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Summary. For any coloring of the N × N grid using fewer than log log N colors,
one can always find a monochromatic equilateral right triangle, a triangle with
vertex coordinates (x, y), (x + d, y), and (x, y + d).
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1 Introduction

The celebrated theorem of van der Waerden [Wae27] states that for any nat-
ural numbers k and r, there is a number W (k, r) such that for any coloring
of the first W (k, r) natural numbers by r colors, there is always a monochro-
matic arithmetic progression of length k. Answering a question of Erdős and
Turán [ET36], Roth [Roth53] proved a density version of van der Waerden’s
theorem for k = 3. He proved that r3(N), the cardinality of the largest sub-
set of {1, . . . , N} containing no three distinct elements x, x + d, x + 2d in
arithmetic progression, is O(N/log log N). This was not only the first proof
for the conjecture of Erdős and Turán, but also the first efficient bound
on W (3, r). One of the goals of the present paper is to give a combinato-
rial proof of such a bound, proving that W (3, r) ≤ 22cr

. The best known
bound for W (3, r) is the one which follows from Bourgain’s [Bou99] result
r3(N) = O(N(log log N/log N)1/2), which is better than ours, but uses heavy
tools from analysis. Van der Waerden’s Theorem was extended by Gallai,
proving that in any finite coloring of Z2, some color contains arbitrarily large
square subarrays. The simplest density version of this extension is to prove
that there is always a triangle in a dense N ×N grid with vertex coordinates
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(x, y), (x + d, y), and (x, y + d), if N is large enough compared to the density.
This was first asked by Erdős and Graham in [EG80]. The first proof of the
statement was given by Ajtai and Szemerédi [AS74] and later a much more
general theorem, the so called Multidimensional Szemerédi Theorem [Sze75]
was presented by Fürstenberg and Katznelson [FK79]. The proofs gave no (or
very weak) bounds for the maximum density of subsets of the grid avoiding
such triangles. The best bound is due to Shkredov [Shk], who proved that if
the density of a subset of the N ×N grid is at least 1/(log log log N)c then it
contains a triangle. Our main result is the following.

Theorem 1. There is a universal c > 0, such that for any coloring of the
N×N grid by no more than c log log N colors, there is always a monochromatic
triangle with vertex coordinates (x, y), (x + d, y), and (x, y + d).

Corollary 2 (van der Waerden’s Theorem, k = 3 case). For any col-
oring of [N ] by no more than c log log N colors, there is always a monochro-
matic arithmetic progression of length 3. Using the usual notation, W (3, k) ≤
22ck

.

Proof. Every coloring of the set Z of integers defines a coloring of Z2 by
giving the color of x − y to the point with coordinates (x, y). In this way, a
monochromatic triple with vertex coordinates (x, y), (x+ d, y), and (x, y + d),
defines a monochromatic arithmetic progression x−y−d, x−y, x−y +d.

It is worth mentioning that the traditional combinatorial proof using color
focusing gives

W (3, k) ≤ kkk··
·k4k }

(k − 1),

a tower-type bound.

2 Proof of Theorem 1

Let us suppose that the points of the N × N grid are colored by L colors,
and there is no monochromatic equilateral right triangle. We will show that
L must be large. Let us examine the coloring of the elements of the points
on the diagonal of the grid, i.e., the points with coordinates (x, y) such that
x+y = N+1. Select the most popular color, denoted by c1. The set of points of
the diagonal with color c1 is denoted by S1. For any pair p = (a, b), q = (c, d),
elements of S1, the points (a, d) and (c, b) cannot have the color c1. The
Cartesian product defined by the points of S1 has the property that only the
diagonal has points with color c1. The lower-triangular part of the Cartesian
product is denoted by T1, i.e.,

T1 = {(x, y) : ∃ s, t 3 (x, t), (s, y) ∈ S1, s > x}
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Note that s1 := |S1| ≥ N
L . We now define the color ci+1, the set Si+1, and

Ti+1 recursively, based on ci, Si, and Ti (where i ≥ 1).
Suppose the pointset Ti avoids the colors c1, c2, . . . , ci. There is a line with

slope −1, which contains many points of Ti. Let m be such that

|{(x, y) : x + y = m} ∩ Ti| ≥ |Ti|
N

.

Select the points with the most popular color, ci+1, in Ti along the line
x + y = m. The set of these points will be Si+1, and

Ti+1 = {(x, y) : ∃ s, t 3 (x, t), (s, y) ∈ Si+1, s > x}.
Thus, the pointset Ti+1 avoids the colors c1, c2, . . . , ci+1. Note that we

have the inequality

si+1 = |Si+1| ≥
(
si

2

)

(L− i)N
.

If we reach Step L with sL ≥ 2 then we have a contradiction, since we run
out of colors for TL.
From the formula above, one can already get a feeling for the magnitude of the
bound. However, for the formal proof of Theorem 1, we prove the following.

Lemma 3. If s1 ≥ N/r , si+1 ≥ 1
(r−i)N

(
si

2

)
and N = N(r) = (2r)2

r

then sr ≥ 2.

Proof. We prove by induction on i that for 1 ≤ i ≤ r, we have:

(a) si ≥ N

22i−1−1r2i−1 ,
(b) si ≥ r/i.

This is clearly true for i = 1. Suppose it is true for some i < r. Then

si+1 ≥ 1
(r − i)N

(
si

2

)
=

s2
i

2rN
· r

r − i
· si − 1

si

But
r

r − i
· si − 1

si
≥ 1

since si ≥ r/i by induction. Hence, we have

si+1 ≥ s2
i

2rN
≥ 1

2rN
· N2

22i−2r2i+1−2
=

N

22i−1r2i+1−1

which is (a) for i+1. It is easy to see that (b) also holds for i+1 as well. The
inequality for sr is now

sr ≥ (2r)2
r

22r−1−1r2r−1
≥ 22r−1+1r ≥ 2.

This completes the proof of the lemma and Theorem 1.
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We note here that with a similar but somewhat more complicated argu-
ment, we can prove that there are many monochromatic corners when the
number of colors is small. In particular, we can show:

Theorem 4. For any integer r > 0, if the lattice points in the N × N grid
are arbitrarily r-colored, and N > 223r

then there are always at least δ(r)N3

monochromatic “corners”, i.e., triples of points (x, y), (x+ d, y), (x, y + d) for
some d > 0, where δ(r) = (3r)−2r+2

.

We note that this is similar in spirit to the results of [FGR88] where it
is shown that in fact a positive fraction of the objects being colored must
occur monochromatically. The proof follows that of Theorem 1 and is omitted.

We should also point out that this approach can be used to prove directly
a quantitative version van der Waerden’s theorem for 3-term arithmetic pro-
gressions, namely that if Zp is colored by at most c log log p colors, then some
monochromatic 3-term arithmetic progression must be formed. Similarly, anal-
ogous results can be obtained for the occurrence of monochromatic affine lines
in GF (3)n using this approach.
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manuscript.
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[ET36] P. Erdős and P. Turán, On some sequences of integers, J. London Math.
Soc. 11 (1936), 261–264.

[FGR88] P. Frankl, R. L. Graham and V. Rödl, Quantitative theorems for regular
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