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ON DIFFERENCE SETS OF SEQUENCES OF 
INTEGERS. III 

By 
A. S~,RKOZY (Budapest) 

1. Let ~ be a set of  positive integers b t < b z <  .... A set of  positive integers 
u l < u 2 <  . . .  will be called an ~ - s e t  relative to ~Y if its difference set does not coE- 
tain an element of ~ ;  in other words, if 

(1) u x - u y  = b~ 

is not solvable in positive integers x ,  y ,  z .  

L. Lov~isz conjectured that if u l<u2<  ... is an d - s e t  relative to the set of 
the squares of the positive integers (i.e. u~ -u y  = z ~ is not solvable in positive 
integers x, y, z) then 
(2) ~ 1 = o(x)  

must hold. In Part I of  this series (see [10]), I proved this conjecture in the following 
sharper form: if u l<  us<. . ,  is an d - s e t  relative to the set of  the squares then 

_ { (togtog x)~/Q, 
(3) Z 1 = o [~ (log ~)'/~ j~. 

U i ~= X 

I proved this theorem by adapting that version of  the Hardy--Lit t lewood method 
which has been elaborated by K. F. ROTH in [4] and [5], in order to prove that if a 
set of  positive integers u ~ < u ~ <  . . .  does not contain an arithmetic progression o f  
three terms, then (2) must hold, more exactly, 

(4) 2 1 = 0 f x ~  ] 
=,~_~ k l o g l o g x ) "  

(In Part II of  this series, I gave a lower estimate for  

max ~:, 1 
t l f~x 

where the maximum is taken for those sets u~< u2<.. ,  which form an d - s e t  relative 
to the set 12,2 3 . . . .  , n  3, ...; see [11].) 

In the case of  the arithmetic progressions of  three terms, we may use the follow- 
ing simple fact: 

(i) A set a + q u ~ ,  a + q u 3 ,  . . . ,  a + q u t  (where a is an integer and t ,  q ,  u~,  u2,  . . . ,  ut 
are positive integers) does not contain an arithmetic progression of  three terms if 
and only if also the set u~, u2, ..., ut has this property. 
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356 A. SARKOZY 

This fact plays a role of  basic importance in the proof  of  (4). In the proof  of 
(3), ] could repJace this assertion by the following one: 

(ii) A set a+q2u,, a+q2u~ . . . . .  a+q2u~ (where a is an integer and t, q, u~, 
us, ..., ut are positive integers) is an d - s e t  relative to the set of  the squares if and 
only if also the set u,, u2, ..., u, has this property. 

(Note that here we have q'~ in place of  q.) 
Starting out from (3), one might like to show that (2) must ho!d also for sequ- 

ences u~<u~< ... which form an sd-set relative to certain other fixed set 
b , < b 2 < . . . ,  e.g. re]ative to 

(5) bi = ? 

(where k=>3 ~s a fixed integer and i = 1 , 2  . . . .  ), 

(6) bi = f ( i )  

(wher j (x )  ~s a fixed polynomial with ~ntegra] coefficients and 

(7) bl -=Pi 

i = 1 , 2 ,  ...) and 

(where p~ denotes the i ~h prime number and i=1~ 2, ...)~ respectively. 
The case (5) can be treated in the same way as the spedal case k = 2 ;  namely, 

the analogue of (fi) holds a~so in the general case k_->2 with qk in place of  q2 Thus 
it can be shown by the method used in [10] that if the set ux< u2< ... forms an 
d - s e t  relative to the set (5) (also in case k ~ 3 )  then (2) must hold. 

On the other hand, in cases (6) a~d (7), simple counter examples can be given. 
Namely, ~et f ( x ) = x 2 +  1 and ux=6, u o= 12 ...... ui=6i . . . . .  Then (2) does not hold, 
however, 3 [u,:-u~, and 6tu~-uy thus u~-uyeb~=z2+l  and u~-uy#b~=p~ 
(for l N y < x ,  z = l , 2  . . . .  ). 

P. Erd6s raised the conjecture that if 

(8) bi = i ~ -  ! 

(i.e. f ( x ) = x  ~-1  in (6)) respectively 

(9) b~ = p~- 1 

(for i=1 ,  2 . . . .  ), and ul<u2<..,  forms an d - s e t  relative to the set b~<b~<...,  
then (2) must hold. 

in both cases the difficulty is that an analogue of  (i) or (ii) does not exist; thus 
we have to modify Roth's method. We shall be able to avoid this difficulty by using 
estimates for exponential sums of the form 

(10) ~ e(b~a) 
b ~ x  
qlbe 

where q is small in terms of  x. (Throughout this paper, we use the notation e ~ "  = 
-= e(c 0 where ~ is real.) 
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Since the cases (8) and (9) can be investigated analogously, we are going to 
discuss only the case (9). The remaining part of  this paper will be devoted to the 
discussion of  this case, i.e. the solvability of  the equation 

(11) u~--uy = p . -  1. 

Consequently, we shall write briefly "~r instead of  '~ relative to the set 
p l - 1 ,  p 2 - 1  . . . . .  p i - 1 ,  ...". 

For x-- - l ,2  . . . . .  let A(x)  denote the greatest number of  integers that can 
be selected f iom 1, 2 . . . .  , x to form an d - s e t  and let us write 

A(x) 
a ( x )  = - -  

X 

We shall prove the following 

T H E O R E M .  

(12) a(x) : O - [ (log log log x)~ (log log log log x).] 
(log tog x) 2 J \ 

Throughout this paper, we use the following notations: 
We denote the distance of  the real number x from the nearest integer by Lxtl, 

i.e. lixH=min {x-Ix] ,  [ x l + l - x } .  If  a,b are reai numbers and b > 0  then we 

define the symbol min {a, b }  by 

(13) rain{a, b }  = a. 

C, cl, co, ..., M0, M1 . . . .  wilt denote (positive) absolute constants. We shall 
use also Vinogradov's notation: i f f  and g are two functions such that g_->0 and 
there exists an absolute constant C satisfying I f  t<= Cg then we write f<<g. 

2. In this section, we estimate exponential sums of  the form 

and 

(14) 

S(.~) = SN(~) = 2 (iogp)e((p--1)c~) 
p~--N 

P(~)  -= PM, q(~) =-- ~ (logp)e (P ~-@c~) �9 
p--I ~ M  

q 
q l p - 1  

(Here and in what follows, we shall leave the indices if this canao~ cause confusion.) 

LEMMA 1. Let u be an arbitrary positive real number, M a positive integer for which 
M ~  + ~ ,  and b, q, m integers satisfying 

(15) 1 ~ b < ( logM)" 
and 
(16) 1 =< q < (log M)  ". 
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358 A. SARKOZY 

Then there exists an absolute constant ea>O such that 

(17) y~ l o g p = l ~ q )  +O(Me-~l/~~ for ( m q + l , b ) = l  

P-~<=~t IO(Me-r162 ~ )  for (mq+l ,  b ) >  1 q 
qlp--1 

P-l=__m(modb ) 
q 

(where ca and the implieite constant in the error term may depend on u but not on 
b, q, m). 

PROOF. The conditions q[p-  1 and P -  1 =-m (rood b) can be rewritten in the 
q 

equivalent form 

(18) p =- mq+l  (modbq). 

Thus for (mq+l,  bq)=l, i.e. (mq + l, b)= l, we have to show that 

Z l o g p =  M q  + O ( M e _ ~ I r  
p ~ M q + l  ~9 tvq) 

p..~mq+l (rood bg) 

but this is a consequence of the prime number theorem of the arithmetic prog- 
ressioes of small (<(log M) v) modulus (see e.g. [3], pp. 136 and 144). 

For (mq+ 1, bq)>t ,  i.e. (mq+ 1, b )> l ,  (18) implies that (mq+ 1, b)]p. Hence, 
(mq + 1, b) is a prime number and p = (mq + 1, b). Thus in this case, the left hand 
side of (17) consis~.s of the single term 

logp = log (mq+ 1, b) ~ logb < log (log M) u = u l o g l o g M  = o(Me-clr176 

which completes the proof of Lemma 1. 

Lt~MY, A 2. Let u be an arbitrary positive real number, M a positive integer for 
which M ~  + ~ ,  and a, b, q integers satisfying (15), (16) and (a, b)=l .  Let us 
define the integer rob, ~ for (b, q)= 1 by 

(19) mb, qq+l=_O (modb) and 0<=mb, q=~b--1. 

Then there exists an absolute constant c2>0 such that 

(20) P = P~,~ = 

i Mq I a)+o(Me-c2fl~gm) for ( b , q ) = l  

for (b, q)> 

(where c~ and the implicite constant in the error term may depend on u but not on 
a, b, q). 
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(21) 

PROOF. By (15) and Lemma 1, 

P = e M ,  q N Z ( logp)  e P 1 a 
P--I~M 

q 
qlP--1 

= ...Y e m ~ log p = 
m=O P- - l  M 

q 
q l p - 1  

p - 1  
- - =  m (rood b) 

q 

2 e m-Gj +o Me-ClV = 
O~m~b--1  

( m q + l ~ b ) = l  

Mq 
9(bq) 

(~ .~  e m + 0 ((log M) ~ M e - c # ~  = 
O~=m~=b_ 1 --b 

( m q §  

(22) 

(23) 

Here 

Mq 
~p(bq) 

{~ .~ e m-~ + O ( M e - c 2 ( i ' ~ .  

(mq+ l , b ) = l  

2 e m = e m 2 #(d) = 
O ~ m ~ b - - 1  = d[(mq+l, b) 

(mq+l ,b )= l  

dlb O~= m ~  b--1 
d[mq+l 

Let mo denote the least non-negative integer n7 for which dlmq+ 1 holds. Then 

moq+ 1 =-=- 0 (rood d), 

and d]mq+ 1 holds if and only if 

(24) 

By (23), 

(25) 

(mq+ l ) - (moq+ l) = (m-mo) q =- O (modd). 

(d, q) = 1. 
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(24) and (25) imply that dlmq+ 1 holds if and only if m-mo=_O (rood d). Thus 
with respect to (a, b )=  1, the inner sum in (22) is 

O~t~=~_b-i 
dlm~+I 

= =~o e[ (mo§ = 
j =  

ib( a) e m o-ff for blda i.e. bid 

i ~ 

l _e (d  b } = 0  for b{d. 

Hence, the inner sum in (22) is different from 0 only if bid; but by dtb, this implies 
that b=d, and by (25), also (b, q )=  1 must hold. Thus we obtain from (22) that 

m --~ e 
o ~ m ~ b - ~ -  

(mq + 1, b) = J- 

[/~(b) Z e [m a] 
[ b[mq+l  

tO for ( b , q ) > l  

=~(b).-Fe moy = u(b)etmo T for ( b , q ) = l ,  

where mo satisfies (23), i.e. m 0 q + l - 0  (mod b); hence, mo=mb, q. Putting this 
into (21), we obtain (20) and the proof of Lemma 2 is complete. 

LEMMA 3. Let u be an arbitrary positive real number, M a positive integer for 
which M~ +~,  a, b, q integers satisfying (15), (16) and (a, b)= 1, finally, fi any 
real number. Then 

(26) P + = PM,~ + = 

: [~@bq) U(b)e(mb, q--if) n~=le(nfl)+O((Mf,+l)Me-c~(l~ .for 

[O((Mtflj+l)Me-c~(~) for (b, q)> 1 

(b, q )  = 1 

where mb,~ is defined (for (b, q ) = l )  by (19). 
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(27) 

PROOF. Applying Lemma 2, we obtain by partial summation that 

P~ , ,  ~ -+f l  = ~Y (logp)e ~-+f l  = 
p-I ~ M  

q 
qip--1 

-- ~_M q 
qlp--1 

= • P,,q (e(nfl)--e((n+ 1)fl))+P•,, ~e((M+ 1)/~. 
n=i 

For l <=n<= t/ M, 

: -~ -<_ 
1 n,q . i P--l~n 

q 
q[p--l_ 

<_- ,~ log (q,~ + 1) = ,~ log (q~ + i) < V~log ((log M)" C-if+ 1) = 0 ( r  M) 
k = l  

and 

# e = <nq< o u 

(with respect to (16)). 
For f'-M<n<--M, (16) implies that 

1 <= q < ( log  M)" < ( log  n2) ~ = 2"(log n) ~ < ( log  n) 2u 

(if M is sufficiently large depending on u) thus Lemma 2 can be applied with 2u 
and n in place of u and M, respectively. 

Summarizing, we obtain f rom (27) (using Lemma 2) that  for (b, q )=  1 

a M nq a 
PM, q (--~ + fl} = {n~=l - - -~  #(b)e (mb, q--~} (e(nfl)--e((n + 1 ) f l ) ) +  

+---~#(b)eMq (mb, q b) e((M+ l)fl)} + 

+ {,,~=~ ( P''q [b ) 9~bq) #(b),e (mb, q'-~)) (e(nfl)--e((n+l)fl))+ 

+[PM, q(b)--~t(b) ie(mb,  qb)le((h/I+l)fl)} = 

12 Acta Mathemattea Acaderniae Scientiarum Hungaricae 31, 1978 
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q ( ~ah ~vz 
- (p(bq) tt(b)e[mb,.--ffJ Z_~ e(nfl)+ 

[ r  _ 

+ 2 '  O (UM log M +  r  M) 9 [e(nfl) - e ( ( n  + a)fl)[ + 
r l = l  

M 

+ 20(ne-~r 
.=[r 

q 
 o(bq) 

[ a ~ M [/~3 . _ _  , 

M 

+ Z O(Me-c~f~[fll)+O(Me-c'f~~ 
,=[r 

__ q a M 

.(b)e{mb, oT] Z e(n[3)+O((Mtfll+ 1)Me-~fl~ 
(p (bq) . - , .  = 1 

while for (b, q ) > l ,  

PM, q +fl = ~ P..q (e(nfl)--e((n+l)fl))+ 
rq~l 

+ ~ P.,q(b}(e(nfl)-e((n+l)fl))+PM, q(b)e ( (M+l) f l )  = 

= Z 0 (g'Mlog M)le(nfl)-  e((n + 1)fl)] + 

M 

+ Z. O(ne-C~g~-~")le(np)-e((n+l)fl)l+O(Me-c'~~ 
,=[r 

[r _ _  M 
= Z O(Me-O~r176 .Z O( Me-~21/~ lfll)+ 

.=1 .=[r 

+ 0 (Me- ~ : r  = 0 ((M I~1+ i) Me-~:l~162 
since 

le(nfl)-e((n+l)13)] = l l -e (P) t  = le(-f l /2)-e(fl /2)]  = 2 Isin ~zflt <-- 2n ffl[ 

and the proof of Lemma 3 is complete. 

LEMMA 4. I f  a, b are integers such that a<=b, and fl is an arbitrary real number 
then 

2 ,  e (kfl) <= rain b -  a + 1, 

(For [11tll =0,  the right hand side is defined by (13).) 

This lemma is identical to Lemma 1 in [10]. 
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LEMMA 5. Let u be an arbitrary positive real number. There exist constants Mo, 
c~>0 (which may depend on u) such that if M>Mo, furthermore, a, b, q are in- 
tegers satisfying (15), (16) and (a, b) = 1, finally, [1 is a real number satisfying 

(28) 

then 

(29) 

e~ r 
I B I  < - -  

= a ' 

12go(M~q for IflI <- 1 
iP ( b  , fl = PM, q -ff ~- fl "< 1 

[ ~ o - ( b ~ ]  for --~= I31. 

PgOOF. We are going to apply Lemma 3. 
For (b, q) = 1, the main term in (26) in Lemma 3 can be estimated in the follow- 

ing way, by using Lemma 4 (and with respect to (28)): 

- - ~  l~(b)e rob,, X e(nfl) <-- 
n = l  I 

{ ~ }  q [ 2 ~ }  
=< q min M, = min M, <= 

,p (bq) ~o (b) (o (q) 

% )  for 1 

= 1 ( ~ q ) ~ - ~  for ~ ~-[31. 

Thus Lemma 3 yields that 

J 

a I Me- ~r PM, q|-ff+fl,,, ' l  < O((M[fll + 1) + 

Mq for [fli < 1 
q)(b)ep(q) = M 

q for 1 
2q~(b)~p(q)Jfll M <-[fl[. 

To obtain (29) from this inequality, it suffices to show that here the first term on 
the right (the O (...) term) is less than the second term. The first term is the greatest 
and the second is the least if [fl[ is the possibly greatest, i.e. Ifl[ =e~~ Then 
the first term is 

(30) 0 ((eC3 1 ~  1) Me-c=/l~ = 0 (Me(c3-~)r176 

while the second term is (with respect to (16) and for large M) 

qM M M Me_~3r 
2r (b) ~o (q) eCar 2ber i~M 2 (log M) ~ e~ar l~ 

For ca=~/4  and M>MI(u),  the latter is greater than (30) and Lemma 5 is proved. 
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LEMMA 6. f f  X, Y are real numbers, a, b integers and ~ a real number such that 
Y<-b<=X/u I<=Y<-X ~/4, (a, b ) = l  and 

then 

, j i a 1 

[cz---~ <--_ b-- ~ 

ISx(a)l = [ 2 (logp)e((p,  1)~.)! = t 2  (l~ <<XY-X/2(l~ ~L 
p<=X p<=X 

This is essentially a consequence of Theorems 1 and 3 of VINOG~_DOV in [12J, 
Chapter IX; see also MO~TaOM~Y [1], Chapter 16, and MONTGOM~r~Y--VAUGHaN 
[2], Lemma 3.1. 

Lr.MMA 7. I f  M(>0),  q, a, b are integers ands  is a real number satisfying 

(31) 1 ~ q --<= log M 
and 
(32) (a, b) = 1, 
furthermore, writing 

(33) O = M(1og M) -~, 
also 

(34) 2(log M) '~ <= b <= Q 
and 

aj r 
(35) ~ - - f f  < b--O 

hold then for large 31, 
M 

(36) IP(~)I = Ie~,~(~)i << Clog M) 2" 

PROOf. 

(37) IF.,~(=)I "-I~M_ = 
q 
qlp-1 

= lp_qM+l{~' (l~ p) e ((P ' l) q /  {q  j--2'o e ( ( p - 1 ) j ) } '  = ~  1 ~.i 

= - -  ~ (logp)e - 1  = 
q j=o p_qu+a 

t/iJ=o 
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~+j 
�9 By Dirichlet's theorem, there exist integers A, B such 

q 

(A, B) = 1, 

1 <- B <= 2qQ 

i - < 2--B~qQ; 

Let us write ~; = 

that 

(38) 

(39) 
and 

(40) 

by (39) and (40), also 

1 ~ _ A B '  
I 

(41) < B--- ~ 

holds. 
We are going to show that these conditions imply that 

1 
(42) B > ~- b. 

Let us assume indirectly that 

(43) B < _ l b .  

By (35), ~ can be written in the form 

a 01 
~+j -- + ~ + J  a+bj 01 

(44) r .=  I _ = i  F I  
q q bq bqQ 

where 101I< i. Let us define the integer U and the positive integer V by 

(45) a + bj U 
bq V'  

(46) (U, V) = 1. 

By (32), (a+bj, b)---l, thus 

(47) (a+ bj, bq) <= q. 

(45), (46) and (47) imply that 

(48) b <= V <- bq. 

By (40), ~ can be written in the form 
A 03 

(49) 
= 'B+ 2BqQ 

where 102[< i. 
(44) and (49) yield that 

U 01 A 
V = T - + - - -  bqQ B 

02 

b2BqQ' 
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366 A. SARKOZY 

hence, wi~.h respect to (34) and (48), 

u _ A  < 16l+ 10d 1 1 
(50) V B I =  bqa  2Bqa  < ~qQ 4 2Bqa  "<= 

< _ _  

t 1 1 t 
bqQ 2Bqb - bqQ 2BV"  

On the other hand, we obtain from (38), (43), (46) and (48) that 

U A -~ ~ '~ ,  

thus 
U A__ =' [UB-VA I 1 

( 5 0  iv: B = >- P--~" 
(50) and (5i) yield that 

1 1 1 1 1 
< ~qQ-~ 2 B V '  2--'V-B < bq'---Q' 

hence, with respect to (34), (43) and (48), 

VB 1 B < 2bq" 1 1 b 
~ < 2 ~qO = 2 v .  q--O"g = g O ' - 5  = -0 

<=]. 

Thus the indirect assumption (43)leads to a contradiction, which proves (42). 
Let us write X = q M +  1, Y=0og  M)  4~ Then for large M, 

(52) 1 <= Y = (log M)  40 < ( M +  1) 1/4 <= Xal4, 

furthermore, by (34) and (42), 

1 log' (53) B > ~- b _-> ( M)  '~ = Ii, 

finally, by (33) and (39), 

(54) B <= 2qQ = 2 q M ( l o g M )  -41 <= 2 ( q M +  1)(log M)  -~1 -< 

-< ( q M +  1)(log M)  -~~ = X/Y. 

In view of (38), (41), (52), (53) and (54), Lemma 6 can be applied with q M +  1, 
(log M )  ~~ A, B and 7 in place of  X, Y, a, b and ~. With respect to (31), we obtain 
that 

<= ((log M ) M +  ~)(log M)-~~ ((log M)M+ 1)}1, << 

<< (log M)M( lo g  M)-2~ 3I) 17 = M(log M)  -'a. 
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Putting this into (37), we obtain that 

1 q--1 g 
!P,u,q (o01 << q ~ '  M (log M)-2  _ _ _  

j=o (log M) 2 

which completes the proof  of  Lemma 7. 

LEMMA 8. There exists an absolute constant c4(>0) such that for n ~ 3 ,  

n 

~0(n) > c4 n log logn  " 

This lemma is well-known; see e.g. [3], p. 24. 

LEMMA 9. Let q, M be positive integers, R a real number such that 

(55) q <_-- log M 

' a n d  

(56) 3 <= R <= log M. 

Let SR, M denote the set of  those real numbers ~ for which 0~_~. <- 1 
do trot exist integers a, b such that 

(57) (a, b) = 1, 

(58) 1 <- b < R 

and 

(59) I a l R 
i M loglog R" 

Then for ~E SR, M and large M, 

q M  l o g lo g R  
(60) IPM'q(ct)] << ~o(q) R 

holds and there 

exist integers A, B such that 

(61) 

(62) 

and 

(63) 

and b, respectively. We obtain that 

(64) ]PM,e(~)] << - -  

t~oor .  Let us define Q by (33). By Dirichlet's theorem, for all ~ESR,M, there 

( A , B )  = 1, 

I <-B<=Q 

i A 
~ ' - B  < BQ " 

If  20og M) 4~ <= B, then Lemma 7 can be applied, with A and B in place of a 

M 
(log M) 2" 
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By (56), the right hand side of (60) can be estimated in the following way: 

(65) q .M loglogR MlOglogR_~MlOglog logM M 
q~ (q) R R log M (log M) ~ 

for sufficiently large M. (64) and (65) yield (60). 
If 

(66) B < 2(log M) '~ 

A 
and M is large then we may apply Lemma 5 with a = A ,  b = B ,  fl = ~ - - ~  and 

u--41. Namely, for large M, (15) and (16) hold by (55) and (66). Furthermore, by 
(63), 

A I 1 < 1 _( logM)41 
[ i l l= Cr < B Q  = Q U ' 

which implies (28) for sufficiently large M. Thus, in fact, all the assumptions in 
Lemma 5 hold. Applying Lemma 5, we obtain that for large M, 

.(67) IPM, q(~)[ < 

2(,psM--A-q q) for 
1 

/ ~ ~ l  for ~ ~ 181. 

1 
The right hand side is maximal for [fl[<=~. Thus for R<=B, we obtain by apply- 

ing Lemma 8 that 
2Mq log log B Mq log log R q M  

[PM'q(~)I < r << B ~(q----) << ~ "9(q) 

(with respect to R ~3). 
Finally, if B< R then 0~C SR, u implies that 

A 1 R 
(68) Jill = a---~ ~- = M loglog R 

1 
which yields also ] f l l>~  since it can be shown easily that 

R 
m : >  1 
log log R 

for R->3. Thus we obtain from (67) and (68) that 

q -< q 1~ -< q . M . l ~ 1 7 6  
IPM, q(~)[ < ~o(B)cp(q)lfll = ~o(q) lilt = q~(q) R 

which completes the proof of Lemma 9. 
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3. For arbitrary positive integers M, q, iet 

(69) uaq, u2q, ..., urq  

be a maximal ~-se t  selected from q, 2q, ..., Mq, and let 

T 

(70) -F(c 0 = F m ,  q(~z) = .~  e(uk~ ). 
k = l  

tn this section, we estimate this function FM,~(~ ). 
For an integer b and positive integers m, x, let A(b,m)(X ) denoze the greatest 

number of integers that can be selected from b+m,  b+2m,  ..., b+xrn to form an 
sr (so that A(o,1)(x)=A(x)). 

LEMMA 10. For any integers b, d and positive integers m, x, we have 

A(b.m)(X) = A(~,m)(x). 

PROOF. This follows trivially from the fact that the numbers b+u~m, b+u2m, 
.... b+ukm form an ~r if and only if also the numbers d+u~m, d+u2m, ..., 
d+ukm do. 

By Lemma 10, we may simpfify the notation A(b,m)(X) in the following way: 
let us write Am(x) instead of A(b,m)(x), i.e. let 

Furihermore, ]et 
Am(X) = A(b,m)(X) ( for  b = 0, + 1, + 2  . . . .  ). 

Am(x) 
a m ( x )  - -  

X 

so that A ( x ) = A l ( x  ) and aa(x)=a(x);  moreover, T = A q ( M )  in (69)and (70), 
thus 

Aq(M) 

(71) F(c~) = FM, q(ct) = ~ e(uke). 
k = l  

Lemmas 11 and 12 follow trivially from the definitions of the functions Am(x) 
and am(X), respectively. 

L~MMA 11. I f  m, x and y are positive integers such that x<=y then Am(x)<-Am(y). 

LEMMA 12. For arbitrary positive integers m and x, we have %(x)-<_l. 

LEMMa 13. For arbitrary positive integers m, x and y, we have 

(72) Am(x+ y) <= A,,,(x)+Am(y), 

(73) Am (xy) ~ xA m (y), 

(74) a,,, (xy) ~ am (Y), 

(75) a,,(x) <= [l + 
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PRoof. By Lemma 10, the greatest number of integers that can be selected 
from m, 2m, ..., xm and ( x + l ) m ,  (x + 2)m, ..., (x + y )m to form an ~r is Am(x ) 
and A,,,(y), respectively; thus the greatest number of  integers that can be selected 
from m, 2m . . . .  , xm, (x+  1)m, (x +2)m, ..., ( x + y ) m  to form an ~r is <--A,,(x)+ 
+Am(y) which proves (72). 

(73) is a consequence of (72). 
Dividing (73) by xy, we obtain (74). 
Finally, by Lemma 11 and (73), 

<= + l  (Y---) AM 
Y 

Dividing by x, we obtain (75). 

LEMMA 14. Let q, b, t, M be pasitive integers, a an integer, a, fl real numbers 
such that 

a 

(76) z--b-- = fl" 

Let 

F*(~) = F ~ , q ( a ) -  abe(t) ~__,e Z e ( f l J )  i, 
b s = l  ~ - j = l  / 

so that (f  (a, b)= i then 

(77) F~:,q(cO = a~(t) e(fl]) for  b = 1 

[0 for  b >  l (where ( a , b ) = l ) .  

Then there exists an absolute constant e5 such that 

(78) [FM,~(a)-F~,,(e)[ <- (abq( t ) -aq(M)M)+cs(]B[Mabq(t )+a,( t ) ) tb .  

PROOf. We are going to show at first that 

(79) FM, q(~) = -~ ~ Z~ e(auk)+O(aq(t)tb).  
s = l  ]=i ]_u t .< j+ tb  

u k = s (rood b) 

Let us investigate the coefficient of e(O~Uk) on the right hand side. 
If  tb<=uk~_M then we account e(~uk) exactly tb times, namely for the following 

values of  j :  
j = uk - - t b+ l ,  uk- - tb+2 . . . . .  uk. 

Thus the coefficient of e(~uk) is 
1 

tb.- i~ = [ 

in this case (and its coefficient is the same on the left hand side). 
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If 
(80) 1 -<_ uk < zb 

then we account e(~u~) on the right of (79) for j =  l, 2, ..., Uk, thus its coefficient is 

1 1 
(0<=) u k ~  1 

on the right and 1 on the ]eft of  (79). For  the numbers u k satisfying (80), the numbers. 
ul, q form an d - s e t  selected from q, 2q, ..., tbq thus in view of  (73) in Lemma 13, 
their number ]s 

<= A~(tb) <= Aq(t)b = aq(t)tb. 

These facts yield that, in fact, the error term in (79) is O(a~(t)tb). 
The term e(~Uk) in the inner sum in (79) can be rewritten in the following way: 

e(euk) = e + fl uk = e - - ~  e(fluk) = 

[aS'~efl~" ( b )  = e [--~-) ( v ) e ( f l ( u k - j ) )  = e e(~j)(a+O(lD(uk-j)J)) = 

= e (a_~ } e ( f l j ) + O ( f l ( u ~ - j  )l) = e (a_~_~ ) e(flj)+ O(]fljtb) 

since tuk-- j l<tb in the inner sum, and 

l e ( y ) - l l  = ]e(y/2)--e(--r/2)] = 12sinzT] ~ 2],~71 = 2~[71 

for any real number 7- 
Thus the inner sum in (79) can be estimated in the following way: 

j~uk-<j-}-tb j~t~k<J+tb L ~ u ]  ] 
u~s(~odb) Uk~S(modb) 

j<=uk<j+tb 
u k ~ s  (rood b) 

Let us define the integer v by 

v < j < = v + b ,  v=-s  (modb).  

Then for the numbers u, satisfying j<=uk<j+tb and Uk=_S (mod b), the number~. 
ukq form an ~r selected from vq+bq, vq+2bq . . . . .  , vq+tbq. Thus by Lemma 10~ 

I <= A(~q, ba)(t ) = Aba(t ) = ab~(t)t. 
j~ t k< j+tb  
utc~s (rood b) 

Hence, defining D(j ,  t, b, s) by 

X 
j~uk-<j+tb 
u~,--=s(mod b) 

1 = abq(t)t--D(j,  t, b, s), 
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we have D(j,  t, q, s)>=O. Putting this into (81): 

e(eu~) = t [e (a@) e(flj)+ O(tfl[tb)(abq(t))t-- D(j,  t, b, s ) ) =  
j:~uk < j  +tb 
uk=-s(modb) 

(aS} 
= e T e(,Sj)(ab,(t)t--D(j, t, 0, s)) + O([fllabq(t)t~b). 

Thus (79) yields that 

l ~(e(a-;-;)e( f l j ) (abq(t) t -D(j , t ,b ,s))+O(fl[%~(t) t~b)}+ (82) F~,q(~) = 7 i=* 

+O(a~(t)tb) = a.q((,!.( ~ , e ( b ) } f  ~ e ( f l j ) ] _  
- b $ = 1  "-j=l / 

t b M as . . 
[b s~=l Z e f-i-l e(flJ )D(j '  t' b' s) + 

j = l  \ u /  

: 

e - -  b, s)+O(([fl! Mab,(t) +aq(t))tb). ~=1 [ b J e(flj)D(j, t, 

Putting here ~ = f l = a = 0 ,  we obtain that 

aq(M)M = Aq(M) = abq(t)M-- z., ~__ D(j ,  t, b, s)§ 
s=l j=  

hence 
1 b M 

--s~__~1 ~__lD(j, t, b, s) < (abq(t)-aq(M))M +Qaq(t)tb. 
tb j 

Thus (82) yields that 
IF~,~(~)- F~,~(~)[ < 

~1 b M 

< ((a~ q ) -  a~ (M)) M + c~ a~ (t) tb) + C, (lfil Mabq (t) + aq (t)) tb < 

< (abq (t)-- aq (M)) M +  cs (ill Mabq (t) + aq (t)) tb 

which proves Lemma 14. 

4. (12) will be deduced from a lower estimate for 

in terms of aq(M) where 
R is small in terms of M. 

a*(t) = maxi ab.(t ) 
l~b~_R -1 

t=o(M) and R ~ + ~ ,  however, t is relatively large, 
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LEMMA 15. Let t, M, q be positive integers, R a real number such that 

(83) tiM, 

(84) q -<_ log M, 

(85) 3 <= R _<-- log M. 

Then there exist absolute constants co, clo such that for sufficiently large M, 

(8 6) (aq (M)) ~ <_- c9 {(a* (t) - aq (M)) ~ R log R + 

+a*( t ) (a*( t ) -aq(M))+(a*( t ) )  2 logR-~ M--- 5 (log~--ogR) 2- + 

+a.(t)(e_clor F log log R.)} 
R 

PRoof. We are going to use a modification of that version of the Hardy--- 
Littlewood method which has been elaborated by K. F. ROTH in [4] and [5]. 

P(e), F(e) and F*(e) will denote the functions defined by (14), (71) and (77). 
(We recall that ul, us, ..., UA,(M) in (71)denote integers such that ulq, u~q,...,  ua, (vt)q 
form a maximal M-set selected from q, 2q, ..., Mq.) Then 

1 

(87) f V(e) F(-e)P(e) de : 
0 

: X e(u,e) X e(--ux e) ~ '  (logp)e e de = 
0 y = l  x = l  p--1 ~_M 

q 
q l p - 1  

namely, 

or in equivalent form, 

logp = 0, 
X, y, p 

gy--Ux+ P q  I =0 

p - 1  
uj ,-ux + - 0 

q 

u , ,q-uvq ----- p -  1 

is not solvable, since the numbers ulq, u2q, ..., ua,(u)q form an M-set. 
Let us write 

1 R 
5 -  

M log log R ' 
(88) 

then by (85), 

(89) 

for large M. 

1 
M 

log M 
Mlog log log M ( < 1 )  

A c t a  Matheraat iea  Acac lemiae  Sc ien~iarum Hungar ieae  31, 1978 



374, ~. SARKOZY 

By (87), 

hence, 

+~ 1--a 

- + 6  d ~  " ~ - a  t 

1 + 6  I 1 - ~  

(90) ! [F(~)lzP(~t)d~ ~ f lF(~)t*!e(")ld~" 

We are going to give a lower estimate for the left hand side and an upper es- 
timate for the right hand side. 

In order to estimate P(c 0 for [~1<=5, we apply Lemma 3 with u = l ,  a=O, 
b = l  ((16) holds by (84)), Then mb, q=O in Lemma 3, thus we obtain with respect 
to (89) that there exists an absolute constant ex0 such that for large M and Ice[<-5, 

t i 

liP(e) (o q",7 ) 75,,,=1 e(noO = O((M6+ 1)Me-*~ r 

= O [ M log M e - ~ l / l ~  -< Me-r f ~  
~,1 og log tog :M ) " 

Thus we obtain applying ParsevaFs formula that 
+6 

(91) _f IF(~)I~P(oOd~ = 

= _flF(~176 , -6 IF(e)]2 P(e) q~(q)q ,=l~e(ncO, >- 

- -  --> q [F(~)] 2 Z e(noO - f [e(~)l z r ,~=~ e(ncz) do~ > 
- -  \ n = l  / _ ~  

> q f [F(~)I 2 e(noO - f [F(oOI 2Me-=~of~~ 
- -~  = , - - 6  

> ~ I f IF(=)I ~ [ Z e(,,~,)ld~,l-Me-~,or IF(=)t~d~, = 
9tq) I-6 ~.=x J I o 

q +o M 
= ~ _ f  ]F(~x)[~(n__~l e(ncx))d~z --a.(m)m2e-clol/l~gm>= 

> q F(~z)] ~ e(na) d~-a*(t)"M~e-*~o lfi-~.m 
= r _ -.=x - ; ' 
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since 

(92) aq(M) <= aq(t) "<= a*(t) 

by (74), (83) and the definition of the function a*(t). 
For any complex numbers u, v, we have 

Xu i 2 -  l<~i = i , , ~ -  '~1 = I ( u -  ~)~+ ~(~- 0 l  <-- 

<- ]~-vtl~l+ lvll~-~t = l,*-vl(tul+ lvl) = 

= l u - v l ( l ( u - 0 + v t +  l<)-<-]u-vl(lu-vl+R!vt)= 

= lu-  vl%21u-vllvt. 
Thus 

I (IF(~)I~--IF*(O]~) e(n=) dot <-_ 
-- X n = l  / l 

f ]tF(~)I2-1F*(~)I 2] e(nc~ d~<= 

+,~ i M i 
f (1F(c 0 -  F* (~)12+ 21F(~)- F*(~)] IF ~ (~)r)l,~ e(n~) I d~. 

- -$  

For a=0,  b = l ,  Lemma 14 yields with respect to (92) that 

IF(~)" F* (~) ] <= (aq(t)-  aq (M) )M+ cs(t~] Maq(t) + aq(t)) t 

< (a*(t)-- a~(g))M+cs( l~[M+t)a*( t ) t  "< 

I(a*(t)--aq(M))M+cala*(t)t  for I~1 <= 1/M <= 
[(a*(t)-a.(M))M+cl~[ot[a*(t)tM for l/M<= lot[ <= r 

Thus using also Lemma 4, we obtain from (93) (with respect to (88), (89), (92) and 
the inequality 

(94) (A + B) ~ <= 2A2+2B 2 
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where A, B are arbitrary real numbers) that  

<< f { ( (a* ( t ) -aq (M ) )M+a*( t ) t )  ~+ 

+ ( (a*( t ) -aq(M))M+a*(t ) t )a*( t )_M}Md:~ + 

+ f {( (a*( t ) - -aq(M))M+ [e[a*(t)tM)2+ 
l/M_~la[~_5 

+ ( ( a , ( t ) _ a q ( M ) ) M _ l _ [ e t a , ( t ) t M ) a , ( t ) l ~  1 d~<< 

<< (a* (t) - aq (M))  ~ M s + (a* (t))~ t 2 + a* (t) (a* (t) - aq (M))  M 2 + (a * (t))2 t M  + 

§ f 1---de+ 

1 
+(~*(O)~teM~ f [~[ d e + a * ( t ) ( a * ( t ) - a q ( M ) ) M  f ~ d ~  << 

I/M~_ [el ~_ ~ l/M<=[a] ~_ 5 

<< (a* (t) - a~ (M)) 2 M "2 + (a* (t))e t M  § a* (t) (a* (t) - a. (M)) M e § 

§ {(a* (t) - aq (M)) 2 M ~ § (a*(t))3 tM}  log 1145 § 

+ (a* (t))3 t e M 2 be + a* (t) (a* (t) - aq (M)) M 2 << 

<< (a * (t) -- aq ( i ) )  e M e + (a* (t))2 t i  + a* (t) (a * (t) - aq ( M ) ) M  e + 

R e 
+ {(a* (t) - aq (M))~M "2 + (a* (t))2 tM }Iog R + (a* (t))3 t e (log log R) e << 

R 2 
<< (a*( t ) -aq(M))2Melog R +(a*(t)f" ( t M l o g  R + t  2 (log ]-~ R) 2'} + 

+ a* (t) (a* (t) -- aq (M)) M 2. 

By Lemma 4 and Parseval's formula, we have 

f IF*(e)l ~ e(na) d e  = 
\n~l / 

f IF*( )i' * e : de :- = e e (ha -- e ne = 
--5 \ n = l  -' + 5  X n = l  / 

~./e 1 e 2_le 
d ~ .  => (~.(t))~ Z 1-2 f (a,,(t)y 4e~ 

l~_x,  y, z ~ M  +5 
x - - y + z = O  
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Here for large M, 

27 1-> 5 -  
l ~ x , y , z ~ M  

x - - y + z = O  

~oce 1<=~=[_~1 ,<=z<=[~l .od ~=x+z s~,,~fr the conditions l<__-X, y, z-<_M, 

x - y + z = O .  Thus with respect to (85) and (92), 

+' [Y ~I (96) f IF*(oOI = e(n~ do~> 

1 +~ 1 d~) 1 
> ~,,o~,,~-(~ ~ +.r -~ .--~,,~,,/~(~ ~ ~.1 -- 

= (aq(t))~M 2 ---~ > -~ 

(91), (95) and (96) yield that 

(97) _fa]F(~)l~P(~ ) -  d~ > 

> f IF(~)] z e(n~ - a * ( t ) M 2 e - c ~ o ~  >= 
_ X n = l  / ] 

> q f I F * ( : O l ~ 1 2 e ( n ~ ) l d ~  - 
= q~(q) _} -n=a " t 

§  ] 
~o(q) (IF(~)I2-IF*(~)I 2) 2e ( n ~)  d ~ -  

_ X n = l  I 

1 q (aq(M))=.M2_ - a*( t )M2e-c~~162 > l--O" 9(q) 

-c,a ~ {(a* (t)--aq(M))'aM 2 log R +(a* (,))~ (,M log R + t  a (log ~--~g R)s + 

+a*(t)(a*(t)-aq(M))M2 + a * ( t ) M Z e - q o ~ } .  

Now we are going to give an upper estimate for the right hand side of (90). 
If a, b are integers such that O<=a_<-b-1, l<=b<=R and (a, b)=l then let 

us denote the interval 

- 6 , - f f + 6  = M l o g l o g R '  b -t Mlo~,]-~gR 

by I,,b (so that Io,1=[-6 +6]) and define the set SR, M in the same way as in Lemma 
9. Then obviously, 

[6, 1-61 c {  U ( U I,,,b)}US.,M 
2 ~ b ~ R  l ~ a ~ b - - 1  

(a, b ) = l  
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thus 

(98) 
1--6 

f [F(a)[ 2 IP(~,)! d~ -< 
+~ 

[gl  

<= Z Z f IF(~)l~[P(~)[d~+ f [F(a)I~IP(~)t d~= 
b=2  l~_a<=b--I I 

(a, b) = I  ~, b SR,  r~ 

[R] 

= Z Z Z~,~+E~. 
b=2 l~_a~_b--1 

(a, b) = I 

For ~I~ ,b ,  we use Lemma 14 te estimate IF(~)[, while [P(~)[ can be estimated 
a 

by applying Lemma 5 with u=2 ,  a=-b-+fl ,  since (15) and (16) hold by (84), (85) 

and b<=R, and also (28) holds for large M by I#l<-3 and (89). Applying these 
lemmas, we obtain with respect to (92) that if ~ /~ ,b  (where 1< b<=R) then 

IF(~)] <= (abq(t ) -aq(M))  M + c~(lfl[ Mab~(t ) + ao(t )) tb <= 

<- (a* (t ) -aq(M))  M + cs([fl [ M +  l)a*(t) tb <- 

a*(t)-ao(M))M+2c~a*(t)tb_ ~ for [fl[ <_- 

= 1 [( )) ( - -  a*(t)-aq(M M+2c~ * t)tb for Ifll > M 

.and (29) hold. Thus in view of (85), (88), (89) and (94), 

F a a Id 

(o 
Mq << f {(a* (t) -- a~ (M)) ~" M "~ + (a* (t))~ t z b 2} ~o (b) ~p (q) dfl + 

1 

+ f {(a*(t)--a~(M))~M~4-]fil2M~(a*(t))et2b~}�9 cp(b)~(q)q [ill dfl << 

<< {(a*(t)-aq(M))~MZ+(a*(t))'~t~b ~} q 4_ 
~(b)~(q) " 

1 
q ~o(b) qq~(q) {(a*(t)-a~(M))2M'~ ~ f -~dfi+Me(a*(t))~-teb f I/~[d/3} << 

q {(a*(t)_a~(M))ZMZ§ 
<< cp (b)~ (q) "~ 
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hence 

(99) 

<<: 

+ (.* (t) - ~ (M)) 2 M~ log M~ + ~ (a* (t))~ t~ b~ ~-~} << 

{ ( }] : q  
q~(b)~o(q) (a*(t)-a~(M))~'M2t~ R+(a*(t))~t~b ~" R log log R ' 

~, E ~ < <  ~, ~ o b = - 
(a ,  b) = 1 (a ,  b)  = I 

R 2 

R a 
<< ~ { (a*(t)-aq(M))~M2Rl~ (log log R)~}" 

Finally, to estimate Es, we use Lemma 9 and Parseval's formula: 

(loo) E~= f [F(~)l~le(~)[d~<= sup IP(~)I f IF(~)[~a~<< 

qM log IogR r ~ 
IF(~)I 2 

<< ~(q) R o 
J d~ 

_ qM loglogRa, , (M)M< = q . ,  21oglogR - ,p(q~ - - E - -  ~ -ff~,~ ~,t)M -~ 

(with respect to (92)). 
(90), (97), (98), (99) and (100) yield that 

1 q (aq(M))eM2_c13o_~{(a,(tl_aq(M))ZM21ogR+ 10 ~o(q) 

( R e 
+(a*(t)) 2 [tM log R + t ~ (log]-o-og R) ~ J +a*(t)(a*(t)-aq(M))M2 + 

+ a*(t) M 2 e - q o r  << 

<< ~ { (a*(t)-aq(M))~'M2Rl~ +(a*(t))2t~ (log L-og R) 2'} + 

+ _ ~ a ~ ( t ) M  2 !oglogR R 

or in equivalent form, 
(a~(M)) 2 << (a*(t)-aq(M)) 2 R log R+  

t .~ R.~ . 

(with respect to (92)) which completes the proof of Lemma 15. 
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5. In this section, we will complete the proof  of  our theorem by showing that 
Lemma 15 implies (12). 

C will denote a large enough (but fixed) constant and x will be an arbitrary 
integer which is sufficiently large in terms of  C. 

Let us write 
[ 1 log log x ] 

z = ,  
l o ~ x J  t6 

and define the positive integer N by 

(101) [(log log xp]ZlN 
and 
(102) N <_- x -< N +  [(log log x)5] z, 
so that 

[ x .  ] [(log log x)S]z. 
N = [(log log x)5] z 

For x ~ + ~ ,  
1 log log x 

(103) Z ,-~ 
6 log log log x '  

hence 
log [(log log x)5] z = Z log [(log log x) 5] 

5 Z l o g l o g l o g x  ~ 5 

thus for large x, 

(104) 

1 l o g l o g X x l o g l o g l o g  x = 
6 log log log 

= 5 log log x 

[(10g log x)5] z -< e 1~ log~ = log x. 

(102) and (104) imply that for large x, 

(105) x -> N >  x - l o g x .  

Let us define the positive integers to, tl . . . . .  tz-~, tz in the following way: 
for k=O, 1, . . . ,  Z,  let 

N 
tk ---- [(log log X)5] z-k '  

SO that t z=N.  (In fact, these numbers are positive integers by (101).) Furthermore, 
(104) and (105) imply that for large x, 

N 
U06) x => N = tz > tz-1 > . . . >  q > to - [(log log x)5]z > 

> x--log_______x_ x 1 (>t/-x-). 
log x log x 
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For u>_-3, let us define the function f (u)  by 

log u log log u 
f (u) = ue 

and for k = 0 ,  1 . . . . .  Z -  1, let 

R k = ( f  (C)) a/2 ( f  (k + C))-1 log log ( f  (k + C))-  1. 

Finally, we define the positive integers q0, ql . . . . .  qz-1, qz by the following 
backward recursion: 

Let q z = l .  If  qz, qz-1 . . . .  , qk+l have been defined (where 0<_-k<=Z-1) 
then let qk denote a positive integer for which 

(107) qk+l[qk 

and 

(108) 1<- qk <�88 
q k + l  

hold and aq~(tk) is maximal; i.e. using the notations of Lemma 15 (with tk, qk+l 
and R k in place of t, q and R, respectively), let us define qk by (107), (108) and 

(109) a~(tk) = a*(t) = max ab- (tk) 
l ~ = b ~ R k  ,lk + x " 

We are going to show by straight induction that if C is large enough and x 
is sufficiently large in terms of C then for k=O, l, . . . ,  Z, 

(110) aqk (tk ) <_ f (k +C____~) 
f (C)  

For k = 0 ,  (110) can be written in the form a~0(t0)<_-I but this holds trivially 
by Lemma 12 (independently of C). 

Now let us suppose that (110) holds for some positive integer k, satisfying 
O<=k~Z-1. We have to show that this implies that also 

k+l �9 

holds. 
Let us assume indirectly that 

(11 l) aq~ +i(tk+l) > 

f ( k  + 1 + C) 
f (C)  

f ( k + l + C )  
f (C)  

We are going to deduce a contradiction from this indirect assumption by using 
Lemma 15. For this purpose, we need some estimates for the function f (u)  and 
the parameters Z and R k. 

Obviously, for large u, the function f (u)  is decreasing and 

(112) lim = + f (u) O. 
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Furthermore, if u-~ + oo 

(113) 
For u ~  + ~ ,  

(114) 
and 
(115) 

and U ~ l  then 
V 

f ( u ) ~ f ( v )  for u - ~ §  v - - 1  . 

l o g ( f  (u)) - t ' - ~ l o g u  ~ = 2 1 o g u  (for u ~ + ~ o )  

log log (f(u))  -1 ~ log log u (for u ~ + oo). 

By Lagrange's mean value theorem, for u=>3, there exists a real number v such 
that 

f ( u ) - f ( u + l )  = - i f ( v )  and u <_- v = < u4-1. 

Thus for u ~ + ~ ,  we obtain with respect te (113) that 

- log log v - I + 2 ( l o g  v) (log log v) 
(116) f ( u ) - f ( u + l )  = - i f ( v )  = v3 

2 (log v) (loglog v) = 2 f ( v )  ~ 2 f ( u  ) 
V t~ V ' U 

(103) implies that 
(117) log Z ~ log log log x 
and 

( fo r  u - ~ + ~ ) ~  

(for x--  + ~). 

log log Z ~ log log log log x 

Thus with respect to (,103) and (113), we have 

(118) f ( Z +  C) ~ f ( Z )  = 
log Z log log Z 

Z 2 

36 (log, log log x) 3 (log log log log x) 
(log log x) z 

Finally, if C is large enough and k = 0 ,  1 . . . .  , Z - 1  then with respect to (115), 

(119) Rk = ( f (C) )~ /~( f (k  + C))- I  log log ( f ( k  + C))-~ < 

(k+  C) 2 .2 loglog (k+  C) = 
< (f(C))1/2 log (k + C) log log (k + C) 

= 2 ( f ( C ) )  1/2 ( k + C )  ~ 
log (k § C) 

and 

(120) 
1 

R k > ( f (C) )~ /2( f (k  + C)) -~ . -g  - log log (k+  C) = 

1 (k + C) "~ 
--2 (f(C))~/2 log (k § C) " 
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Furthermore, by (112) and sincef(u) is decreasing for large u, we have also 

R k < ( I ( k  + C))-1 log log ( f ( k  + C)) - i  
and 

R k >= ( f ( k  + C)) 1/~ ( f  (k + C))-I  log log ( f ( k  + C))-1 = 

= ( f ( k  + C))-1/'~ log log ( f ( k  + C))-1 

for large enough C. Hence, in view of (112), (114) and (115), we obtain for large 
Cand k = 0 , 1 , . . . , Z - 1  that 

1 
(121) 7 log (k + C) < log R~: < 3 log (k + C) 

and 
1 

(122) ~- log log (k + C) < log log Rk < 2 log log (k + C). 

We are ready to show that if C is large enough and x is sufficiently large (in 
terms of C) then Lemma 15 can be applied with tk, tk+l, qa+l and R~ in place of 
t, M, q and R. In fact, (83) holds obviously by the definition of the numbers 
to, q . . . .  , t z. Also, R_->3 holds trivially for large C by (121). Furthermore, 

Z--1 Z--1  Z--1  

qk+ ,=qz  / /  qJ -- H qJ <_-/7 Rj, 
/ = k + l  q j + l  j=k-i-1 q j + l  / = o  

thus to prove that both (84) and (85) hold, it suffices to show that 

or in equivalent form, 

(123) 

By (106), 

(124) 

Z - 1  

/7 
] = 0  

Rj <= log tk+l(= log M) 

Z--1 

log R i <_- log log tk+ 1. 
j = 0  

r- 5 
log log tk+ 1 > log log t'X > ~ log log X 

for large x. On the other band, by (103), (i17) and (121), we have 

Z--1 Z--1 

(125) Z logRj < 3 
j=o j = 0  

log( j+C)  < 3 Z l o g ( Z + C ) <  

< 4Z log Z < 5 
1 log log x 
6 log log log x 

5 
log log log x = ~- log log x 

for large C and x. (124) and (125) yield (123). Thus in fact, Lemma 15 can be applied; 
we obtain that (86) holds. To deduce a contradiction from (86), we have to estimate 
as(M ) and a * ( t ) - a , ( M ) .  
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Using the notations of Lemma 15, (110) and (111) can be rewritten in the form 

(126) 

and 

(127) 

By (74) in Lemma 13, 

a*(t) <= f ( k + C )  
f ( C )  

aq(M) > f ( k + l + C )  
f ( C )  

t=tk/ tk+l=M implies that 

(120 0 ~ aq~+~(tk)--aq~+a(tk+a) = aq( t ) -aq(M)  <= a*( t ) -a~(M) .  

With respect to (113), (126), (127) and (128) imply for large C that 

(129) 
1 , 

a*(t) >= a~(M) > -~a (t). 

Furthermore, (126) and (127) yield with respect to (113), (116) and (129) that for 
large C, 

(130) a*( t ) -aq (M)  < - -  
f ( k + C )  f ( k + l + C )  3 f ( k + C )  

f ( C )  f ( C )  f ( C )  k + C  

m 
4 f ( k + l + C )  

k+ C f ( C )  

4 4 
"< k + C  aq(M) <= k + C  a*(t). 

By (118), (127) and (129), we have 

(131) a*(t) ~ ao(M) > f ( k  + l +C)  > f ( Z + C )  > 
f ( C )  - f ( C )  

35 (log log log x) 3 (log log log log x) 
f ( C )  (log log x) 2 

for large x, while in view of (106), 

(132) e-Caor = e--CloJ/logtk+------~l ~ e-clol/logt--oo < 

(log log log x) a (log log log log x) ) 
< e-c~o r = e-old IT~ = o (log log x) 2 ' 

for x-~ + ~.  (131) and (132) yield that for fixed C and large x, 

(133) e-c'~oVl~ < f ( c )  a* (t). 
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Finally, by (113), (120), (122), (127) and (129), we have 

(134) tog log R < 2 loglog(k+C) 
R l ( f (C))~ /2  ( k+C)  ~ 

log(k+C) 

= 4(f(C))-i/~f(k + C) = 4( f (C))  ~/2 f ( k  + C) 
f ( C )  < 

< 5(f(C))~/~ f ( k + l  +C) < 5(f(C))~/2aq(M ) <_ 5(f(C))l /2a,(t  ) 
f (C )  

for large C. 
With respect to (119), (121), (122), (128), (129), (130), (133) and (134), (86) 

yields that 

c 4 2 (k + C )  z 3 log (k + C) + 
( la*( t )}  < , { [ -~ - -~a*( , ) ) . 2 ( f (C) )  t/2 log(k+C) 

i 
+a*( t ) . k - -~a*( t )+(a*( , ) )~  ([(log log x)5], 3 log (k+C)+  

, { ) • [(log log x)5] ~ '  2(f(C))~/2 log(k+C)~(k + C) 5 
( 1  log log (k + C)) 2 

+ 

+ a* (t) ( f (C)  a* (t) + 5 ( f (C))  1/~ a* (t))}. 

Dividing by (a*(t)) ~ and with respect to (103), (112) and (117), we obtain that if 
C is large enough and x is sufficiently large depending on C then 

--4 < 96c9(f(C))1/~+ +c9 (loglogx) 5 -3 log (Z+C)+  

2 
+ c9 (log log x) 1~ 25(f(C))~/2(Z+ C)I~ + c9 f (C)  + 5c9(f(C)) I/z < 

1 1 7c~ 21~ 5/2 - l o  1 1 
< ~-~+~-~+ (loglogx) 5 logZ+ (log log x)lO Z +~-~+~-~ < 

216c9(f(C)) ~/~ ( 1 loglogx 11~ 2 8c9 (log log log x)-r < 
< ]-5 + (log log x) ~ (log log x) 1~ 5 log--~og ~ x)  

2 1 21~ 5/2 1 2 1 1 1 
< ]-5 + 3-O-1 510 (log log log x) ~~ < ]-5 + 3-0 + ~ = 5-" 

Thus in fact, the indirect assumption (111) leads to a contradiction which proves 
that (110) holds for k=0,  1, ..., Z. 
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Applying (110) with k = Z ,  we: obtain With respect to (118) that 

(135) aqz(tz) = al(N) = a(N)  < f ( Z + C )  
= / ( c ) <  

37 (log log log x) 8 (log tog log log x) 
f ( C )  ~ (log log x) ~ ' 

provided that x is sufficiently large. 
Finally, (135) yields, by (75) in Lemma 13 a,ad (i05) that 

74 (log log log x) a (log log log log x) 
f ( C )  (tog log x) ~ 

which comple~es the proof of our ~heorem. 

6. In [6]--[9], K. F. ROTH generalized the method developed ~n [4] and [5], 
in order to investigate the solvability of systems of equazions of the form 

....Ycq, u:~,=O (i ~ 1,2, ~) 
]=1 

where the numbers eCj are integers satis~ing ~ ~j=O,  and u~<u~<.. ,  is an 
j = l  

arbitrary "dense" set of positive integers. 
By using that extension of Roth's method which has been elaborated in this 

paper, one may investigate also ~he solvability of systems of equations of the more 
genera[ form 

y Jr 

~ i j u ~ j  = ~nvik~'yk1"(k) (i = 1,2 . . . .  ,~) 
j=1 k=:t 

/ N 

where the numbers aij a~d fl,k are integers ,[again' ~ ~ij=0J,  ul<ue<. . ,  is an 
j=l  

arbitrary "dense" set of positive integers and the sets b~k)< b~ k)< ... (where k =  
= 1, ..., x) are fixed sets of positive integers. 
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