AN ERGODIC SZEMERÉDI THEOREM FOR COMMUTING TRANSFORMATIONS

By
H. FURSTENBERG AND Y. KATZNELSON

The classical Poincare recurrence theorem asserts that under the action of a measure preserving transformation T of a finite measure space (X, \mathscr{B}, μ), every set A of positive measure recurs in the sense that for some $n>0, \mu\left(T^{-n} A \cap A\right)>0$. In [1] this was extended to multiple recurrence: the transformations T, T^{2}, \cdots, T^{k} have a common power satisfying $\mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-k n} A\right)>0$ for a set A of positive measure. We also showed that this result implies Szemerédi's theorem stating that any set of integers of positive upper density contains arbitrarily long arithmetic progressions. In [2] a topological analogue of this is proved: if T is a homeomorphism of a compact metric space X, for any $\varepsilon>0$ and $k=1,2,3, \cdots$, there is a point $x \in X$ and a common power of T, T^{2}, \cdots, T^{k} such that $d\left(x, T^{n} x\right)<$ $\varepsilon, d\left(x, T^{2 n} x\right)<\varepsilon, \cdots, d\left(x, T^{k n} x\right)<\varepsilon$. This (weaker) result, in turn, implies van der Waerden's theorem on arithmetic progressions for partitions of the integers. Now in this case a virtually identical argument shows that the topological result is true for any k commuting transformations. This would lead one to expect that the measure theoretic result is also true for arbitrary commuting transformations. (It is easy to give a counterexample with noncommuting transformations.) We prove this in what follows.

Theorem A. Let (X, \mathscr{B}, μ) be a measure space with $\mu(X)<\infty$, let $T_{1}, T_{2}, \cdots, T_{k}$ be commuting measure preserving transformations of X and let $A \in B$ with $\mu(A)>0$. Then

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{1}^{N} \mu\left(T_{1}^{-n} A \cap T_{2}^{-n} A \cap \cdots \cap T_{k}^{-n} A\right)>0
$$

A corollary is the multidimensional extension of Szemerédi's theorem:

Theorem B. Let $S \subset \mathbf{Z}^{\prime}$ be a subset with positive upper density and let $F \subset \mathbf{Z}^{r}$ be any finite configuration. Then there exists an integer d and a vector $n \in \mathbf{Z}^{\prime}$ such that $n+d F \subset S$.

Here the upper density is taken with respect to any sequence of cubes

$$
\left[a_{n}^{(1)}, b_{n}^{(1)}\right] \times\left[a_{n}^{(2)}, b_{n}^{(2)}\right] \times \cdots \times\left[a_{n}^{(r)}, b_{n}^{(r)}\right] \quad \text { with } b_{n}^{(i)}-a_{n}^{(i)} \rightarrow \infty .
$$

The proof of Theorem B on the basis of Theorem A is carried out as in the one-dimensional case ([1], [4]).

The ideas developed in this paper owe a good deal to conversations with D. Ornstein and J.-P. Thouvenot, to whom the authors would like to express their gratitude.

1. Relative ergodicity and weak mixing

Throughout the discussion we shall consider measure spaces on which a fixed group Γ which is countable and commutative acts by measure preserving transformations. We say (Y, \mathscr{D}, ν) is a Γ-invariant factor of (X, \mathscr{B}, μ) if we have a map $\pi: X \rightarrow Y$ with $\pi^{-1} \mathscr{D} \subset \mathscr{B}, \pi \mu=\nu$ and for each $T \in \Gamma, T \pi(x)=\pi T(x)$. A factor of (X, \mathscr{B}, μ) is determined by a Γ-invariant closed subalgebra of $L^{\infty}(X, \mathscr{B}, \mu)$. (X, \mathscr{B}, μ) is an extension of (Y, \mathscr{D}, ν). We assume, as we may, that (X, \mathscr{B}, μ) is a "regular measure space" ($[1], \S 4)$. Then we can associate to the factor (Y, \mathscr{D}, ν) a family of measures $\left\{\mu_{y} \mid y \in Y\right\}$ on (X, \mathscr{B}) such that for each $f \in L^{1}(X, \mathscr{B}, \mu)$, $f \in L^{1}\left(X, \mathscr{B}, \mu_{y}\right)$ for a.e. $y \in Y$, and $\int f d \mu_{y}$ is measurable and integrable in (Y, \mathscr{D}, ν) with

$$
\int\left\{\int f(x) d \mu_{y}(x)\right\} d \nu(y)=\int f(x) d \mu(x) .
$$

We write $\mu=\int \mu_{y} d \nu(y)$ and speak of this decomposition as the disintegration of μ with respect to the factor (Y, \mathscr{D}, ν). The μ_{y} are well defined up to sets of measure 0 in Y. The fact that $T \in \Gamma$ is measure preserving on (X, \mathscr{B}, μ) translates into $T \mu_{y}=\mu_{T y}$ where, for any measure $\theta, T \theta$ is defined by $T \theta(A)=\theta\left(T^{-1}(A)\right)$, or by

$$
\int f(x) d T \theta(x)=\int f(T x) d \theta(x)
$$

We say that (X, \mathscr{B}, μ) is a relatively ergodic extension of (Y, \mathscr{D}, ν) for an element $T \in \Gamma$ if every T-invariant function on X is (a.e.) a function on Y. Given two extensions (X, \mathscr{B}, μ) and $\left(X^{\prime}, \mathscr{B}^{\prime}, \mu^{\prime}\right)$ of (Y, \mathscr{D}, ν) we may form the fibre product ($\tilde{X}, \tilde{B}, \tilde{\mu}$) where

$$
\tilde{X}=X \times{ }_{\mathrm{y}} X=\left\{\left(x, x^{\prime}\right) \in X \times X^{\prime}: \pi(x)=\pi^{\prime}\left(x^{\prime}\right)\right\},
$$

$\tilde{\mathscr{B}}$ is the restriction of $\mathscr{B} \times \mathscr{B}^{\prime}$ and $\tilde{\mu}$ is defined by the disintegration

$$
\tilde{\mu}_{y}=\mu_{y} \times \mu_{y}^{\prime}
$$

where $\mu=\int \mu_{y} d \nu(y)$ and $\mu^{\prime}=\int \mu_{y}^{\prime} d \nu(y)$ are the disintegrations of μ and μ^{\prime} respectively. We then say that (X, \mathscr{B}, μ) is a relatively weak mixing extension of (Y, \mathscr{D}, ν) for $T \in \Gamma$ if $\left(X \times{ }_{\mathrm{Y}} X, \tilde{\mathscr{B}}, \tilde{\mu}\right)$ is a relatively ergodic extension of (Y, \mathscr{D}, ν) for T.

Lemma 1.1. Let $F: X \rightarrow M$ be a measurable map from a measure space (X, \mathscr{B}, μ) to a separable metric space M and assume that the functiond $\left(F(x), F\left(x^{\prime}\right)\right)$ is a.e. constant on $X \times X$. Then $F(x)$ is a.e. constant.

Proposition 1.2. If (X, \mathscr{B}, μ) is a relatively weak mixing extension of (Y, \mathscr{D}, ν) for $T \in \Gamma$ and $\left(X^{\prime}, \mathscr{B}^{\prime}, \mu^{\prime}\right)$ is a relatively ergodic extension of (Y, \mathscr{D}, ν) for T, then $\left(X \times{ }_{\vee} X^{\prime}, \tilde{\mathscr{B}}, \tilde{\mu}\right)$ is a relatively ergodic extension of (Y, \mathscr{D}, ν) for T.

Proof. Let $\pi: X \rightarrow Y, \pi^{\prime}: X^{\prime} \rightarrow Y$ be the associated maps and assume that $H\left(x, x^{\prime}\right)$ is a T-invariant function on $X \times{ }_{Y} X^{\prime}$. Form the function $E\left(x_{1}, x_{2}\right)$ on $X \times{ }_{\gamma} X$ given by

$$
E\left(x_{1}, x_{2}\right)=\int\left|H\left(x_{1}, x^{\prime}\right)-H\left(x_{2}, x^{\prime}\right)\right| d \mu_{\pi\left(x_{1}\right)}^{\prime}\left(x^{\prime}\right)
$$

where $\mu^{\prime}=\int \mu_{y}^{\prime} d \nu(y)$. One sees that E is T-invariant and so is a function of $\pi\left(x_{1}\right)=\pi\left(x_{2}\right)$. We apply Lemma 1.1 to the map $x \rightarrow H(x, \cdot)$ on $\left(X, \mathscr{B}, \mu_{y}\right)$ and conclude that it depends only on $\pi(x)$. Hence $H\left(x, x^{\prime}\right)$ is a function of x^{\prime} and by relative ergodicity of the extension $\pi^{\prime}: X^{\prime} \rightarrow Y$, we see that H depends only on $\pi(x)=\pi^{\prime}\left(x^{\prime}\right)$. This proves the proposition.
If (X, \mathscr{B}, μ) is an extension of (Y, \mathscr{D}, ν) we denote by $E(f \mid Y)$ the conditional expectation which maps $L^{P}(X, \mathscr{B}, \mu)$ to $L^{p}(Y, \mathscr{D}, \nu)$ and is defined by $E(f \mid Y)(y)=\int f d \mu_{y}$ a.e. We shall frequently use the identity

$$
\begin{align*}
\int_{r} E(f \mid Y)^{2} d \nu & =\iiint f\left(x_{1}\right) f\left(x_{2}\right) d \mu_{y}\left(x_{1}\right) d \mu_{y}\left(x_{2}\right) d \nu(y) \tag{1.1}\\
& =\int_{x \times{ }_{Y} X} f\left(x_{1}\right) f\left(x_{2}\right) d \tilde{\mu}\left(x_{1}, x_{2}\right)
\end{align*}
$$

Lemma 1.3. ${ }^{+} \quad$ Let (X, \mathscr{B}, μ) be a relatively weak mixing extension of (Y, \mathscr{D}, μ) for T and let $\varphi, \psi \in L^{2}(X, \mathscr{B}, \mu)$. Then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int\left[E\left(\psi T^{n} \varphi \mid Y\right)-E(\psi \mid Y) T^{n} E(\varphi \mid Y)\right]^{2} d \nu(y)=0
$$

Proof. We can assume $E(\psi \mid Y)=0$. So we wish to evaluate

$$
\begin{equation*}
\frac{1}{N} \sum_{n=1}^{N} \int E\left(\psi T^{n} \varphi \mid Y\right)^{2} d \nu(y)=\frac{1}{N} \sum_{n=1}^{N} \int \psi\left(x_{1}\right) \psi\left(x_{2}\right) \varphi\left(T^{n} x_{1}\right) \varphi\left(T^{n} x_{2}\right) d \tilde{\mu}\left(x_{1}, x_{2}\right) \tag{1.2}
\end{equation*}
$$

by (1.1). Now a weakly convergent subsequence of $(1 / N) \sum_{n=1}^{N} \varphi\left(T^{n} x_{1}\right) \varphi\left(T^{n} x_{2}\right)$ will converge to a T-invariant function on $X \times{ }_{Y} X$, which, by hypothesis, is a function of $\pi\left(x_{1}\right)=\pi\left(x_{2}\right)$. The limit of (1.2) is then expressed in terms of $E(\psi \mid Y)^{2}=0$, and this being the case for any convergent subsequence we obtain the lemma.

We generalize the foregoing in the next theorem.

Theorem 1.4. Let (X, \mathscr{B}, μ) be a relative weak mixing extension of (Y, \mathscr{D}, ν) for every $T \neq 1, T \in \Gamma$. Then if $f_{1}, \cdots, f_{l} \in L^{\infty}(X, \mathscr{B}, \mu)$ and T_{1}, \cdots, T_{l} are distinct elements of Γ,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int\left[E\left(\prod_{i=1}^{l} T_{i}^{n} f_{j} \mid Y\right)-\prod_{j=1}^{l} T_{j}^{n} E\left(f_{j} \mid Y\right)\right]^{2} d \nu(y)=0 \tag{1.3}
\end{equation*}
$$

Proof. Write $g_{i}=T_{i}^{n} f_{j}$. If we express $E\left(\Pi g_{i} \mid Y\right)-\Pi E\left(g_{i} \mid Y\right)$ as

$$
\sum E\left(g_{1} g_{2} \cdots g_{i-1}\left(g_{i}-E\left(g_{i} \mid Y\right) E\left(g_{i+1} \mid Y\right) \cdots E\left(g_{i} \mid Y\right) \mid Y\right)\right.
$$

we see that we can reduce (1.3) to the case where some $E\left(f_{i} \mid Y\right)=0$. So we assume $E\left(f_{l} \mid Y\right)=0$. Using (1.1) the problem is to prove

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X \times_{\gamma} X} \prod_{j=1}^{1} T_{i}^{n} f_{j}\left(x_{1}\right) T_{j}^{n} f_{j}\left(x_{2}\right) d \tilde{\mu}\left(x_{1}, x_{2}\right)=0 \tag{1.4}
\end{equation*}
$$

given that $E\left(f_{l} \mid Y\right)=0$. Since by Proposition $1.2, X \times{ }_{\mathbf{Y}} X$ is a relatively weak mixing extension of Y whenever X is, (1.4) will follow if we prove that

[^0]\[

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{x} \prod_{i=1}^{l} T_{i}^{n} f_{i} d \mu(x)=0 \tag{1.5}
\end{equation*}
$$

\]

whenever $E\left(f_{l} \mid Y\right)=0$.
When $l=1$ the result is clear since T is measure preserving so we proceed by induction and assume the theorem is valid for $l-1$. Set $S_{i}=T_{i} T_{l}^{-1}, i=1, \cdots, l-1$. The S_{i} are all distinct and also different from 1, and we assume that (1.3) holds with l replaced by $l-1$ and the T_{i} by the S_{i}.

Let μ_{Δ}^{l-1} denote the diagonal measure on X^{l-1} (see [1] for details on "standard measures" in product spaces) and let $\nu_{\Delta}^{t-1}=\pi \mu_{\Delta}^{l-1}$ be the diagonal measure on Y^{l-1}. Set

$$
\begin{aligned}
& \mu_{*}^{t-1}=\lim _{k \rightarrow \infty} \frac{1}{N_{k}} \sum_{1}^{N_{k}}\left(S_{1} \times \cdots \times S_{l-1}\right)^{n} \mu_{\Delta}^{t-1}, \\
& \nu_{*}^{l-1}=\lim _{k \rightarrow \infty} \frac{1}{N_{k}} \sum_{1}^{N_{k}}\left(S_{1} \cdots S_{l-1}\right)^{n} \nu_{\Delta}^{l-1},
\end{aligned}
$$

where the limits in question refer to convergence with respect to integration against functions of the form $g_{1} \otimes \cdots \otimes g_{i-1}\left(x_{1}, \cdots, x_{i-1}\right)=g_{1}\left(x_{1}\right) \cdots g_{i-1}\left(x_{i-1}\right)$, and N_{k} is a subsequence for which these limits exist. We find

$$
\begin{aligned}
\int g_{1} \otimes \cdots \otimes g_{t-1} d \mu_{*}^{t-1} & =\lim _{k \rightarrow \infty} \frac{1}{N_{k}} \sum_{1}^{N_{k}} \int S_{1}^{n} g_{1}(x) \cdots S_{i-1}^{n} g_{t-1}(x) d \mu(x) \\
& =\lim _{k \rightarrow \infty} \frac{1}{N_{k}} \sum_{1}^{N_{k}} \int E\left(S_{1}^{n} g_{1} \cdots S_{i-1}^{n} g_{l-1} \mid Y\right) d \nu(y) \\
& =\lim _{k \rightarrow \infty} \frac{1}{N_{k}} \sum_{1}^{N_{k}} \int S_{1}^{n} E\left(g_{1} \mid Y\right) \cdots S_{l-1}^{n} E\left(g_{l-1} \mid Y\right) d \nu(y)
\end{aligned}
$$

by (1.3), and finally,

$$
\begin{equation*}
\int g_{1} \otimes \cdots \otimes g_{i-1} d \mu_{*}^{t-1}=\int E\left(g_{1} \mid Y\right) \otimes \cdots \otimes E\left(g_{i-i} \mid Y\right) d \nu_{*}^{i-1} . \tag{1.6}
\end{equation*}
$$

We say that a measure on X^{1-1} is a conditional product measure if it is related to its projection on Y^{1-1} as in (1.6). (See [1] for details.) Equivalently, a measure on X^{1-1} is a conditional product measure if it takes the same value at $g_{1} \otimes \cdots \otimes g_{t-1}$ as it does at $E\left(g_{1} \mid Y\right) \otimes \cdots \otimes E\left(g_{t-1} \mid Y\right)$.

Consider any measure of the form $d \theta=\psi \otimes \cdots \otimes \psi_{i-1} d \mu_{*}^{t-1}$ and form

$$
\theta_{*}=\lim \frac{1}{N_{\mathrm{k}}} \sum_{i}^{N_{k}}\left(S_{1} \times \cdots \times S_{l-1}\right)^{n}
$$

passing to a subsequence if necessary. We shall show that $\boldsymbol{\theta}_{*}$ is a conditional product measure. Namely
(1.7) $\int g_{1} \otimes \cdots \otimes g_{l-1} d \theta_{*}=\lim _{k \rightarrow \infty} \frac{1}{N_{k}} \sum_{1}^{N_{k}} \int \psi_{1} S_{1}^{n} g_{1} \cdots \psi_{l-1} S_{l-1}^{n} g_{l-1} d \mu_{*}^{l-1}$

$$
=\lim _{k \rightarrow \infty} \frac{1}{N_{k}} \sum_{1}^{N_{k}} \int E\left(\psi_{1} S_{1}^{n} g_{1} \mid Y\right) \cdots E\left(\psi_{l-1} S_{l-1}^{n} g_{l-1} \mid Y\right) d \nu_{*}^{l-1} .
$$

But by Lemma 1.3 we can replace $E\left(\psi S^{n} g \mid Y\right)$ by $E(\psi \mid Y) S^{n} E(g \mid Y)$ "on the average", From this we readily see that

$$
\int g_{1} \otimes \cdots \otimes g_{l-1} d \theta_{*}=\int E\left(g_{1} \mid Y\right) \otimes \cdots \otimes E\left(g_{l-1} \mid Y\right) d \theta_{*}
$$

so that θ_{*} is a conditional product measure. Since linear combinations of $\psi_{1} \otimes \cdots \otimes \psi_{i-1}$ are dense in $L^{1}\left(\mu_{*}^{t-1}\right)$ the same result is true for any θ absolutely continuous with respect to μ_{*}^{l-1}. In particular if θ is absolutely continuous with respect to μ_{*}^{t-1} and $S_{1} \times \cdots \times S_{i-1}$-invariant it must be a conditional product measure.

Now let $f^{\prime} \in L^{\infty}(X, \mathscr{B}, \mu)$ with $E\left(f^{\prime} \mid Y\right)=1$ and define the measure $\bar{\mu}_{\Delta}^{l-1}$ by setting

$$
\int g_{1} \otimes \cdots \otimes g_{l-1} d \bar{\mu}_{\Delta}^{I-1}=\int g_{1}(x) g_{2}(x) \cdots g_{l-1}(x) f^{\prime}(x) d \mu(x) .
$$

$\bar{\mu}_{\Delta}^{I-1}$ is absolutely continuous with respect to μ_{Δ}^{t-1} and if we form the limit

$$
\begin{equation*}
\bar{\mu}_{*}^{l-1}=\lim \frac{1}{N_{k}} \sum_{1}^{N_{k}}\left(S_{1} \times \cdots \times S_{l-1}\right)^{n} \bar{\mu}_{\Delta}^{l-1} \tag{1.8}
\end{equation*}
$$

we will obtain a measure that is $S_{1} \times \cdots \times S_{1-1}$-invariant and absolutely continuous with respect to μ_{*}^{l-1}. Hence $\bar{\mu}_{*}^{l-1}$ is a conditional product measure. It is therefore determined by its image in Y^{t-1}. But the image of $\bar{\mu}_{*}^{t-1}$ on Y^{t-1} is ν_{Δ}^{I-1} since $E\left(f^{\prime} \mid Y\right)=1$. It follows that $\bar{\mu}_{*}^{l-1}=\mu_{*}^{l-1}$.

Finally take $f_{l} \in L^{\infty}(X, \mathscr{B}, \mu)$ with $E\left(f_{l} \mid Y\right)=0$ and set $f^{\prime}=f_{l}+1$. Comparing (1.8) with the definition of μ_{*}^{t-1} we obtain

$$
\lim \frac{1}{N_{k}} \sum_{1}^{N_{k}}\left(S_{1} \times \cdots \times S_{l-1}\right)^{n}\left(\bar{\mu}_{\Delta}^{l-1}-\mu_{\Delta}^{t-1}\right)=0
$$

or

$$
\lim \frac{1}{N_{k}} \sum_{1}^{N_{k}} \int S_{1}^{n} f_{1}(x) \cdots S_{l-1}^{n} f_{l-1}(x) \cdot f_{l}(x) d \mu(x)=0
$$

Replace x by $T_{1}^{n} x$ and recall that $S_{i} T_{1}=T_{i}$:

$$
\begin{equation*}
\lim \frac{1}{N_{k}} \sum_{1}^{N_{k}} \int T_{1}^{n} f_{1}(x) \cdots T_{l-1}^{n} f_{l-1}(x) T_{i}^{n} f_{l}(x) d \mu(x)=0 \tag{1.9}
\end{equation*}
$$

But this gives (1.5) inasmuch as (1.9) is valid for some subsequence of any sequence. This completes the proof.

2. Compact extensions

In this section we shall describe what we will speak of as the compactness of an extension (X, \mathscr{B}, μ) of a Γ-invariant factor (Y, \mathscr{D}, ν) for the action of some $T \in \Gamma$. It will be convenient to extend this to the action of a subgroup of Γ, so suppose that Λ is a finitely generated subgroup of Γ. Fix an epimorphism $Z^{r} \rightarrow \Lambda$ by writing $n \rightarrow T^{(n)}, n \in Z^{\prime}$. Let $\|n\|=\max \left|n_{i}\right|$ where $n=\left(n_{1}, \cdots, n_{r}\right)$. The ergodic theorem for Z^{\prime}-actions states that if $f \in L^{1}(X, \mathscr{B}, \mu)$ then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{(2 N+1)^{r}} \sum_{\|n\| \leqslant N} f\left(T^{(n)} x\right) \tag{2.1}
\end{equation*}
$$

exists for almost all $x \in X$ and defines a Λ-invariant function. We shall use the much more elementary fact that the limit in (2.1) exists weakly in $L^{2}(X, \mathscr{B}, \mu)$ for f in this space.

Let $\mu=\int \mu_{y} d \nu$ be the disintegration of μ with respect to the factor (Y, \mathscr{D}, ν) of (X, \mathscr{B}, μ) and let $\pi: X \rightarrow Y$ be the map defining the factor. We shall denote the Hilbert-space $L^{2}(X, \mathscr{B}, \mu)$ by $\mathscr{5}$ and $L^{2}\left(X, \mathscr{B}, \mu_{y}\right)$ by \mathscr{S}_{y}. We have

$$
\|f\|_{\mathscr{G}}^{2}=\int\|f\|_{\mathfrak{F}_{y}}^{2} d \nu(y) .
$$

Also note that each $T \in \Gamma$ defines an isometry $f \rightarrow T f$ of $\mathscr{S}_{\text {ty }}$ onto \mathfrak{S}_{y} so that

$$
\|T f\|_{S_{y}}=\|f\|_{S_{T^{\prime}}}
$$

Let $H \in L^{2}\left(X \times{ }_{Y} X, \mathscr{\mathscr { B }}, \tilde{\mu}\right)$ and $f \in L^{2}(X, \mathscr{B}, \mu)$. We define the convolution (relative to (Y, \mathscr{D}, ν)) of H and f

$$
H * f(x)=\int H\left(x, x^{\prime}\right) f\left(x^{\prime}\right) d \mu_{y}\left(x^{\prime}\right)
$$

where $y=\pi(x)$. We have

$$
\|H * \varphi\|_{\mathfrak{S}_{y}} \leqq\|H\|_{\mathfrak{S}_{y} \otimes \mathfrak{B}_{y}}\|\varphi\|_{\mathfrak{S}_{y}}
$$

and, in particular, if $\|H\|_{\mathfrak{p}_{y} \otimes \mathfrak{\beta}_{y}}$ is bounded, the operator $\varphi \rightarrow H * \varphi$ is a bounded operator on \mathfrak{F}. We shall say that $\varphi \in L^{2}(X, \mathscr{B}, \mu)$ is fibrewise bounded if $\|\varphi\|_{\mathfrak{G}}$ is bounded and similarly for $H \in L^{2}\left(X \times{ }_{\mathrm{Y}} X, \tilde{\mathscr{B}}, \tilde{\mu}\right)$.

Consider now the following properties of our extension (X, \mathscr{B}, μ) of (Y, \mathscr{D}, ν) with respect to the subgroup $\Lambda \subset \Gamma$:
C_{1}. The functions $\{H * \varphi\}$ span a dense subset of $L^{2}(X, \mathscr{B}, \mu)$ as H ranges over fibrewise bounded Λ-invariant functions on $X \times{ }_{\gamma} X$ and $\varphi \in L^{2}(X, \mathscr{B}, \mu)$.
C_{2}. There exists a dense subset $\mathscr{D} \subset L^{2}(X, \mathscr{B}, \mu)$ with the following property. If $f \in \mathscr{D}$ and $\delta>0$, there exists a finite set of functions $g_{1}, \cdots, g_{k} \in$ $L^{2}(X, \mathscr{B}, \mu)$ such that for each $T \in \Lambda, \min _{1 \leq i \leq k}\left\|T f-g_{i}\right\|_{\wp_{y}}<\delta$ for a.e. $y \in Y$.
C_{3}. For each $f \in L^{2}(X, \mathscr{B}, \mu)$ the following holds. If $\varepsilon, \delta>0$ are given, there exists a finite set of functions $g_{1}, \cdots, g_{k} \in L^{2}(X, \mathscr{B}, \mu)$ such that for each $T \in \Lambda, \min _{1 \leq j \leq k}\left\|T f-g_{j}\right\|_{\sigma_{y}}<\delta$ but for a set of y of measure $<\varepsilon$.
C_{4}. For each $f \in L^{2}(X, \mathscr{B}, \mu)$ form the limit function

$$
\tilde{P}\left(f\left(x, x^{\prime}\right)\right)=\lim _{N \rightarrow \infty} \frac{1}{(2 N+1)^{\prime}} \sum_{\|n\| \leqslant N} f\left(T^{(n)} x\right) \overline{f\left(T^{(n)} x^{\prime}\right)}
$$

in $L^{2}\left(X \times{ }_{Y} X, \tilde{\mathscr{B}}, \tilde{\mu}\right)$, then $\tilde{P} f$ does not vanish a.e. unless f vanishes a.e.

Theorem 2.1. The four properties $\mathrm{C}_{1}-\mathrm{C}_{4}$ of an extension (X, \mathscr{B}, μ) of (Y, \mathscr{D}, ν) with respect to a finitely generated subgroup $\Lambda \subset \Gamma$ are equivalent.

Proof. $\quad \mathrm{C}_{1} \Rightarrow \mathrm{C}_{2}$. Let us say that $f \in L^{2}(X, \mathscr{B}, \mu)$ is AP (almost periodic) if for each $\delta>0$, there exist $g_{1}, \cdots, g_{k} \in L^{2}(X, \mathscr{B}, \mu)$ with $\min _{1 \leqq j \leqslant k}\left\|T f-g_{j}\right\|_{\mathfrak{S}_{y}}<\delta$ for each $T \in \Lambda$ and a.e. $y \in Y$. Clearly any linear combination of AP functions is AP. To prove that $C_{1} \Rightarrow C_{2}$ it will suffice to show that by an arbitrarily small modification of a function of the form $H * \varphi, H$ being Λ-invariant and fibrewise bounded, we obtain an AP function. Since $\varphi \rightarrow H * \varphi$ is bounded we can restrict to a dense subset of φ; in particular, we may assume that φ is fibrewise bounded, say $\|\varphi\|_{\mathscr{S}_{y}} \leqq M$.

Let $\eta>0$ be given; we shall find an AP function $f \in L^{2}(X, \mathscr{B}, \mu)$ with $f=H * \varphi$ but for a set of $x \in X$ with measure $<\eta$ on which f vanishes. In $L^{2}\left(X \times{ }_{Y} X, \tilde{B}, \tilde{\mu}\right)$, the functions of the form $\Sigma \psi_{i}(x) \psi_{i}^{\prime}\left(x^{\prime}\right), \psi_{i}, \psi_{i}^{\prime} \in L^{\infty}(X, \mathscr{B}, \mu)$ are dense and so we can choose a sequence of such functions converging to H in L^{2}. Passing to a subsequence we can assume that H_{n} is a sequence of such functions with
$\left\|H-H_{n}\right\|_{\mathfrak{F}_{y}, \mathscr{Q}_{y}}^{2} \rightarrow 0$ for almost all $y \in Y$. We can then find a subset $E_{\eta} \subset Y$ with $\nu\left(E_{\eta}\right)<\eta$ such that $\left\|H-H_{n}\right\|_{\mathfrak{S}_{y} \otimes \mathfrak{S}_{y}} \rightarrow 0$ uniformly for $y \notin E_{\eta}$. Let F_{η} be the largest Λ-invariant set in $E_{\eta}: F_{\eta}=\bigcap_{T \in \Lambda} T E_{\eta}$. We shall show that the function

$$
f(x)= \begin{cases}H * \varphi(x), & \pi(x) \notin F_{\eta} \tag{2.2}\\ 0, & \pi(x) \in F_{\eta}\end{cases}
$$

is AP.
Let us say that a set of functions g_{1}, \cdots, g_{k} is δ-spanning for f on the set $B \subset Y$ if for each $y \in B$, and $T \in \Lambda, \min _{j}\left\|T f-g_{i}\right\|_{\mathfrak{G}_{y}}<\delta$. The function 0 is δ-spanning for f in F_{η} so it will suffice to find a δ-spanning set in $Y \backslash F_{\eta}$. Note that if g_{1}, \cdots, g_{k} is δ-spanning in B then by the isometry of $\mathfrak{F}_{T y}$ with $\tilde{S}_{y}, T g_{1}, \cdots, T g_{k}$ is δ-spanning in $T B$ if $T \in \Lambda$. Using this we can construct a δ-spanning set in $\cup_{T \in \Lambda} T B$. Namely, enumerate the elements of $\Lambda: T_{1}, T_{2}, T_{3}, \cdots$ and for each $x \in \tilde{B}=\cup_{T \in \Lambda} T B$ let T_{x} be the first T_{i} with $T_{i}(x) \in B$. We then set $\tilde{g}_{i}(x)=g_{i}\left(T_{x} x\right)$ and so find that $\tilde{g}_{1}, \cdots, \tilde{g}_{k}$ is δ-spanning in \tilde{B}.

In view of this we see that in order to prove that $f(x)$ given by (2.2) is AP it suffices to find a δ-spanning set for f in $Y \backslash E_{\eta}$.

Using the fact that H is Λ-invariant we can simplify the study of $\{T f: T \in \Lambda\} \subset \mathfrak{S}_{y}$ as follows. We have

$$
\begin{gathered}
T(H * \varphi)(x)=H * \varphi(T x)=\int H\left(T x, x^{\prime}\right) \varphi\left(x^{\prime}\right) d \mu_{\tau_{y}}\left(x^{\prime}\right) \\
\quad=\int H\left(T x . T x^{\prime}\right) \varphi\left(T x^{\prime}\right) d \mu_{y}\left(x^{\prime}\right)=H * T \varphi(x)
\end{gathered}
$$

Since $\varphi \rightarrow T \varphi$ is an isometry of $\mathfrak{S}_{T y} \rightarrow \mathfrak{S}_{y}$ we conclude that $\{T \varphi: T \in \Lambda\} \subset$ ball of radius M in each \mathfrak{S}_{y}. Hence g_{1}, \cdots, g_{k} will be δ-spanning in $Y \backslash E_{\eta}$ for $H * \varphi$ with a fixed φ satisfying $\|\varphi\|_{y} \leqq M$ for all y, if for all φ satisfying $\|\varphi\|_{y} \leqq M$ we have $\min _{1 \leq j s_{k}}\left\|H * \varphi-g_{i}\right\|_{y}<\delta$. To find this set of g_{j}, choose n with $\left\|H-H_{n}\right\|_{\mathfrak{S}_{y} \otimes \mathfrak{S}_{y}}<$ $\delta / 2 M$ for all $y \notin E_{\eta}$, and find $\left\{g_{j}\right\}$ with $\min _{1 \leq j \leq k}\left\|H_{n} * \varphi-g_{i}\right\|_{\mathfrak{s}_{y}}<\delta / 2$ for all the φ in question. Now if $H_{n}=\Sigma \psi_{i}(x) \psi_{i}^{\prime}\left(x^{\prime}\right), H_{n} * \varphi$ ranges over functions of the form $\sum \alpha_{i} \psi_{i}(x)$ with $\left|\alpha_{i}\right| \leqq M\left\|\psi_{i}^{\prime}\right\|_{S_{y}}$ and since the ψ_{i} are bounded, it is easy to produce a finite subset of these functions which can serve as g_{i}.
$\mathrm{C}_{2} \Rightarrow \mathrm{C}_{3}$. If $f \in L^{2}(X, \mathscr{B}, \mu)$ is given and f^{\prime} is AP with $\left\|f-f^{\prime}\right\|<\delta \sqrt{\varepsilon}$, then for each $T \in \Lambda,\left\|T f-T f^{\prime}\right\|<\delta \sqrt{\varepsilon}$. If g_{1}, \cdots, g_{k} is a δ-spanning set for f^{\prime} on Y, then $\min \left\|T f-g_{j}\right\|_{\mathfrak{s}_{y}}<2 \delta$ but for those y on which $\left\|T f-T f^{\prime}\right\|_{\mathfrak{s}_{y}} \geqq \delta$. But this set has measure $<\delta^{2} \varepsilon / \delta^{2}=\varepsilon$.
$\mathrm{C}_{3} \Rightarrow \mathrm{C}_{4}$. First let us reformulate C_{3}. Let us call g_{1}, \cdots, g_{k} an ε, δ-spanning set for f if the condition of C_{3} holds; i.e., if $\min \left\|T f-g_{j}\right\|_{\mathfrak{S}_{y}}<\delta$ for y outside of a set $E(T)$ with $\nu(E(T))<\varepsilon$. For each $j=1, \cdots, k$, let

$$
F_{i}(T)=\left\{y:\left\|T f-g_{j}\right\|_{\mathfrak{w}_{y}}<\delta\right\}
$$

and let $\Omega \subset \Lambda$ be a finite subset large enough so that for each j,

$$
\nu\left(\bigcup_{T \in \Omega} F_{j}(T)\right)>\nu\left(\bigcup_{T \in \Lambda} F_{i}(T)\right)-\varepsilon / k ;
$$

then $\min _{T^{\prime} \in \Omega}\left\|T f-T^{\prime} f\right\|_{\mathfrak{F}_{y}}<2 \delta$ unless $y \in E(T)$ or

$$
y \in \bigcup_{i}\left\{\bigcup_{T \in \Lambda} F_{i}(T) \backslash \bigcup_{r \in \Omega} F_{i}(T)\right\}
$$

We see that the functions $\left\{T^{\prime} f: T^{\prime} \in \Omega\right\}$ form a $2 \varepsilon, 2 \delta$-spanning set.
Now assume that $\tilde{P} f=0$. Evaluating $\int \overline{f(x)} f\left(x^{\prime}\right) \tilde{P} f\left(x, x^{\prime}\right) d \tilde{\mu}\left(x, x^{\prime}\right)$ we find that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{(2 N+1)^{r}} \sum_{\|n\| \leq N}\left|\int \overline{f(x)} f\left(T^{(n)} x\right) d \mu_{y}(x)\right|^{2}=0 \tag{2.3}
\end{equation*}
$$

in $L^{2}(Y, \mathscr{D}, \nu)$.
Moreover $\tilde{P} f=0$ implies $\tilde{P} T f=0$ for each $T \in \Lambda$ and we obtain from (2.3) that

$$
\frac{1}{(2 N+1)^{r}} \sum_{\|n\| \leq N}\left\{\sum_{T^{\prime} \in \Omega}\left|\int \overline{T^{\prime} f} T^{(n)} f d \mu_{y}\right|^{2}\right\} \rightarrow 0
$$

in $L^{2}(Y, \mathscr{D}, \nu)$. In particular for any $\varepsilon>0$ there exists $T \in \Lambda$ with

$$
\begin{equation*}
\left|\int \overline{T^{\prime} f} T f d \mu_{y}\right|<\varepsilon \tag{2.4}
\end{equation*}
$$

for all $T^{\prime} \in \Omega$ and for all y outside of a set of measure $<\varepsilon$. If we assume now Ω was chosen so that $\left\{T^{\prime} f: T^{\prime} \in \Omega\right\}$ is an ε, δ-spanning set, then outside of a set of measure $<\varepsilon$,

$$
\begin{equation*}
\int\left|T f-T^{\prime} f\right|^{2} d \mu_{y}<\delta^{2} \tag{2.5}
\end{equation*}
$$

for some T^{\prime} depending on y. But (2.4) and (2.5) give

$$
\int|T f|^{2} d \mu_{y}<\delta^{2}+2 \varepsilon
$$

outside of a set of y of measure 2ε. Since ε, δ were arbitrary, we conclude that $f \equiv 0$.
$\mathrm{C}_{4} \Rightarrow \mathrm{C}_{1}$. Suppose the functions of the form $H * \varphi$ were not dense as H ranges over fibrewise bounded Λ-invariant functions on $X \times{ }_{\gamma} X$, and φ over $L^{2}(X, \mathscr{B}, \mu)$. Let $f \in L^{2}(X, \mathscr{B}, \mu)$ be orthogonal to all of these. Consider the function

$$
H\left(x, x^{\prime}\right)=\lim \frac{1}{(2 N+1)^{r}} \sum_{\|n\| \leqslant N} T^{(n)} f(x) \overline{T^{(n)} f\left(x^{\prime}\right)}
$$

This is Λ-invariant and belongs to $L^{2}\left(X \times{ }_{Y} X, \tilde{B}, \tilde{\mu}\right)$. In particular $\|H\|_{\mathfrak{B}_{y} \otimes \mathfrak{Q}_{y}}<\infty$ for a.e. $y \in Y$. This norm is also Λ-invariant and we can find a Λ-invariant set $B \subset Y$ with $\nu(B)$ as close to 1 as we please on which $\|H\|_{\mathfrak{S}_{y} \otimes \mathfrak{S}_{y}}$ is bounded. Let $H_{B}=H \cdot 1_{\pi^{-1}(B)}$ and $f_{B}=f \cdot 1_{\pi^{-1}(B)}$; then,

$$
H_{B}\left(x, x^{\prime}\right)=\lim _{N \rightarrow \infty} \frac{1}{(2 N+1)^{r}} \sum_{\|n\| \leqq N} T^{(n)} f_{B}(x) \overline{T^{(n)} f_{B}\left(x^{\prime}\right)} .
$$

This function is fibrewise bounded and $f \perp H_{B} * f_{B}$ implies that $f_{B} \perp H_{B} * f_{B}$. But then

$$
\begin{equation*}
\int H_{B}\left(x, x^{\prime}\right) f_{B}\left(x^{\prime}\right) \overline{f_{B}(x)} d \tilde{\mu}\left(x, x^{\prime}\right)=0 \tag{2.6}
\end{equation*}
$$

or, $f_{B}(x) \overline{f_{B}\left(x^{\prime}\right)}$ is orthogonal to H_{B} in $L^{2}\left(X \times{ }_{\mathrm{Y}} X, \tilde{\mathscr{B}}, \tilde{\mu}\right)$. The same is then true of each $T f_{B}(x) \overline{T f_{B}\left(x^{\prime}\right)}$ and therefore also for any average of these functions. But then $H_{B} \perp H_{B}$ so that $H_{B} \equiv 0 . C_{4}$ implies that $f_{B} \equiv 0$. Letting B approximate Y we conclude that $f \equiv 0$ and this proves C_{1}.

Definition 3.1. If (Y, \mathscr{D}, ν) is a Γ-invariant factor of (X, \mathscr{B}, μ) and Λ is a finitely generated subgroup of Γ for which one of the conditions $\mathrm{C}_{1}-\mathrm{C}_{4}$ holds, then we say that (X, \mathscr{B}, μ) is a compact extension of (Y, \mathscr{D}, ν) for the action of Λ.

Property C_{4} of compact extension ensures a plentiful supply of Λ-invariant functions on $X \times{ }_{Y} X$. If the extension is non-trivial these cannot all be functions on Y, since choosing f with $E(f \mid Y)=0$ implies $E(\tilde{P} f \mid Y)=0$ and if $\tilde{P} f$ were a function on Y, this implies $\tilde{P} f=0$. We see then that a compact extension is never relatively weak mixing for any $T \in \Lambda$. The converse is true in the following sense.

Proposition 2.2. If (Y, \mathscr{D}, ν) is a Γ-invariant factor of (X, \mathscr{B}, μ) and for an element $T \in \Gamma$, the extension is not relatively weak mixing, then there exists a Γ-invariant factor $\left(X^{\prime}, \mathscr{B}^{\prime}, \mu^{\prime}\right)$ of (X, \mathscr{B}, μ) which is a non-trivial compact extension of (Y, \mathscr{D}, ν) for the action of the group generated by T.

Proof. Let $H\left(x, x^{\prime}\right)$ be a bounded T-invariant function on $X \times{ }_{\gamma} X$ which is not a function on Y. Replacing $H\left(x, x^{\prime}\right)$ by $H\left(x^{\prime}, x\right)$ if necessary we can assume that for some $\varphi \in L^{\infty}(X, \mathscr{B}, \mu), H * \varphi$ is not a function on Y. In the proof of Theorem 2.1 we showed that for each function $H * \varphi$ with H and φ fibrewise bounded, we could modify $H * \varphi$ on an arbitrarily small set to obtain an AP function. Hence, if (X, \mathscr{B}, μ) is not a relatively weak mixing extension of (Y, \mathscr{D}, ν) for $T \in \Gamma$, there exist AP functions on (X, \mathscr{B}, μ) which are not functions on (Y, \mathscr{D}, ν). Now it is clear that for any $\Lambda \subset \Gamma$, sums and products of bounded AP functions are AP functions. Moreover, functions in $L^{\infty}(Y, \mathscr{D}, \nu)$ are AP. In addition, if f is AP for Λ, and $S \in \Gamma$, then $S f$ is again AP inasmuch as $\min \left\|T f-g_{j}\right\|_{\tilde{\xi}_{y}}=\min \left\|T S f-S g_{j}\right\|_{\mathfrak{s}_{y}-1 y_{y}}$. Thus if \mathscr{B}^{\prime} is the σ-algebra with respect to which all AP functions are measurable, then \mathscr{B}^{\prime} is Γ-invariant and $\left(X, \mathscr{B}^{\prime}, \mu\right)$ is a factor of (X, \mathscr{B}, μ) which is a compact extension of (Y, \mathscr{D}, ν) with respect to Λ. This proves the proposition.

Next we show that for a given Γ-invariant factor (Y, \mathscr{D}, ν) of (X, \mathscr{B}, μ), the set of T such that (X, \mathscr{B}, μ) is a compact extension of (Y, \mathscr{D}, ν) for the group $\left\{T^{n}\right\}$ forms a subgroup of Γ. More precisely:

Proposition 2.3. If (X, \mathscr{B}, μ) is a compact extension of (Y, \mathscr{D}, ν) for the actions of the subgroups $\Lambda_{1}, \Lambda_{2} \subset \Gamma$, then it is compact for the action $\Lambda_{1} \Lambda_{2}$.

Proof. We use the characterization C_{3} of compactness. Let $f \in L^{2}(X, \mathscr{B}, \mu)$ and $\varepsilon, \delta>0$ be given. Choose g_{1}, \cdots, g_{k} in $L^{2}(X, \mathscr{B}, \mu)$ such that for each $T \in \Lambda_{1}$, $\min \left\|T f-g_{i}\right\|_{\mathfrak{S}_{y}}<\delta / 2$ but for $y \in E(T) \subset Y$, with $\nu(E(T))<\varepsilon / 2$. For each g_{i}, choose $h_{j 1}, \cdots, h_{j q_{j}} \in L^{2}(X, \mathscr{B}, \mu)$ so that for each $S \in \Lambda_{2}, \min _{1 \leq p \leq q_{j}}\left\|S g_{j}-h_{j p}\right\|_{\mathscr{S}_{y}}<$ $\delta / 2 k$ but for $y \in F_{j}(S)$, where $\nu\left(F_{i}(S)\right)<\varepsilon / 2 k$ then for $T \in \Lambda_{1}, S \in \Lambda_{2}$, and $y \notin S^{-1} E(T), \quad \min \left\|T f-g_{i}\right\|_{\mathscr{\Phi}_{s y}}<\delta / 2$. Having chosen $j=j(y)$ to attain this minimum, we have $\left\|S T f-S g_{j}\right\|_{\mathfrak{S}_{y}}<\delta / 2$. If, in addition, $y \notin F_{j}(S)$, then $\min _{P}\left\|S g_{j}-h_{i p}\right\|_{\Phi_{y}} \leqq \delta / 2$. Thus outside of $S^{-1} E(T) \cup \cup_{j} F_{j}(S)$, $\min _{j, p}\left\|S T f-h_{j p}\right\|_{\mathfrak{G}_{\mathfrak{Y}}}<\delta$. Since $\nu\left(S^{-1} E(T) \cup \bigcup_{i} F_{j}(S)\right)<\varepsilon$, this proves the proposition.

Combining Propositions 2.2 and 2.3 we obtain the following "structure" theorem.

Theorem 2.4. Assume Γ is finitely generated and let (Y, \mathscr{D}, ν) be a Γ invariant factor of (X, \mathscr{B}, μ). There exists a Γ-invariant proper extension $\left(X^{\prime}, \mathscr{B}^{\prime}, \mu^{\prime}\right)$ of (Y, \mathscr{D}, ν) and a direct product decomposition $\Gamma=\Gamma_{w} \times \Gamma_{c}$ where Γ_{w} and Γ_{c} are two subgroups for which
(i) $\left(X^{\prime}, \mathscr{B}^{\prime}, \mu^{\prime}\right)$ is a relatively weak mixing extension of (Y, \mathscr{D}, ν) for every $T \in \Gamma_{w}$, $T \neq I$.
(ii) $\left(X^{\prime}, \mathscr{B}^{\prime}, \mu^{\prime}\right)$ is a compact extension of (Y, \mathscr{D}, ν) for the action of Γ_{c}.

Proof. Let Γ_{c} be a maximal subgroup of $\Gamma\left(\cong \mathbf{Z}^{m}\right)$ for which there exists a non-trivial Γ-invariant compact extension of (Y, \mathscr{D}, ν) in (X, \mathscr{B}, μ), and denote by ($X^{\prime}, \mathscr{B}^{\prime}, \mu^{\prime}$) the corresponding extension.

If $T \in \Gamma \backslash \Gamma_{c}$ then $\left(X^{\prime}, \mathscr{B}^{\prime}, \mu^{\prime}\right)$ is a relatively weak mixing extension of (Y, \mathscr{D}, ν). Otherwise, there would exist a Γ-invariant factor ($X^{\prime \prime}, \mathscr{B}^{\prime \prime}, \mu^{\prime \prime}$) of ($X^{\prime}, \mathscr{B}^{\prime}, \mu^{\prime}$) which is compact for T (Proposition 2.2); and since ($X^{\prime \prime}, \mathscr{B}^{\prime \prime}, \mu^{\prime \prime}$) is also compact for Γ_{c}, it would be compact for the group generated by Γ_{c} together with T in contradiction with the maximality of Γ_{c}. This also implies that if $T \notin \Gamma_{c}$ then $T^{n} \notin \Gamma_{c}$ for all $n \geqq 1$. Γ / Γ_{c} is therefore torsion free and Γ_{c} is a complemented subgroup of Γ. Take for Γ_{w} any complement of Γ_{c}.

Remark. When one restricts Γ to an invariant factor the representation need not be faithful, that is, some non-trivial elements of Γ may act like the identity on the factor. In our decomposition above those elements which act trivially on ($X^{\prime}, \mathscr{B}^{\prime}, \mu^{\prime}$) will clearly go to Γ_{c}.

We end this section with a modification of condition C_{2} which will be the characterization of compact extensions which we will need in the next section.

Proposition 2.5. Suppose (X, \mathscr{B}, μ) is a compact extension of (Y, \mathscr{D}, ν) for the action of a subgroup $\Lambda \subset \Gamma$. Then for each $f \in L^{2}(X, \mathscr{B}, \mu)$ and $\varepsilon, \delta>0$, there exists a set $B \subset Y$ with $\nu(B)>1-\varepsilon$ and a set of functions $g_{1}, g_{2}, \cdots, g_{k} \in L^{2}(X, \mathscr{B}, \mu)$ such that if $f_{B}=f \cdot 1_{\pi^{-1}(B)}$, then for all $T \in \Lambda$ and a.e. $y \in Y, \min _{1 \leq j \leq k}\left\|T f_{B}-g_{i}\right\|_{S_{y}}<\delta$.

Proof. Let $f^{\prime} \in L^{2}(X, \mathscr{B}, \mu)$ be an AP function with $\left\|f-f^{\prime}\right\|<\delta \sqrt{\varepsilon} / 2$ and let g_{1}, \cdots, g_{k-1} be such that for $T \in \Lambda$ and a.e. $y \in Y, \min \left\|T f^{\prime}-g_{i}\right\|_{\mathfrak{s}_{y}}<\delta / 2$. Let $g_{k} \equiv 0$ and let $B=\left\{y:\left\|f-f^{\prime}\right\|_{\mathscr{S}_{y}}<\delta / 2\right\}$. Then $\nu(B)>1-\varepsilon$ and if $y \in T^{-1} B$, $\left\|T f_{B}-T f^{\prime}\right\|_{\varsigma_{y}}=\left\|T f-T f^{\prime}\right\|_{\mathfrak{s}_{y}}<\delta / 2$, and so $\min _{1 \leqq j \leqslant k-1}\left\|T f_{B}-g_{i}\right\|_{\mathfrak{S}_{y}}<\delta$. If $y \notin T^{-1} B$, then $T f_{B}=0$ in \tilde{S}_{y} and so $\left\|T f_{B}-g_{k}\right\|_{\wp_{,}}<\delta$.

3. Proof of Theorem \mathbf{A}

We denote by Γ the group generated by the transformations T_{1}, \cdots, T_{k} and since we do not assume that Γ acts effectively we may assume $\Gamma \cong \mathbf{Z}^{m}$. We shall say that the action of a group Γ on a probability measure space (X, \mathscr{B}, μ) is $S Z$ if the statement of Theorem A is true whenever T_{1}, \cdots, T_{k} belong to Γ. Thus, Theorem A states that every Z^{m} action is $S Z$.

We prove Theorem A by "induction" on the Γ-invariant factors of (X, \mathscr{B}, μ). The action of Γ on the trivial factor is trivially $S Z$ and we show (a) that there exists a maximal factor for which the action of Γ is $S Z$, and (b) that no proper factor of
(X, \mathscr{B}, μ) can be maximal for the property that the action on it is $S Z$. These two steps combined imply that the maximal factor must be (X, \mathscr{B}, μ) itself, and hence, that the action of Γ on it is $S Z$.

Lemma 3.1. Let (Y, \mathscr{D}, ν) be a Γ-invariant factor of (X, \mathscr{B}, μ). Let $A \in \mathscr{B}$, $A_{0} \in \mathscr{D}$ and assume that for every $y \in A_{0}, \mu_{y}(A) \geqq 1-\eta$. Then if $T_{1}, \cdots, T_{k} \in \Gamma$

$$
\begin{equation*}
\mu\left(\bigcap_{j=1}^{k} T_{j} A\right) \geqq(1-k \eta) \mu\left(\bigcap_{j=0}^{k} T_{j} A_{0}\right) \tag{3.1}
\end{equation*}
$$

Proof. The intersection of k sets of (probability) measures at least $1-\eta$ each, has measure at least $1-k \eta$. Thus for every $y \in \bigcap_{j=1}^{k} T_{j} A_{0}$ we have $\mu_{y}\left(\bigcap_{i=1}^{k} T_{j} A\right) \geqq$ $1-k \eta$, and we obtain (3.1) by integrating on $\cap T_{j} A_{0}$.

The collection of all factors of (X, \mathscr{B}, μ) is partially ordered by inclusion (of the corresponding closed subalgebras of $L^{\infty}(X, \mathscr{B}, \mu)$). If $\left(Y_{\alpha}, \mathscr{D}_{\alpha}, \nu_{\alpha}\right)$ is a totally ordered family of factors we define its supremum, $(Y, \mathscr{D}, \nu)=\sup \left(Y_{\alpha}, \mathscr{D}_{\alpha}, \nu_{\alpha}\right)$, as the factor whose corresponding subalgebra is the closure of the union of the subalgebras corresponding to $\left(Y_{\alpha}, \mathscr{D}_{\alpha}, \nu_{\alpha}\right)$. In other words, a set $A \in \mathscr{B}$ belongs to \mathscr{D} if for every $\varepsilon>0$, there exists a set A_{0} is some \mathscr{D}_{α} such that $\mu\left(\left(A \backslash A_{0}\right) \cup\left(A_{0} \backslash A\right)\right)<\varepsilon$. It is clear that if for every $\alpha,\left(Y_{\alpha}, \mathscr{D}_{\alpha}, \nu_{\alpha}\right)$ is Γ-invariant, so is (Y, \mathscr{D}, ν).

Lemma 3.2. Let $\left(Y_{\alpha}, \mathscr{D}_{\alpha}, \mu_{\alpha}\right)$ be a totally ordered family of Γ-invariant factors. Assume that for each α the action of Γ on $\left(Y_{\alpha}, \mathscr{D}_{\alpha}, \mu_{\alpha}\right)$ is $S Z$. Then the action of Γ on $(Y, \mathscr{D}, \nu)=\sup \left(Y_{\alpha}, \mathscr{D}_{\alpha}, \mu_{\alpha}\right)$ is $S Z$.

Proof. Let $T_{1}, \cdots, T_{k} \in \Gamma$ and let $A \in \mathscr{D}, \nu(A)>0$. Take $\eta=(2 k)^{-1}$ and $A_{0}^{\prime} \in \mathscr{D}_{\alpha_{0}}$ such that

$$
\begin{equation*}
\mu\left(\left(A \backslash A_{0}^{\prime}\right) \cup\left(A_{0}^{\prime} \backslash A\right)\right)<\frac{1}{4} \eta \nu(A) \tag{3.2}
\end{equation*}
$$

By (3.2), $\mu\left(A_{0}^{\prime}\right)\left(=\nu\left(A_{0}^{\prime}\right)\right)>\frac{3}{4} \mu(A)>0$. Also the set of $y \in A_{0}^{\prime}$ such that $\mu_{y}(A)<$ $1-\eta$ has measure less than $\frac{1}{4} \mu(A)$, since otherwise $\mu\left(A_{o}^{\prime} \backslash A\right)>\frac{1}{4} \eta \mu(A)$ which would contradict (3.2). If we denote by A_{0} the subset of A_{0}^{\prime} of points y for which $\mu_{y}(A)>1-\eta$, then $A_{0} \in \mathscr{D}_{\alpha_{0}}, \mu\left(A_{0}\right)>\frac{1}{2} \mu(A)$, and since the action of Γ on $\mathscr{D}_{\alpha_{0}}$ is $S Z$ we have

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{i}^{N} \mu\left(\bigcap_{j=1}^{k} T_{i}^{n} A_{0}\right)=a>0
$$

Applying Lemma 3.1 for $T_{1}^{n}, \cdots, T_{k}^{n}, n=1,2, \cdots$ we obtain

$$
\begin{equation*}
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{1}^{N} \nu\left(\bigcap_{i=1}^{k} T_{i}^{n} A\right) \geqq \frac{a}{2}>0 \tag{3.3}
\end{equation*}
$$

Since $A \in \mathscr{D}$ and $T_{1}, \cdots, T_{k} \in \Gamma$ were arbitrary, (3.3) is the statement that the action of Γ on \mathscr{D} is $S Z$.

Proposition 3.3. The family of Γ-invariant factors on which the action of Γ is $S Z$ has maximal elements (under inclusion).

Proof. Zorn's lemma and Lemma 3.2.

We now turn to show that no proper Γ-invariant factor of (X, \mathscr{B}, μ) can be maximal for the property of $S Z$ action. In all that follows (Y, \mathscr{D}, μ) is a proper Γ-invariant factor and the action of Γ on it is $S Z$.

Lemma 3.4. Let $E_{j, 1}, j=1, \cdots, J, l=1, \cdots, L$ be measurable sets and assume that for some $\delta>0$ and every j and l we have $\mu\left(E_{j, 1} \backslash E_{j, 1}\right) \leqq \delta$. Then

$$
\begin{equation*}
\mu\left(\bigcap_{j, i} E_{j, 1}\right) \geqq \mu\left(\bigcap_{j} E_{j, 1}\right)-J L \delta . \tag{3.4}
\end{equation*}
$$

Proof. Replacing in $\bigcap_{E_{j, 1}}$ any term $E_{j, 1}$ by $E_{j, 1}$ may increase the measure of the intersection by at most δ.

Proposition 3.5. Assume that the action of Γ on (Y, \mathscr{D}, ν) is $S Z$ and that $\left(X^{\prime}, \mathscr{B}^{\prime}, \mu^{\prime}\right)$ is a Γ-invariant extension of (Y, \mathscr{D}, ν) in (X, \mathscr{B}, μ) such that there exists a decomposition $\Gamma=\Gamma_{w} \times \Gamma_{c}$ as given by Theorem 2.4. Then the action of Γ in $\left(X^{\prime}, \mathscr{B}^{\prime}, \mu^{\prime}\right)$ is $S Z$.

Proof. Let $T_{1}, \cdots, T_{k} \in \Gamma$ and let $A \in \mathscr{B}^{\prime}$ with $2 a=\mu(A)>0$. We have to show that

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{1}^{N}\left(\bigcap_{i=1}^{k} T_{i}^{n} A\right)>0
$$

We write $T_{i}=S_{j}^{\prime} R_{j}^{\prime}$ with $S_{j}^{\prime} \in \Gamma_{w}$ and $R_{j}^{\prime} \in \Gamma_{c}$ and then replace the set $\left\{T_{j}\right\}$ by the possibly larger set $\left\{S_{i} R_{l}\right\}$ where $\left\{S_{j}\right\}_{j=1}^{J}$ is the set of all the transformations S_{j}^{\prime} above renumbered so that possible repetitions are omitted, and similarly for $\left\{R_{i}\right\}_{i=1}^{L}$. There is no loss of generality in assuming that $R_{1}=$ identity. We have enlarged the set of transformations and we are now going to (possibly) reduce A. We first look at $E\left(1_{A} \mid Y\right)=\mu_{y}(A)$ and take the intersection A_{1} of A with the set of fibers corresponding to points y such that $\mu_{y}(A)>a\left(=\frac{1}{2} \mu(A)\right)$. Now, taking

$$
\begin{equation*}
\delta=(4 J L)^{-1} a^{J}, \tag{3.5}
\end{equation*}
$$

and using Proposition 2.5 for the action of Γ_{c}, we remove from A_{1} a small set of
fibers (that is, its intersection with a small set in \mathscr{D}) and obtain our final set A_{0} such that $\mu\left(A_{0}\right)>0, \mu_{y}\left(A_{0}\right)>a$ whenever $\mu_{y}\left(A_{0}\right)>0$, and, denoting $f=1_{A_{0}}$, there exist functions $\left\{g_{j}\right\}_{i=1}^{K}$ such that for every $y \in Y$ and $R \in \Gamma_{c}$

$$
\min _{j=1, \cdots, K}\left\|R f-g_{j}\right\|_{\sigma_{y}}<\delta
$$

We now define the "coloring function" $c(R, y)$ on $\Gamma_{c} \times Y$ by setting $c(R, y)=$ the smallest integer r such that $\left\|R f-g_{r}\right\|_{\tilde{\sigma}_{y}}=\min \left\|R f-g_{j}\right\|_{\Phi_{y}}$, and extend it to $\Gamma \times Y$ by $c(S R, y)=c(R, S y)$. The "coloring function" assumes values in $\{1, \cdots, K\}$. Since $\Gamma \cong Z^{m}$ the set $G=\left\{S_{i} R_{i}\right\}, j=1, \cdots, J, l=1, \cdots, L$, can be viewed as a configuration in Z^{m}. By the multidimensional version of van der Waerden's theorem (see [3] for the proof of Grünwald or [2] for a simpler proof depending on the recurrence result in topological dynamics alluded to in our introduction) there exists a finite configuration G_{1} (e.g. a large enough box) in Z^{m} such that for any coloring of G_{1} by K colors one can find in G_{1} a monochromatic translated homothetic copy of G. The constants of homothety are clearly bounded by some integer H (e.g., the diameter of G_{1}). We denote by $\left\{T_{\alpha}\right\}$ a set in Γ which corresponds, as above, to the configuration G_{1}. We have the following

Fact. For every $y \in Y$ and $n \in Z$ there exists $a T \in \Gamma$ and an integer h, $1 \leqq h \leqq H$ such that

$$
\begin{gather*}
\left\{S_{l}^{-n h} R_{l}^{-n h} T y\right\}_{j, l} \subset\left\{T_{\alpha}^{-n} y\right\}_{\alpha}, \tag{3.6}\\
c\left(S_{j}^{-n h} R_{l}^{-n h}, T y\right)=\mathrm{const} \text { for } j=1, \cdots, J, l=1, \cdots, L . \tag{3.7}
\end{gather*}
$$

Denote by B_{0} the base of A_{0} in Y, i.e., the set $\left\{y ; \mu_{y}\left(A_{0}\right)>a\right\}$ and apply the assumption that the action of Γ in (Y, \mathscr{D}, ν) is $S Z$. There exists a positive number b such that for all sufficiently large $N, \nu\left(\bigcap_{\alpha} T_{\alpha}^{n} B_{0}\right)>b$ for at least $b N$ values of n in $[1, \cdots, N]$. Denote $B_{n}=\bigcap_{\alpha} T_{\alpha}^{n} B_{0}$. For $y \in B_{n}$ there exist T and h such that, by (3.6), Ty $\in \bigcap_{j, t} S_{j}^{n h} R_{j}^{n h} B_{0}$. We have pointed out before that $1 \leqq h \leqq H$ and it is equally clear that the number of possible T 's is bounded by the number of points in G_{1}. Thus we have a covering of B_{n} by a finite number, say H_{1}, of subsets $B_{n}(T, h)$ containing the points of B_{n} for which (3.6) and (3.7) are valid (for the specific choice of T and h). It is clear that if $\nu\left(B_{n}\right)>b$, then, for some $(T, h), \nu\left(B_{n}(T, h)\right)>b / H_{1}$.

If, for $y \in B_{n}(T, h)$, we look at the sets $S_{i}^{n h} R_{l}^{n h} A_{0}$ on the fibre of $T y$, we obtain by (3.7) and Lemma 3.5 that

$$
\begin{equation*}
\mu_{T y}\left(\bigcap_{j, i} S_{i}^{n h} R_{i}^{n h} A_{0}\right)>\mu_{\text {Ty }}\left(\bigcap_{i} S_{i}^{n h} A_{0}\right)-J L \delta \tag{3.8}
\end{equation*}
$$

and by the choice of δ, (3.5), any time that

$$
\begin{equation*}
\mu_{T y}\left(\bigcap_{j} S_{j}^{n h} A_{0}\right)>\frac{3}{4} a^{J} \tag{3.9}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mu_{T y}\left(\bigcap_{i} S_{j}^{n h} R_{1}^{n h} A_{0}\right)>\frac{1}{2} a^{J} \tag{3.10}
\end{equation*}
$$

Since $S_{j} \in \Gamma_{w}, j=1, \cdots, J$ we obtain by Theorem 1.4 that for all sufficiently large N, (3.9) is valid for all the pairs (y, n) such that $y \in B_{n}$ and $1 \leqq n \leqq N$, except for an arbitrarily small proportion of these.

Specifically, we obtain that for all sufficiently large N, there exists a subset $Q \subset[1, \cdots, N]$ such that $Q^{*}>\frac{1}{2} b N$ and such that for $n \in Q$ and an appropriate choice of $\left(T_{n}, h_{n}\right)$ we have (3.9) valid for all $y \in B_{n}^{\prime} \subset B_{n}\left(T_{n}, h_{n}\right)$ such that

$$
\begin{equation*}
\nu\left(B_{n}^{\prime}\right)>\frac{b}{2 H_{1}} . \tag{3.11}
\end{equation*}
$$

Integrating (3.10) on B_{n}^{\prime} we obtain that for $n \in Q$ and $h=h_{n}$

$$
\begin{equation*}
\mu\left(\bigcap_{i, 1} S_{j}^{n h} R_{1}^{n h} A_{0}\right)>\frac{1}{4} H_{1}^{-1} b a^{J}=a_{1} \tag{3.12}
\end{equation*}
$$

Thus, for all large N, there exist at least $b N / 2 J$ integers n in $[1, \cdots, J N]$ for which $\mu\left(\bigcap_{j, t} S_{i}^{n} R_{i}^{n} A_{0}\right)>a_{1}$ which clearly concludes the proof.
Theorem A follows immediately from Propositions 3.3 and 3.5.

References

[^1]
[^0]: * Here and elsewhere the operator T is defined for $T \in \Gamma$ by $T f(x)=f(T x)$. Note that $T E(f \mid Y)=$ $E(T f \mid Y)$.

[^1]: 1. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204-256.
 2. H. Furstenberg and B. Weiss, Topological dynamics and combinatorial number theory, (this Vol.) J. Analyse Math. 34 (1978), 61-85.
 3. R. Rado, A note on combinatorial analysis, Proc. London Math. Soc. V 48 (1943), 122-160.
 4. J.-P. Thouvenot, ba démonstration de Furstenberg du théorème de Szeméredi sur les progressions arithmétiques, Seminaire Bourbaki, No. 5/8, 1977/78.
