller set of sequences, namely the set of homothetic copies of f1Ò 1 + sÒ 1 + s + tg for
given positive integers s and t.

A homothetic copy of f1Ò 1+sÒ 1+s+tg is any set of the form fxÒ x+ysÒ x+ys+ytg, where
x and y are positive integers. From now on, let us agree to use the term “(sÒ t)-progression”
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to refer to a homothetic copy of f1Ò 1 + sÒ 1 + s + tg.
Instead of considering 3-term arithmetic progressions, as in the case k = 3 of

van der Waerden’s theorem, we consider the set of (sÒ t)-progressions for given positive
integers s and t. (Note that the (1Ò 1)-progressions are the 3-term arithmetic progressions.)

For positive integers s and t we define f (sÒ t) to be the smallest positive integer N
such that every 2-colouring of [1ÒN] has a monochromatic (sÒ t)-progression. Note that
f (sÒ t) = f (tÒ s). We will use this fact several times.

We show that for all positive integers s and t, if sÛg 6� 0 and tÛg 6� 0 (mod 4), where
g = gcd(sÒ t), then f (sÒ t) = 4(s + t) + 1. A special case of this is w(3) = f (1Ò 1) = 9. Thus
this result can be viewed as a generalization of the case k = 3 of van der Waerden’s
theorem.

We also show that f (sÒ t) � 4(s + t) + 1 for all s and t, and we show that even if
sÛg � 0 or tÛg � 0 (mod 4), the equality f (sÒ t) = 4(s + t) + 1 still holds, except for a
small number of possible exceptions. For example, we are unable to find the exact value
of f (4mÒ 1), although we show in Theorem 4 that 4(4m + 1) � f (4mÒ 1) � 4(4m + 1) + 1.
The remaining cases where f (sÒ t) is unknown are described in Section 4.

2. Upper bounds. First we give a simple proof of the weak bound f (sÒ t) � 9s + 8t,
which is subsequently refined (in Theorem 2 below) to give the stronger bound f (sÒ t) �
4(s + t) + 1. The equality w(3) = 9 will be used in our proof of this weak bound, but will
not be used again.

We prove f (sÒ t) � 9s + 8t by contradiction. Assume that f (sÒ t) Ù 9s + 8t, and let
[1Ò 9s + 8t] be 2-coloured, using the colours Red and Blue, in such a way that there is no
monochromatic (sÒ t)-progression. Since w(3) = 9, the set fsÒ 2sÒ 3sÒ    Ò 9sg contains a
monochromatic (say in the colour Red) 3-term arithmetic progression. Let us suppose,
in order to simplify our notation, that this Red progression is fsÒ 5sÒ 9sg. (In all other
cases, the argument is essentially the same.)

Consider the (sÒ t)-progressions fsÒ 5sÒ 5s + 4tg, f5sÒ 9sÒ 9s + 4tg, fsÒ 9sÒ 9s + 8tg. Since
by assumption none of these is monochromatic, and s, 5s, 9s are all Red, it follows that
f5s + 4tÒ 9s + 4tÒ 9s + 8tg is a Blue (sÒ t)-progression, a contradiction, completing the
proof.

The following theorem will be useful in obtaining both upper and lower bounds for
f (sÒ t).

THEOREM 1. Let s, t, c be positive integers. Then f (csÒ ct) = c
�
f (sÒ t) � 1

�
+ 1.

PROOF. Let M = f (sÒ t). Let B be a 2-colouring of [1Ò c(M � 1) + 1]. Since every 2-
colouring of [0ÒM � 1] contains a monochromatic (sÒ t)-progression, every 2-colouring
of f0Ò cÒ 2cÒ    Ò (M� 1)cg contains a monochromatic (csÒ ct)-progression. Hence, every
2-colouring of f1Ò c + 1Ò 2c + 1Ò    Ò (M � 1)c + 1g contains a monochromatic (csÒ ct)-
progression. Thus, f (csÒ ct) � c(M � 1) + 1.

On the other hand, we know there is a 2-colouring, B, of [1ÒM � 1] that
contains no monochromatic (sÒ t)-progressions. Define B0 on [1Ò c(M � 1)] by
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B0([c(i� 1) + 1Ò ci]) = B(i), for i = 1Ò    ÒM� 1. We will show that B0 avoids monochro-
matic (csÒ ct)-progressions, which will complete the proof.

Assume, by way of contradiction, that x1Ò x2Ò x3 is a (csÒ ct)-progression, contained in
[1Ò c(M�1)], that is monochromatic under B0. Then there exists r Ù 0 such that x3�x2 =
rctÒ x2 � x1 = rcs. Let yj = dxjÛce for j = 1Ò 2Ò 3. Then y3 � y2 = dx3Ûce � dx2Ûce = rt,
and similarly y2 � y1 = rs.

Hence y1Ò y2Ò y3 is an (sÒ t)-progression. Also, B(yj) = B(dxjÛce) = B0(xj), for each j.
This contradicts our assumption that there is no monochromatic (sÒ t)-progression relative
to the colouring B.

Note that this proof easily extends to a proof that if f (a1Ò    Ò ak) = M, then
f (ca1Ò    Ò cak) = c(M � 1) + 1, where f (a1Ò    Ò ak) denotes the least positive inte-
ger N such that every 2-colouring of [1ÒN] will contain a monochromatic homothetic
copy of f1Ò 1 + a1Ò 1 + a1 + a2Ò    Ò 1 + a1 + a2 + Ð Ð Ð + akg.

THEOREM 2. For all positive integers s and t, f (sÒ t) � 4(s + t) + 1.

PROOF. Let sÒ t be given. We may assume without loss of generality that s � t. We may
also assume that gcd(sÒ t) = 1, for if we knew the result in this case then, with g = gcd(sÒ t),
Theorem 1 would give f (sÒ t) = g[f (sÛgÒ tÛg) � 1] + 1 � g[4(sÛg + tÛg) + 1 � 1] + 1 =
4(s + t) + 1.

Consider the following set of 20 triples contained in [1Ò 4(s + t) + 1], which are all
(sÒ t)-progressions:

f1Ò s + 1Ò s + t + 1gÒ fs + 1Ò 2s + 1Ò 2s + t + 1gÒ

f2s + 1Ò 3s + 1Ò 3s + t + 1gÒ f3s + 1Ò 4s + 1Ò 4s + t + 1gÒ

f1Ò 2s + 1Ò 2s + 2t + 1gÒ fs + 1Ò 3s + 1Ò 3s + 2t + 1gÒ

f2s + 1Ò 4s + 1Ò 4s + 2t + 1gÒ f1Ò 3s + 1Ò 3s + 3t + 1gÒ

fs + 1Ò 4s + 1Ò 4s + 3t + 1gÒ f1Ò 4s + 1Ò 4s + 4t + 1gÒ

fs + t + 1Ò 2s + t + 1Ò 2s + 2t + 1gÒ f2s + t + 1Ò 3s + t + 1Ò 3s + 2t + 1gÒ

f3s + t + 1Ò 4s + t + 1Ò 4s + 2t + 1gÒ fs + t + 1Ò 3s + t + 1Ò 3s + 3t + 1gÒ

f2s + t + 1Ò 4s + t + 1Ò 4s + 3t + 1gÒ fs + t + 1Ò 4s + t + 1Ò 4s + 4t + 1gÒ

f2s + 2t + 1Ò 3s + 2t + 1Ò 3s + 3t + 1gÒ f3s + 2t + 1Ò 4s + 2t + 1Ò 4s + 3t + 1gÒ

f2s + 2t + 1Ò 4s + 2t + 1Ò 4s + 4t + 1gÒ f3s + 3t + 1Ò 4s + 3t + 1Ò 4s + 4t + 1g

It is straightforward to check (under the assumptions that s � t and gcd(sÒ t) = 1) that
except in the cases s = 1, 1 � t � 3, the 15 integers which appear in these 20 triples
are distinct. It is then a simple matter to check all 2-colourings of these 15 integers and
verify that each 2-colouring has a monochromatic triple from the above list of 20 triples.
(If one identifies these 15 integers with the numbers 1Ò 2Ò    Ò 15 via the correspondence

1 $ 1Ò s + 1 $ 2Ò 2s + 1 $ 3Ò 3s + 1 $ 4Ò 4s + 1 $ 5Ò
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s + t + 1 $ 6Ò 2s + t + 1 $ 7Ò 3s + t + 1 $ 8Ò 4s + t + 1 $ 9Ò

2s + 2t + 1 $ 10Ò 3s + 2t + 1 $ 11Ò 4s + 2t + 1 $ 12Ò

3s + 3t + 1 $ 13Ò 4s + 3t + 1 $ 14Ò 4s + 4t + 1 $ 15Ò

the resulting set of 20 triples contained in [1Ò 15] has a particularly pleasing form.) The
cases s = 1, 1 � t � 3 can be checked separately. In all cases we obtain f (sÒ t)� 4(s+t)+1.

3. Lower bounds and exact values for f (sÒ t).

THEOREM 3. Let sÒ t be positive integers, and let g = gcd(sÒ t). If sÛg 6� 0 and tÛg 6� 0
(mod 4) then f (sÒ t) = 4(s + t) + 1.

PROOF. The proof splits naturally into two cases.

CASE 1. Assume that sÛg and tÛg are both odd. In view of Theorem 2, we only need
to show that f (sÒ t) ½ 4(s + t) + 1.

First, assume g = 1. Now colour [1Ò 4(s + t)] as

101010 Ð Ð Ð 10 010101 Ð Ð Ð 01Ò

where each of the two long blocks has length 2(s + t). Assume xÒ yÒ z is a monochromatic
(sÒ t)-progression. Then y = x + ds and z = y + dt, for some positive integer d. Let B1 and
B2 represent [1Ò 2(s + t)] and [2(s + t) + 1Ò 4(s + t)], respectively.

In case d is odd, then x and y have opposite parity, and y and z have opposite parity.
Since x and y have the same colour and opposite parity, x is in B1, while y is in B2. Hence
z is in B2, so that y and z cannot have the same colour, a contradiction.

If d is even, then xÒ y and z all have the same parity, so they all must be in the same
Bi. But then d(s + t) = z � x � 2(s + t), and hence d = 1, a contradiction.

If g is unequal to 1, then by Theorem 1 and the case in which g = 1, f (sÒ t) =
g[f (sÛgÒ tÛg)� 1] + 1 ½ g[4(sÛg + tÛg) + 1� 1] + 1 = 4(s + t) + 1. This finishes the proof
of Case 1.

CASE 2. Assume without loss of generality that sÛg � 2 (mod 4). First we assume
that g = 1. Then s � 2 (mod 4) and t is odd.

By Theorem 2, we only need to provide a 2-colouring of [1Ò 4(s + t)] that contains no
monochromatic (sÒ t)-progression. Let C be the colouring 11001100 Ð Ð Ð1100 (i.e., s + t
consecutive blocks each having the form 1100).

We proceed by contradiction. Assume that xÒ yÒ z is a monochromatic (sÒ t)- progres-
sion. So there exists a d Ù 0 such that y� x = ds and z� y = dt. By the way C is defined,
if C(i) = C(j) and j� i is even, then 4 divides j� i. Now since z�x = d(s+ t) � 4(s+ t)�1,
we must have that d Ú 4. The case d = 2 is impossible, for if d = 2, then C(z) = C(x),
z� x = d(s + t) is even, but 4 does not divide z� x, a contradiction. Hence d is odd. But
then, since s � 2 (mod 4), y� x is even yet 4 doesn’t divide y� x, again a contradiction.

This shows that f (sÒ t) ½ 4(s + t) + 1 in the case g = 1.
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If g is unequal to 1, we proceed just as at the end of Case 1.

Suppose that sÛg � 0 (mod 4), where g = gcd(sÒ t). Then tÛg is odd, and in the case
tÛg = 1, that is, t divides s, we have the following result.

THEOREM 4. Let mÒ t be positive integers. Then either

f (4mtÒ t) = 4(4mt + t) � t + 1 or f (4mtÒ t) = 4(4mt + t) + 1

PROOF. By Theorem 1, it is sufficient to show that 4(4m + 1) � f (4mÒ 1) � 4(4m +
1) + 1. By Theorem 2, we only need to show that 4(4m + 1) � f (4mÒ 1). Thus it suffices
to find a 2-colouring of [1Ò 16m + 3] that avoids monochromatic (4mÒ 1)-progressions.
Let ü be the colouring 1A0B0C1D0, where

A = 00110011 Ð Ð Ð 0011 has length 4m
B = 11001100 Ð Ð Ð 11 has length 4m � 2
C = 11001100 Ð Ð Ð 1100 has length 4m
D = 00110011 Ð Ð Ð 0011 has length 4m.

Assume xÒ yÒ z is a monochromatic (4mÒ 1)-progression. We shall reach a contradiction.
We know there exists a positive integer d such that y � x = 4md and z � y = d. Hence,
d(4m + 1) � 16m + 2, so that d � 3. Let

S1 = [2Ò 4m + 1] (corresponds to A above)
S2 = [4m + 3Ò 8m] (corresponds to B above)
S3 = [8m + 2Ò 12m + 1] (corresponds to C above)
S4 = [12m + 3Ò 16m + 2] (corresponds to D above).

CASE 1. d = 1. Then yÒ z belong to the same Si, for some 1 � i � 4. Denote by S(iÒ j)
the j-th element of Si. We see that y = S(iÒ j) for some odd j. Note that for each even p,
if i = 2 or 4, then ü

�
S(i � 1Ò p)

�
is unequal to ü

�
S(iÒ p � 1)

�
. Now if i = 2 or i = 4, then

x = y�4m = S(i�1Ò j+1), so that (by the preceding remark), ü(x) is different from ü(y),
a contradiction. Now if i = 3 and j Ù 1, then y� 4m = S(2Ò j� 1), and ü(x) = ü(y� 4m)
is unequal to ü(y), a contradiction. If i = 3 and j = 1, then x = 4m + 2 and y = 8m + 2,
and these again have different colours.

CASE 2. d = 2. Then y�x = 8m and z�y = 2. If ü(y) = ü(z) then y must be one of the
following: 4m + 1, 8m, 12m + 1; and since y� x = 8m, this reduces the possibilities for y
to only 12m+1. However we see that ü(4m+1) is unequal to ü(12m+1), a contradiction.

CASE 3. d = 3. Then y � x = 12m and z � y = 3. Clearly x belongs to [1Ò 4m],
so that y belongs to [12m + 1Ò 16m]. Now [1Ò 4m] has colouring 1 0011 Ð Ð Ð 001100 1
while [12m + 1Ò 16m] has colouring 0100110011 Ð Ð Ð001100. Hence, since ü(x) = ü(y),
y belongs to the set f12m + 3Ò 12m + 5Ò 12m + 7Ò    Ò 16m � 1g. Now z belongs to
[12m + 4Ò 16m + 3], so let’s compare the colouring of [12m + 1Ò 16m] to that of [12m +
4Ò 16m + 3]: [12m + 1Ò 16m] has colouring as noted above, while [12m + 4Ò 16m + 3] has
colouring 0 11001100 Ð Ð Ð11 0. Hence, in order for ü(y) = ü(z), y must belong to the set
f12m + 1Ò 12m + 2Ò 12m + 4Ò 12m + 6Ò    Ò 16mg, a contradiction.
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THEOREM 5. Let s, t be positive integers such that s Ù t Ù 1 and t does not divide s. If
bsÛtc is even or b2sÛtc is even, where b c is the floor function, then f (sÒ t) = 4(s + t) + 1. If
bsÛtc and b2sÛtc are both odd, then f (sÒ t) = 4(s+ t)+1 provided sÒ t satisfy the additional
condition sÛt 62 (15Ò 2).

PROOF. Let sÒ t satisfy the hypotheses of the theorem. By Theorems 1 and 2, it suffices
to show that f (sÒ t) ½ 4(s + t)+1 under the additional assumption that gcd(sÒ t) = 1, hence
throughout the proof we assume gcd(sÒ t) = 1.

Let a = bsÛtc and b = b2sÛtc. Then s = at + r, where 0 Ú r Ú t. Also, 2s = 2at + 2r,
so if 2r = t we would have t = 2. However, since gcd(sÒ t) = 1, the case t = 2 is already
covered by Theorem 3. Therefore we assume throughout the proof that 2r 6= t.

CASE 1. We assume that a is even and b is odd. Then b = 2a + 1Ò 2r Ù t, and
2(s + t) = 2(at + r) + 2t = (b � 1)t + 2r + 2t = (b + 2)t + (2r � t).

Hence we can colour [1Ò 4(s + t)] as follows. Let

C = QRQR Ð Ð ÐQRQJ RQRQ Ð Ð Ð RQRJ0Ò

where Q = 11 Ð Ð Ð 1 and R = 00 Ð Ð Ð 0 each have length t, J = 00 Ð Ð Ð 0 and J0 = 11 Ð Ð Ð 1
each have length 2r� t, and where each of Q and R appears b + 2 times.

Suppose xÒ yÒ z is any (sÒ t)-progression in [1Ò 4(s+t)] with y�x = ds, z�y = dt. We will
show that fxÒ yÒ zg is not monochromatic. Clearly d � 3, since d(s+t) = z�x � 4(s+t)�1.

If d = 2, then z � x = 2(s + t), so C(z) 6= C(x). (This is because the colouring on the
second half of [1Ò 4(s + t)] is the reversal of the colouring on the first half.)

If d = 3, then, since z = y + 3t and C(i) 6= C(i + t) for all i Ù 2(s + t), if C(y) = C(z)
we must have y � 2(s + t); but then x = y � 3s � 2t � s. However, the conditions s Ù t,
s = at + r, 0 Ú r Ú t, a even, imply that s Ù 2t, hence x Ú 0, a contradiction.

Now assume that d = 1 and C(y) = C(z). Since z = y + t, y must occur in the block J,
so C(y) = 0. Since J has length 2r � t Ú r, we see that y � r must occur in the block Q
just to the left of block J, so that y � at � r = x also occurs in a block Q, and C(x) = 1.

Hence there is no monochromatic (sÒ t)-progression with respect to the colouring C,
therefore f (sÒ t) ½ 4(s + t) + 1. This finishes Case 1.

CASE 2. We assume that a is odd and b is even. Again we have s = at + r, 0 Ú r Ú t,
but now b = 2a, 2r Ú t, and 2(s + t) = (b + 2)t + 2r.

Now colour [1Ò 4(s + t)] with the colouring

D = QRQR Ð Ð ÐQRK RQRQ Ð Ð Ð RQK0Ò

where QÒR are defined as in Case 1, and K = 11 Ð Ð Ð 1, K0 = 00 Ð Ð Ð 0 each have length 2r.
Assume xÒ yÒ z is an (sÒ t)-progression contained in [1Ò 4(s + t)], with y�x = dsÒ z�y =

dt; then d � 3.
If d = 2, then as in Case 1, D(x) 6= D(z).
If d = 3 and D(y) = D(z), then as in Case 1, y � 2(s + t). In fact, since K and R have

opposite colours, y � 2(s + t) � 2r. On the other hand, y ½ 1 + 3s ½ 2s + t + r + 1,
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so y is an element of the last occurrence of R in [1Ò 2(s + t)], hence D(y) = 0. Then
x = y � 3s � 2(s + t)� 2r� 3s Ú t, so D(x) = 1 and D(x) 6= D(y).

Now assume d = 1 and D(y) = D(z). Then y belongs to the last occurrence of R in
[1Ò 2(s + t)], and y � i (mod t), where 2r Ú i � t. Hence, since a is odd, x = y� (at + r)
lies in one of the Q’s, and D(x) = 1ÒD(y) = 0.

Thus, no monochromatic (sÒ t)-progression exists in [1Ò 4(s + t)], hence f (sÒ t) ½ 4(s +
t) + 1.

CASE 3. We assume that both a and b are even. Then s = at + r, b = 2a, 0 Ú 2r Ú t,
and 2(s + t) = (b + 2)t + 2r. Note that a ½ 2, since s Ù t.

We define the colouring E on [1Ò 4(s + t)] as follows. Let us use the notation ¾ 0 = 1
and ¾ 1 = 0. Then we define, in turn,

(1) E(i) = 1, 1 � i � r,
(2) E(i) = ¾ E(i � r), r Ú i � t,
(3) E(i) = ¾ E(i � t), t Ú i � 2(s + t),
(4) E(i) = ¾ E

�
i � 2(s + t)

�
, 2(s + t) Ú i � 4(s + t).

That is,
E = XYXY Ð Ð Ð XYL YXYX Ð Ð Ð YXL0Ò

where X has length t and consists of btÛrc blocks, each block of length r, followed by
a single block of length t � btÛrcr, the blocks alternating in colour; Y is the same as X,
except the colours are reversed; L is X restricted to [1Ò 2r]; and L0 is the same as L, except
the colours are reversed.

Let x, y, z be an (sÒ t)-progression contained in [1Ò 4(s + t)], with y� x = ds, z� y = dt.
If d = 2, then by (4), E(x) = ¾ E(z).
If d = 3 and E(y) = E(z), then y � 2(s + t), hence x = y� 3s � 2t� s = 2t� (at + r) �

�r Ú 0, a contradiction.
If d = 1 and E(y) = E(z), then y � 2(s + t). We consider two subcases.
The first subcase is y � i (mod t), r + 1 � i � t. Then y and y � r are in the same

block (XÒY, or L), hence by (2) E(y) = ¾ E(y � r). By (3), and the fact that a is even,
E(y) = ¾ E(y � r) = ¾ E(y � at � r) =¾ E(x).

The second subcase is y � i (mod t), 1 � i � r. Since E(y) = E(z) = E(y + t), y must
belong to the block L, that is, y = (b + 2)t + i = (2a + 2)t + i, 1 � i � r. Since x = y� s =
(2a+2)t+ i�at�r = (a+1)t+(i+ t�r), and 1 � i+ t�r � t, by (3) E(x) = ¾ E(i + t � r).
Also, since y = 2(s + t) � 2r + i, we have z = y + t = 2(s + t) + (i + t � 2r), so by (4),
E(z) = ¾ E(i + t � 2r). Since 1 � i + t � 2r � t, (2) gives E(z) = E(i + t � r) = ¾ E(x).

Thus, under the colouring E, there is no monochromatic (sÒ t)-progression in
[1Ò 4(s + t)], hence f (sÒ t) ½ 4(s + t) + 1.

CASE 4. Assume that both a and b are odd, and sÛt 62 (15Ò 2). It follows that s = at+r,
0 Ú r Ú t, b = 2a+1, t Ú 2r, and 2(s+t) = (b+2)t+(2r�t). Also, a ½ 3, as a consequence
of the assumption sÛt 62 (15Ò 2).

Let p = t � r. Then p Ú tÛ2. Define the colouring F by setting, in turn,
(5) F(i) = 1, 1 � i � p,
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(6) F(i) = ¾ F(i � p), p Ú i � t,
(7) F(i) = ¾ F(i � t), t Ú i � 2(s + t),
(8) F(i) = ¾ F

�
i � 2(s + t)

�
, 2(s + t) Ú i � 4(s + t).

That is,

F = ABAB Ð Ð ÐABAM BABA Ð Ð Ð BABM0Ò

where A and B are the same as the blocks X and Y in Case 3, except that p replaces r; M
is B restricted to [1Ò 2r � t]; and M0 is the same as M with the colours interchanged.

Let xÒ yÒ z be an (sÒ t)-progression contained in [1Ò 4(s + t)], with y� x = ds, z� y = dt.
If d = 2, then by (8), E(x) = ¾ E(z).
If d = 3 and E(y) = E(z), then y � 2(s + t), hence (since a ½ 3) x = y� 3s � 2t� s =

2t � (at + r) Ú 0, a contradiction.
If d = 1 and E(y) = E(z), then y � 2(s + t), and we again consider two subcases.
The first subcase is y = ut + i, 1 � i � r. Then 1 � i Ú i + p = i + t � r � t, so by

(6), F(i + p) = ¾ F(i). Using (7) and the oddness of a, we get F(x) = F(y � at � r) =
F(ut � (a + 1)t + i + t � r) = F(ut + i + t � r) = F(ut + i + p) = ¾ F(ut + i) = ¾ F(y).

The second subcase is y = ut + i, r + 1 � i � t. Since F(y) = F(y + t) and M
has fewer than i elements, y must belong to the last occurrence of the block A in
[1Ò 2(s + t)]. Since 2(s + t) = (b + 2)t + (2t � r), this means that y = (b + 1)t + i,
hence by (7), F(y) = F(i). Since x = y � at � r = (b + 1)t + i � at � r, we have
F(x) = ¾ F(i � r) = F(i + t � r) = F(i + p) = ¾ F(i) = ¾ F(y).

Thus, under the colouring F, there is no monochromatic (sÒ t)-progression in
[1Ò 4(s + t)], hence f (sÒ t) ½ 4(s + t) + 1.

4. Remarks. By Theorems 1 and 3, we would know the value of f (sÒ t) for all sÒ t
provided we knew the value of f (4mÒ t) when t is odd, and gcd(mÒ t) = 1. (Here we
are using f (sÒ t) = f (tÒ s).) Theorem 4 shows 4(4m + 1) � f (4mÒ 1) � 4(4m + 1) + 1.
Theorem 5 takes care of many of the cases where t Ù 1. For example, Theorem 5 shows
that f (4mÒ 3) = 4(4m + 3) + 1 whenever 3 does not divide m. By examining the cases
not covered by Theorem 5, one sees that these are exactly the cases f (t + rÒ t) where
0 Ú r Ú t Ú 2r, and 4 divides t or 4 divides t + r.

The computations f (4Ò 1) = 20, f (8Ò 1) = 36, f (12Ò 1) = 52 suggest that perhaps
f (4mÒ 1) = 4(4m + 1) for all m ½ 1.

For positive integers rÒ a1Ò    Ò an, let f (r)(a1Ò    Ò an) denote the smallest positive
integer N such every r-colouring of [1ÒN] has a monochromatic homothetic copy of
f1Ò 1 + a1Ò    Ò 1 + a1 + Ð Ð Ð + ang. Of course f (r)(a1Ò    Ò an) always exists (by a statement
of van der Waerden’s theorem which involves any number of colours), but perhaps
one can say something about the rate of growth of f (r)(a1Ò    Ò an) as a function of
a1 + Ð Ð Ð + an. The computations f (2)(1Ò 1Ò 1) = 35, f (2)(1Ò 1Ò 2) = 38, f (2)(1Ò 1Ò 3) = 44,
f (2)(1Ò 1Ò 4) = 56, f (2)(1Ò 1Ò 5) = 59 suggest that f (2)(1Ò 1Ò n) does not grow linearly with n.
Perhaps f (2)(1Ò 1Ò n) ¾ c2n.

We have no idea of the growth rate of f (3)(sÒ t) as a function of s + t.
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